
Expected Eligibility Traces

Hado van Hasselt1, Sephora Madjiheurem2, Matteo Hessel1
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Abstract

The question of how to determine which states and actions
are responsible for a certain outcome is known as the credit
assignment problem and remains a central research question
in reinforcement learning and artificial intelligence. Eligibil-
ity traces enable efficient credit assignment to the recent se-
quence of states and actions experienced by the agent, but not
to counterfactual sequences that could also have led to the
current state. In this work, we introduce expected eligibility
traces. Expected traces allow, with a single update, to update
states and actions that could have preceded the current state,
even if they did not do so on this occasion. We discuss when
expected traces provide benefