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Abstract

Deep clustering is a fundamental yet challenging task for data
analysis. Recently we witness a strong tendency of combining
autoencoder and graph neural networks to exploit structure
information for clustering performance enhancement. How-
ever, we observe that existing literature 1) lacks a dynamic
fusion mechanism to selectively integrate and refine the infor-
mation of graph structure and node attributes for consensus
representation learning; 2) fails to extract information from
both sides for robust target distribution (i.e., “groundtruth”
soft labels) generation. To tackle the above issues, we pro-
pose a Deep Fusion Clustering Network (DFCN). Specif-
ically, in our network, an interdependency learning-based
Structure and Attribute Information Fusion (SAIF) module
is proposed to explicitly merge the representations learned
by an autoencoder and a graph autoencoder for consen-
sus representation learning. Also, a reliable target distribu-
tion generation measure and a triplet self-supervision strat-
egy, which facilitate cross-modality information exploita-
tion, are designed for network training. Extensive experi-
ments on six benchmark datasets have demonstrated that the
proposed DFCN consistently outperforms the state-of-the-art
deep clustering methods. Our code is publicly available at
https://github.com/WxTu/DFCN.

Introduction
Deep clustering, which aims to train a neural network for
learning discriminative feature representations to divide data
into several disjoint groups without intense manual guid-
ance, is becoming an increasingly appealing direction to
the machine learning researchers. Thanks to the strong rep-
resentation learning capability of deep learning methods,
researches in this field have achieved promising perfor-
mance in many applications including anomaly detection
(Markovitz et al. 2020), social network analysis (Hu, Chan,
and He 2017), and face recognition (Wang et al. 2019b).
Two important factors, i.e., the optimization objective and
the fashion of feature extraction, significantly determine the
performance of a deep clustering method. Specifically, in the
unsupervised clustering scenario, without the guidance of la-
bels, designing a subtle objective function and an elegant ar-
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Figure 1: Network structure comparison. Different from the
existing structure and attribute information fusion networks
(such as SDCN), our proposed method is enhanced with
an information fusion module. With this module, 1) both
the decoder of AE and IGAE reconstruct the inputs with a
learned consensus latent representation. 2) The target dis-
tribution is constructed with sufficient negotiation between
AE and IGAE. 3) A self-supervised triplet learning strategy
is designed.

chitecture to enable the network to collect more comprehen-
sive and discriminative information for intrinsic structure re-
vealing is extremely crucial and challenging.

According to the network optimization objective, existing
deep clustering methods can be roughly grouped into five
categories, i.e., subspace clustering-based methods (Zhou
et al. 2019a; Ji et al. 2017; Peng et al. 2017), genera-
tive adversarial network-based methods (Mukherjee et al.
2019; Ghasedi et al. 2019), spectral clustering-based meth-
ods (Yang et al. 2019b; Shaham et al. 2018), Gaussian mix-
ture model-based methods (Yang et al. 2019a; Chen et al.
2019), and self-optimizing-based methods (Xie, Girshick,
and Farhadi 2016; Guo et al. 2017). Our method falls into
the last category. In the early state, the above deep cluster-
ing methods mainly concentrate on exploiting the attribute
information in the original feature space of data and have
achieved good performance in many circumstances. To fur-
ther improve the clustering accuracy, recent literature shows
a strong tendency in extracting geometrical structure infor-
mation and then integrates it with attribute information for
representation learning. Specifically, Yang et al. design a
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novel stochastic extension of graph embedding to add lo-
cal data structures into probabilistic deep Gaussian mixture
model (GMM) for clustering (Yang et al. 2019a). Distribu-
tion preserving subspace clustering (DPSC) first estimates
the density distribution of the original data space and the la-
tent embedding space with kernel density estimation. Then
it preserves the intrinsic cluster structure within data by
minimizing the distribution inconsistency between the two
spaces (Zhou et al. 2019a). More recently, graph convolu-
tional networks (GCNs), which aggregate the neighborhood
information for better sample representation learning, have
attracted the attention of many researchers. The work in deep
attentional embedded graph clustering (DAEGC) exploits
both graph structure and node attributes with a graph atten-
tion encoder. It reconstructs the adjacency matrix by a self-
optimizing embedding method (Wang et al. 2019a). Follow-
ing the setting of DAEGC, adversarially regularized graph
autoencoder (ARGA) further develops an adversarial regu-
larizer to guide the learning of latent representations (Pan
et al. 2020). After that, structural deep clustering network
(SDCN) (Bo et al. 2020) integrates an autoencoder and a
graph convolutional network into a unified framework by de-
signing an information passing delivery operator and a dual
self-supervised learning mechanism.

Although the former efforts have achieved preferable per-
formance enhancement by leveraging both kinds of infor-
mation, we find that 1) the existing methods lack an cross-
modality dynamic information fusion and processing mech-
anism. Information from two sources is simply aligned or
concatenated, leading to insufficient information interaction
and merging; 2) the generation of the target distribution in
existing literature has seldom used information from both
sources, making the guidance of network training less com-
prehensive and accurate. As a consequence, the negotiation
between two information sources is obstructed, resulting in
unsatisfying clustering performance.

To tackle the above issues, we propose a deep fusion clus-
tering network (DFCN). The main idea of our solution is
to design a dynamic information fusion module to finely
process the attribute and structure information extracted
from autoencoder (AE) and graph autoencoder (GAE) for a
more comprehensive and accurate representation construc-
tion. Specifically, a structure and attribute information fu-
sion (SAIF) module is carefully designed for elaborating
both-source information processing. Firstly, we integrate
two kinds of sample embeddings in both the perspective
of local and global level for consensus representation learn-
ing. After that, by estimating the similarity between sample
points and pre-calculated cluster centers in the latent embed-
ding space with Students’ t-distribution, we acquire more
precise target distribution. Finally, we design a triplet self-
supervision mechanism which uses the target distribution to
provide more dependable guidance for AE, GAE, and the in-
formation fusion part simultaneously. Moreover, we develop
an improved graph autoencoder (IGAE) with a symmetric
structure and reconstruct the adjacency matrix with both the
latent representations and the feature representations recon-
structed by the graph decoder. The key contributions of this
paper are listed as follows:

• We propose a deep fusion clustering network (DFCN). In
this network, a structure and attribute information fusion
(SAIF) module is designed for better information inter-
action between AE and GAE. With this module, 1) since
both the decoders of AE and GAE reconstruct the inputs
using a consensus latent representation, the generalization
capacity of the latent embeddings is boosted. 2) The reli-
ability of the generated target distribution is enhanced by
integrating the complementary information between AE
and GAE. 3) The self-supervised triplet learning mecha-
nism integrates the learning of AE, GAE and the fusion
part in a unified and robust system, thus further improves
the clustering performance.

• We develop a symmetric graph autoencoder, i.e., im-
proved graph autoencoder (IGAE), to further improve the
generalization capability of the proposed method.

• Extensive experiment results on six public benchmark
datasets have demonstrated that our method is highly
competitive and consistently outperforms the state-of-the-
art ones with a preferable margin.

Related Work
Attributed Graph Clustering
Benefiting from the strong representation power of graph
convolutional networks (GCNs) (Kipf and Welling 2017),
GCN-based clustering methods that jointly learn graph
structure and node attributes have been widely studied in re-
cent years (Fan et al. 2020; Cheng et al. 2020; Sun, Lin,
and Zhu 2020). Specifically, graph autoencoder (GAE) and
variational graph autoencoder (VGAE) are proposed to in-
tegrate graph structure into node attributes via iteratively
aggregating neighborhood representations around each cen-
tral node (Kipf and Welling 2016). After that, ARGA (Pan
et al. 2020), AGAE (Tao et al. 2019), DAEGC (Wang et al.
2019a), and MinCutPool (Bianchi, Grattarola, and Alippi
2020) improve the performance of the early-stage meth-
ods with adversarial training, attention, and graph pool-
ing mechanisms, respectively. Although the performance of
the corresponding methods has been improved considerably,
the over-smoothing phenomenon of the GCNs still limits
the accuracy of these methods. More recently, SDCN (Bo
et al. 2020) is proposed to integrate autoencoder and GCN
module for better representation learning. Through care-
ful theoretical and experimental analysis, authors find that
in their proposed network, autoencoder can help provide
complementary attribute information and help relieve the
over-smoothing phenomenon of GCN module, while GCN
module provides high-order structure information to autoen-
coder. Although SDCN proves that combining autoencoder
and GCN module can boost the clustering performance of
both components, in this work, the GCN module acts only as
a regularizer of the autoencoder. Thus, the learned features
of the GCN module are insufficiently utilized for guiding
the self-optimizing network training and the representation
learning of the framework lacks the negotiation between the
two sub-networks. Differently, in our proposed method, an
information fusion module (i.e., SAIF module) is proposed
to integrate and refine the features learned by the AE and
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IGAE. As a consequence, the complementary information
from two sub-networks is finely merged to reach a consen-
sus, and more discriminative representations are learned.

Target Distribution Generation
Since reliable guidance is missing in clustering network
training, many deep clustering methods seek to generate
the target distribution (i.e., “groundtruth” soft labels) for
discriminative representation learning in a self-optimizing
manner (Ren et al. 2019; Xu et al. 2019; Li et al. 2019). The
early method (DEC) in this category first trains an encoder,
and then with the pre-trained network, it further defines a
target distribution based on the Student’s t-distribution and
fine-tunes the network with stronger guidance (Xie, Gir-
shick, and Farhadi 2016). To increase the accuracy of the tar-
get distribution, IDEC jointly optimizes the cluster assign-
ment and learns features that are suitable for clustering with
local structure preservation (Guo et al. 2017). After that, to
better train the autoencoder and GCN module integrated net-
work, SDCN designs a dual self-supervised learning mecha-
nism which conducts target distribution refinement and sub-
network training in a unified system (Bo et al. 2020). Despite
their success, existing methods generate the target distribu-
tion with only the information of autoencoder or GCN mod-
ule. None of them considers combining the information from
both sides and then comes up with a more robust guidance,
thus the generated target distribution could be less compre-
hensive. In contrast, in our method, as the information fusion
module allows the information from the two sub-networks to
adequately interact with each other, the resultant target dis-
tribution has the potential to be more reliable and robust than
that of the single-source counterparts.

The Proposed Method
Our proposed method mainly consists of four parts, i.e., an
autoencoder, an improved graph autoencoder, a fusion mod-
ule, and the optimization targets (please check Fig. 1 for the
diagram of our network structure). The encoder part of both
AE and IGAE are similar with that of the existing litera-
ture. In the following sections, we will first introduce the
basic notations and then introduce the decoder of both sub-
networks, the fusion module, and the optimization targets in
detail.

Notations
Given an undirected graph G = {V, E} with K cluster cen-
ters, V = {v1, v2, . . . , vN} and E are the node set and the
edge set, respectively, where N is the number of samples.
The graph is characterized by its attribute matrix X ∈ RN×d

and original adjacency matrix A = (aij)N×N ∈ RN×N .
Here, d is the attribute dimension and aij = 1 if (vi, vj) ∈
E , otherwise aij = 0. The corresponding degree matrix is
D = diag(d1, d2, ..., dN ) ∈ RN×N and di =

∑
vj∈V aij .

With D, the original adjacency matrix is further normal-
ized as Ã ∈ RN×N through calculating D−

1
2 (A+ I)D−

1
2 ,

where I ∈ RN×N indicates that each node in V is linked
with a self-loop structure. All notations are summarized in
Table 1.

Notations Meaning
X ∈ RN×d Attribute matrix
A ∈ RN×N Original adjacency matrix
I ∈ RN×N Identity matrix
Ã ∈ RN×N Normalized adjacency matrix
D ∈ RN×N Degree matrix
Ẑ ∈ RN×d Reconstructed weighted attribute matrix
Â ∈ RN×N Reconstructed adjacency matrix

ZAE ∈ RN×d
′

Latent embedding of AE

ZIGAE ∈ RN×d
′

Latent embedding of IGAE

ZI ∈ RN×d
′

Initial fused embedding

ZL ∈ RN×d
′

Local structure enhanced ZI

S ∈ RN×N Normalized self-correlation matrix

ZG ∈ RN×d
′

Global structure enhanced ZL

Z̃ ∈ RN×d
′

Clustering embedding
Q ∈ RN×K Soft assignment distribution
P ∈ RN×K Target distribution

Table 1: Basic notations for the proposed DFCN

Fusion-based Autoencoders
Input of the Decoder. Most of the existing autoencoders,
either classic autoencoder or graph autoencoder, reconstruct
the inputs with only its own latent representations. How-
ever, in our proposed method, with the compressed repre-
sentations of AE and GAE, we first integrate the informa-
tion from both sources for a consensus latent representation.
Then, with this embedding as an input, both the decoders
of AE and GAE reconstruct the inputs of two sub-networks.
This is very different from the existing methods that our pro-
posed method fuses heterogeneous structure and attribute in-
formation with a carefully designed fusion module and then
reconstructs the inputs of both sub-networks with the con-
sensus latent representation. Detailed information about the
fusion module will be introduced in the Structure and At-
tribute Information Fusion section.
Improved Graph Autoencoder. In the existing literature,
the classic autoencoders are usually symmetric, while graph
convolutional networks are usually asymmetric (Kipf and
Welling 2016; Wang et al. 2019a; Tao et al. 2019). They
require only the latent representation to reconstruct the ad-
jacency information and overlook that the structure-based
attribute information can also be exploited for improving
the generalization capability of the corresponding network.
To better make use of both the adjacency information and
the attribute information, we design a symmetric improved
graph autoencoder (IGAE). This network requires to recon-
struct both the weighted attribute matrix and the adjacency
matrix simultaneously. In the proposed IGAE, a layer in the
encoder and decoder is formulated as:

Z(l) = σ(ÃZ(l−1)W(l)), (1)

Ẑ(h) = σ(ÃẐ(h−1)Ŵ(h)), (2)
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Figure 2: Illustration of the Structure and Attribute Informa-
tion Fusion (SAIF) module.

where W(l) and Ŵ(h) denote the learnable parameters
of the l-th encoder layer and h-th decoder layer. σ is a
non-linear activation function, such as ReLU or Tanh. To
minimize both the reconstruction loss functions over the
weighted attribute matrix and the adjacency matrix, our
IGAE is designed to minimize a hybrid loss function:

LIGAE = Lw + γLa. (3)

In Eq.(3), γ is a pre-defined hyper-parameter that balances
the weight of the two reconstruction loss functions. Spe-
cially, Lw and La are defined as follows:

Lw =
1

2N
‖ÃX− Ẑ‖2F , (4)

La =
1

2N
‖Ã− Â‖2F . (5)

In Eq.(4), Ẑ ∈ RN×d is the reconstructed weighted attribute
matrix. In Eq.(5), Â ∈ RN×N is the reconstructed adja-
cency matrix generated by an inner product operation with
multi-level representations of the network. By minimizing
both Eq.(4) and Eq.(5), the proposed IGAE is termed to min-
imize the reconstruction loss over the weighted attribute ma-
trix and the adjacency matrix at the same time. Experimental
results in the following parts validate the effectiveness of this
setting.

Structure and Attribute Information Fusion
To sufficiently explore the graph structure and node at-
tributes information extracted by the AE and IGAE, we
propose a structure and attribute information fusion (SAIF)
module. This module consists of two parts, i.e., a cross-
modality dynamic fusion mechanism and a triplet self-
supervised strategy. The overall structure of SAIF is illus-
trated in Fig. 2.

Cross-modality Dynamic Fusion Mechanism. The in-
formation integration within our fusion module includes
four steps. First, we combine the latent embedding of AE
(ZAE ∈ RN×d

′

) and IGAE (ZIGAE ∈ RN×d
′

) with a lin-
ear combination operation:

ZI = αZAE + (1− α)ZIGAE , (6)

where d
′

is the latent embedding dimension, and α is a learn-
able coefficient which selectively determines the importance
of two information sources according to the property of the
corresponding dataset. In our paper, α is initialized as 0.5
and then tuned automatically with a gradient decent method.

Then, we process the combined information with a graph
convolution-like operation (i.e., message passing operation).
With this operation, we enhance the initial fused embedding
ZI ∈ RN×d

′

by considering the local structure within data:

ZL = ÃZI . (7)

In Eq.(7), ZL ∈ RN×d
′

denotes the local structure enhanced
ZI .

After that, we further introduce a self-correlated learning
mechanism to exploit the non-local relationship in the pre-
liminary information fusion space among samples. Specifi-
cally, we first calculate the normalized self-correlation ma-
trix S ∈ RN×N through Eq.(8):

Sij =
e(ZLZT

L)ij∑N
k=1 e

(ZLZT
L)ik

. (8)

With S as coefficients, we recombine ZL by considering the
global correlation among samples: ZG = SZL.

Finally, we adopt a skip connection to encourage informa-
tion to pass smoothly within the fusion mechanism:

Z̃ = βZG + ZL, (9)

where β is a scale parameter. Following the setting in (Fu
et al. 2019), we initialize it as 0 and learn its weight while
training the network. Technically, our cross-modality dy-
namic fusion mechanism considers the sample correlation
in both the perspective of the local and global level. Thus,
it has potential benefit on finely fusing and refining the in-
formation from both AE and IGAE for learning consensus
latent representations.

Triplet Self-supervised Strategy. To generate more reli-
able guidance for clustering network training, we first adopt
the more robust clustering embedding Z̃ ∈ RN×d

′

which
has integrated the information from both AE and IGAE
for target distribution generation. As shown in Eq.(10) and
Eq.(11), the generation process includes two steps:

qij =
(1 + ‖z̃i − uj‖2/v)−

v+1
2∑

j′ (1 + ‖z̃i − uj′‖2/v)−
v+1
2

, (10)

pij =
q2ij/

∑
i qij∑

j′ (q
2
ij′
/
∑

i qij′ )
. (11)

In the first step (corresponding to Eq.(10)), we calculate the
similarity between the i-th sample (z̃i) and the j-th pre-
calculated clustering center (uj) in the fused embedding
space using Student’s t-distribution as kernel. In Eq.(10), v
is the degree of freedom for Student’s t-distribution and qij
indicates the probability of assigning the i-th node to the j-
th center (i.e., a soft assignment). The soft assignment ma-
trix Q ∈ RN×K reflects the distribution of all samples. In
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Algorithm 1 Deep Fusion Clustering Network
Input: Attribute matrix X; Adjacency matrix A; Target distribu-

tion update interval T; Iteration number I; Cluster number K;
Hyper-parameters γ, λ.

Output: Clustering results O.
1: Initialize the parameters of AE, IGAE, and the fusion part to

obtain ZAE , ZIGAE , and Z̃;
2: Initialize the clustering centers u with K-means based on Z̃;
3: for i = 1 to I do
4: Update ZI and ZL by Eq.(6) and Eq.(7);
5: Update the normalized self-correlation matrix S and the

deep clustering embedding Z̃ by Eq.(8) and Eq.(9), respec-
tively;

6: Calculate soft assignment distributions Q, Q
′
, and Q

′′

based on Z̃, ZIGAE , and ZAE by Eq.(10);
7: if i%T == 0 then
8: Calculate the target distribution P derived from Q by

Eq.(11);
9: end if

10: Utilize P to refine Q, Q
′
, and Q

′′
in turn by Eq.(12);

11: Calculate LAE , LIGAE , and LKL, respectively.
12: Update the whole network by minimizing Eq.(13);
13: end for
14: Obtain the clustering results O with the final Z̃ by K-means.
15: return O

the second step, to increase the confidence of cluster assign-
ment, we introduce Eq.(11) to drive all samples to get closer
to cluster centers. Specifically, 0 ≤ pij ≤ 1 is an element
of the generated target distribution P ∈ RN×K , which in-
dicates the probability of the i-th sample belongs to the j-th
cluster center.

With the iteratively generated target distribution, we then
calculate the soft assignment distribution of AE and IGAE
by using Eq.(10) over the latent embeddings of two sub-
networks, respectively. We denote the soft assignment dis-
tribution of IGAE and AE as Q

′
and Q

′′
.

To train the network in a unified framework and improve
the representative capability of each component, we design
a triplet clustering loss by adapting the KL-divergence in the
following form:

LKL =
∑
i

∑
j

pij log
pij

(qij + q
′
ij + q

′′
ij)/3

. (12)

In this formulation, the summation of soft assignment dis-
tribution of AE, IGAE, and the fused representations are
aligned with the robust target distribution simultaneously.
Since the target distribution is generated without human
guidance, we name the loss function triplet clustering loss
and the corresponding training mechanism as triplet self-
supervised strategy.

Joint Loss and Optimization
The overall learning objective consists of two main parts,
i.e., the reconstruction loss of AE and IGAE, and the clus-
tering loss which is correlated with the target distribution:

L = LAE + LIGAE︸ ︷︷ ︸
Reconstruction

+ λLKL︸ ︷︷ ︸
Clustering

. (13)

Dataset Type Samples Classes Dimension
USPS Image 9298 10 256
HHAR Record 10299 6 561
REUT Text 10000 4 2000
ACM Graph 3025 3 1870
DBLP Graph 4058 4 334
CITE Graph 3327 6 3703

Table 2: Dataset summary

In Eq.(13), LAE is the mean square error (MSE) recon-
struction loss of AE. Different from SDCN, the proposed
DFCN reconstructs the inputs of both sub-networks with the
consensus latent representation. λ is a pre-defined hyper-
parameter which balances the importance of reconstruction
and clustering. The detailed learning procedure of the pro-
posed DFCN is shown in Algorithm 1.

Experiments
Benchmark Datasets
We evaluate the proposed DFCN on six popular public
datasets, including three graph datasets (ACM1, DBLP2, and
CITE3) and three non-graph datasets (USPS (LeCun et al.
1990), HHAR (Lewis et al. 2004), and REUT (Stisen et al.
2015)). Table 2 summarizes the brief information of these
datasets. For the dataset (like USPS, HHAR, and REUT)
whose affinity matrix is absent, we follow (Bo et al. 2020)
and construct the matrix with heat kernel method.

Experiment Setup
Training Procedure Our method is implemented with Py-
Torch platform and a NVIDIA 2080TI GPU. The training of
the proposed DFCN includes three steps. First, we pre-train
the AE and IGAE independently for 30 iterations by min-
imizing the reconstruction loss functions. Then, both sub-
networks are integrated into a united framework for another
100 iterations. Finally, with the learned centers of different
clusters and under the guidance of the triplet self-supervised
strategy, we train the whole network for at least 200 itera-
tions until convergence. The cluster ID is acquired by per-
forming K-means algorithm over the consensus clustering
embedding Z̃. Following all the compared methods, to alle-
viate the adverse influence of randomness, we repeat each
experiment for 10 times and report the average values and
the corresponding standard deviations.

Parameters Setting For ARGA (Pan et al. 2020), we set
the parameters of the method by following the setting of
the original paper. For other compared methods, we report
the results listed in the paper SDCN (Bo et al. 2020) di-
rectly. For our method, we adopt the original code and data
of SDCN for data pre-processing and testing. All ablation
studies are trained with the Adam optimizer. The optimiza-
tion stops when the validation loss comes to a plateau. The

1http://dl.acm.org/
2https://dblp.uni-trier.de
3http://citeseerx.ist.psu.edu/index
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Data Metric K-means AE DEC IDEC GAE VGAE ARGA DAEGC SDCNQ SDCN DFCN

USPS

ACC 66.8±0.0 71.0±0.0 73.3±0.2 76.2±0.1 63.1±0.3 56.2±0.7 66.8±0.7 73.6±0.4 77.1±0.2 78.1±0.2 79.5±0.2
NMI 62.6±0.0 67.5±0.0 70.6±0.3 75.6±0.1 60.7±0.6 51.1±0.4 61.6±0.3 71.1±0.2 77.7±0.2 79.5±0.3 82.8±0.3
ARI 54.6±0.0 58.8±0.1 63.7±0.3 67.9±0.1 50.3±0.6 41.0±0.6 51.1±0.6 63.3±0.3 70.2±0.2 71.8±0.2 75.3±0.2
F1 64.8±0.0 69.7±0.0 71.8±0.2 74.6±0.1 61.8±0.4 53.6±1.1 66.1±1.2 72.5±0.5 75.9±0.2 77.0±0.2 78.3±0.2

HHAR

ACC 60.0±0.0 68.7±0.3 69.4±0.3 71.1±0.4 62.3±1.0 71.3±0.4 63.3±0.8 76.5±2.2 83.5±0.2 84.3±0.2 87.1±0.1
NMI 58.9±0.0 71.4±1.0 72.9±0.4 74.2±0.4 55.1±1.4 63.0±0.4 57.1±1.4 69.1±2.3 78.8±0.3 79.9±0.1 82.2±0.1
ARI 46.1±0.0 60.4±0.9 61.3±0.5 62.8±0.5 42.6±1.6 51.5±0.7 44.7±1.0 60.4±2.2 71.8±0.2 72.8±0.1 76.4±0.1
F1 58.3±0.0 66.4±0.3 67.3±0.3 68.6±0.3 62.6±1.0 71.6±0.3 61.1±0.9 76.9±2.2 81.5±0.1 82.6±0.1 87.3±0.1

REUT

ACC 54.0±0.0 74.9±0.2 73.6±0.1 75.4±0.1 54.4±0.3 60.9±0.2 56.2±0.2 65.6±0.1 79.3±0.1 77.2±0.2 77.7±0.2
NMI 41.5±0.5 49.7±0.3 47.5±0.3 50.3±0.2 25.9±0.4 25.5±0.2 28.7±0.3 30.6±0.3 56.9±0.3 50.8±0.2 59.9±0.4
ARI 28.0±0.4 49.6±0.4 48.4±0.1 51.3±0.2 19.6±0.2 26.2±0.4 24.5±0.4 31.1±0.2 59.6±0.3 55.4±0.4 59.8±0.4
F1 41.3±2.4 61.0±0.2 64.3±0.2 63.2±0.1 43.5±0.4 57.1±0.2 51.1±0.2 61.8±0.1 66.2±0.2 65.5±0.1 69.6±0.1

ACM

ACC 67.3±0.7 81.8±0.1 84.3±0.8 85.1±0.5 84.5±1.4 84.1±0.2 86.1±1.2 86.9±2.8 87.0±0.1 90.5±0.2 90.9±0.2
NMI 32.4±0.5 49.3±0.2 54.5±1.5 56.6±1.2 55.4±1.9 53.2±0.5 55.7±1.4 56.2±4.2 58.9±0.2 68.3±0.3 69.4±0.4
ARI 30.6±0.7 54.6±0.2 60.6±1.9 62.2±1.5 59.5±3.1 57.7±0.7 62.9±2.1 59.4±3.9 65.3±0.2 73.9±0.4 74.9±0.4
F1 67.6±0.7 82.0±0.1 84.5±0.7 85.1±0.5 84.7±1.3 84.2±0.2 86.1±1.2 87.1±2.8 86.8±0.1 90.4±0.2 90.8±0.2

DBLP

ACC 38.7±0.7 51.4±0.4 58.2±0.6 60.3±0.6 61.2±1.2 58.6±0.1 61.6±1.0 62.1±0.5 65.7±1.3 68.1±1.8 76.0±0.8
NMI 11.5±0.4 25.4±0.2 29.5±0.3 31.2±0.5 30.8±0.9 26.9±0.1 26.8±1.0 32.5±0.5 35.1±1.1 39.5±1.3 43.7±1.0
ARI 7.0±0.4 12.2±0.4 23.9±0.4 25.4±0.6 22.0±1.4 17.9±0.1 22.7±0.3 21.0±0.5 34.0±1.8 39.2±2.0 47.0±1.5
F1 31.9±0.3 52.5±0.4 59.4±0.5 61.3±0.6 61.4±2.2 58.7±0.1 61.8±0.9 61.8±0.7 65.8±1.2 67.7±1.5 75.7±0.8

CITE

ACC 39.3±3.2 57.1±0.1 55.9±0.2 60.5±1.4 61.4±0.8 61.0±0.4 56.9±0.7 64.5±1.4 61.7±1.1 66.0±0.3 69.5±0.2
NMI 16.9±3.2 27.6±0.1 28.3±0.3 27.2±2.4 34.6±0.7 32.7±0.3 34.5±0.8 36.4±0.9 34.4±1.2 38.7±0.3 43.9±0.2
ARI 13.4±3.0 29.3±0.1 28.1±0.4 25.7±2.7 33.6±1.2 33.1±0.5 33.4±1.5 37.8±1.2 35.5±1.5 40.2±0.4 45.5±0.3
F1 36.1±3.5 53.8±0.1 52.6±0.2 61.6±1.4 57.4±0.8 57.7±0.5 54.8±0.8 62.2±1.3 57.8±1.0 63.6±0.2 64.3±0.2

Table 3: Clustering performance on six datasets (mean±std). The red and blue values indicate the best and the runner-up results,
respectively.

learning rate is set to 1e-3 for USPS, HHAR, 1e-4 for REUT,
DBLP, and CITE, and 5e-5 for ACM. The training batch size
is set to 256 and we adopt an early stop strategy to avoid
over-fitting. According to the results of parameter sensitiv-
ity testing, we fix two balanced hyper-parameters γ and λ to
0.1 and 10, respectively. Moreover, we set the nearest neigh-
bors number of each node as 5 for all non-graph datasets.

Evaluation Metric The clustering performance of all
methods is evaluated by four metrics: Accuracy (ACC), Nor-
malized Mutual Information (NMI), Average Rand Index
(ARI), and macro F1-score (F1) (Zhou et al. 2020, 2019b;
Liu et al. 2020a,b, 2019). The best map between cluster ID
and class ID is found by using the Kuhn-Munkres algorithm
(Lovász and Plummer 1986).

Comparison with the State-of-the-art Methods
In this part, we compare our proposed method with ten state-
of-the-art clustering methods to illustrate its effectiveness.
Among them, K-means (Hartigan and Wong 1979) is the
representative one of classic shallow clustering methods.
AE (Hinton and Salakhutdinov 2006), DEC (Xie, Girshick,
and Farhadi 2016), and IDEC (Guo et al. 2017) represent
the autoencoder-based clustering methods which learn the
representations for clustering through training an autoen-
coder. GAE/VGAE (Kipf and Welling 2016), ARGA (Pan
et al. 2020), and DAEGC (Wang et al. 2019a) are typical
methods of graph convolutional network-based methods. In
these methods, the clustering representation is embedded
with structure information by GCN. SDCNQ and SDCN (Bo
et al. 2020) are representatives of hybrid methods which take
advantage of both AE and GCN module for clustering.

The clustering performance of our method and 10 base-
line methods on six benchmark datasets are summarized in
Table 3. Based on the results, we have the following obser-
vations:

1) DFCN shows superior performance against the com-
pared methods in most circumstances. Specifically, K-means

Figure 3: Clustering results of the graph autoencoder with
different reconstruction strategy. GAE-Lw, GAE-La, and
IGAE correspond to the reconstruction of weighted attribute
matrix, adjacency matrix, and both.

performs clustering on raw data. AE, DEC, and IDEC
merely exploit node attribute representations for cluster-
ing. These methods seldom take structure information into
account, leading to sub-optimal performance. In contrast,
DFCN successfully leverages available data by selectively
integrating the information of graph structure and node at-
tributes, which complements each other for consensus rep-
resentation learning and greatly improves clustering perfor-

9983



Figure 4: Ablation comparisons of cross-modality dynamic
fusion mechanism and triplet self-supervised strategy in
SAIF. The baseline refers to a naive united framework con-
sisting of AE and IGAE. -C, -S, and -T indicate that the base-
line utilizes the cross-modality dynamic fusion mechanism,
single or triplet self-supervised strategy, respectively.

Dataset Model ACC NMI ARI F1

USPS
+AE 78.3±0.3 81.3±0.1 73.6±0.3 76.8±0.3

+IGAE 76.9±0.4 77.1±0.4 68.8±0.6 74.8±0.5
DFCN 79.5±0.2 82.8±0.3 75.3±0.2 78.3±0.2

HHAR
+AE 75.2±1.4 82.8±1.0 71.7±1.2 72.6±0.9

+IGAE 82.8±0.1 79.6±0.1 72.3±0.1 83.4±0.1
DFCN 87.1±0.1 82.2±0.1 76.4±0.1 87.3±0.1

REUT
+AE 69.3±0.8 48.5±1.6 44.6±1.1 58.3±0.6

+IGAE 71.4±1.7 52.5±1.0 49.1±2.2 61.5±2.9
DFCN 77.7±0.2 59.9±0.4 59.8±0.4 69.6±0.1

ACM
+AE 90.2±0.3 67.5±0.8 73.2±0.8 90.2±0.3

+IGAE 89.6±0.2 65.6±0.4 71.8±0.4 89.6±0.2
DFCN 90.9±0.2 69.4±0.4 74.9±0.4 90.8±0.2

DBLP
+AE 64.2±2.9 30.2±3.2 29.4±3.4 64.6±2.8

+IGAE 67.5±1.0 34.2±1.1 31.5±1.1 67.6±1.0
DFCN 76.0±0.8 43.7±1.0 47.0±1.5 75.7±0.8

CITE
+AE 69.3±0.3 42.9±0.4 44.7±0.4 64.4±0.3

+IGAE 67.9±0.9 41.8±1.0 43.0±1.4 63.7±0.7
DFCN 69.5±0.2 43.9±0.2 45.5±0.3 64.3±0.2

Table 4: Ablation comparisons of the target distribution gen-
eration with signle- or both-source information.

mance.
2) It is obvious that GCN-based methods such as GAE,

VGAE, ARGA, and DAEGC are not comparable to ours,
because these methods under-utilize abundant informa-
tion from data itself and might be limited to the over-

Figure 5: The sensitivity of DFCN with the variation of λ on
six datasets.

smoothing phenomenon. Differently, DFCN incorporates
attribute-based representations learned by AE into the whole
clustering framework, and mutually explores graph struc-
ture and node attributes with a fusion module for consen-
sus representation learning. As a result, the proposed DFCN
improves the clustering performance of the existing GCN-
based methods with a preferable gap.

3) DFCN achieves better clustering results than the
strongest baseline methods SDCNQ and SDCN in the major-
ity of cases, especially on HHAR, DBLP, and CITE datasets.
On DBLP dataset for instance, our method achieves a 7.9%,
4.2%, 7.8%, and 8.0% increment with respect to ACC, NMI,
ARI and F1 against SDCN. This is because DFCN not only
achieves a dynamic interaction between graph structure and
node attributes to reveal the intrinsic clustering structure, but
also adopts a triplet self-supervised strategy to provide pre-
cise network training guidance.

Ablation Studies
Effectiveness of IGAE We further conduct ablation stud-
ies to verify the effectiveness of IGAE and report the re-
sults in Fig. 3. GAE-Lw or GAE-La denotes the method op-
timized by the reconstruction loss function of weighted at-
tribute matrix or adjacency matrix only. We can find out that
GAE-Lw consistently performs better than GAE-La on six
datasets. Besides, IGAE clearly improves the clustering per-
formance over the method which constructs the adjacency
matrix only. Both observations illustrate that our proposed
reconstruction measure is able to exploit more comprehen-
sive information for improving the generalization capabil-
ity of the deep clustering network. By this means, the latent

9984



Figure 6: 2D visualization on six datasets. The first, second, and last row correspond to the distribution of raw data, baseline
and DFCN (baseline + SAIF), respectively.

embedding inherits more properties from the attribute space
of the original graph, preserving representative features that
generate better clustering decisions.

Analysis of the SAIF Module In this part, we conduct
several experiments to verify the effectiveness of the SAIF
module. As summarized in Fig. 4, we observe that 1) com-
pared with the baseline, Baseline-C method has about 0.5%
to 5.0% performance improvements, indicating that explor-
ing graph structure and node attributes in both the perspec-
tive of the local and global level is helpful to learn consen-
sus latent representations for better clustering; 2) the perfor-
mance of Baseline-C-T method is consistently better than
that of Baseline-C-S method on all datasets. The reason is
that our triplet self-supervised strategy successfully gener-
ates more reliable guidance for the training of AE, IGAE,
and the fusion part, making them benefit from each other.
According to these observations, the superiority of the SAIF
module has clearly been demonstrated over the baseline.

Influence of Exploiting Both-source Information We
compare our method with two variants to validate the ef-
fectiveness of complementary two-modality (structure and
attribute) information learning for target distribution gener-
ation. As reported in Table 4, +AE or +IGAE refers to the
DFCN with only AE or IGAE part, respectively. On one
hand, as +AE and +IGAE achieve better performance on dif-
ferent datasets, it indicates that information from either AE
or IGAE cannot consistently outperform that of their coun-
terparts, combining the both-source information can poten-
tially improve the robustness of the hybrid method. On the
other hand, DFCN encodes both DNN- and GCN-based
representations and consistently outperforms the single-
source methods. This shows that 1) both-source informa-
tion is equally essential for the performance improvement
of DFCN; 2) DFCN can facilitate the complementary two-
modality information to make the target distribution more
reliable and robust for better clustering.

Analysis of Hyper-parameter λ
As can be seen in Eq.(13), DFCN introduces a hyper-
parameter λ to make a trade-off between the reconstruction
and clustering. We conduct experiments to show the effect
of this parameter on all datasets. Fig. 5 illustrates the perfor-
mance variation of DFCN when λ varies from 0.01 to 100.
From these figures, we observe that 1) the hyper-parameter
λ is effective in improving the clustering performance; 2)
the performance of the method is stable in a wide range of
λ; 3) DFCN tends to perform well by setting λ to 10 across
all datasets.

Visualization of Clustering Results
To intuitively verify the effectiveness of DFCN, we vi-
sualize the distribution of the learned clustering embed-
ding Z̃ in two-dimensional space by employing t-SNE al-
gorithm (Maaten and Hinton 2008). As illustrated in Fig.
6, DFCN can better reveal the intrinsic clustering structure
among data.

Conclusion
In this paper, we propose a novel neural network-based
clustering method termed Deep Fusion Clustering Network
(DFCN). In our method, the core component SAIF module
leverages both graph structure and node attributes via a dy-
namic cross-modality fusion mechanism and a triplet self-
supervised strategy. In this way, more consensus and dis-
criminative information from both sides is encoded to con-
struct the robust target distribution, which effectively pro-
vides the precise network training guidance. Moreover, the
proposed IGAE is able to assist in improving the general-
ization capability of the proposed method. Experiments on
six benchmark datasets show that DFCN consistently out-
performs state-of-the-art baseline methods. In the future, we
plan to further improve our method to adapt it to multi-view
graph clustering and incomplete multi-view graph clustering
applications.
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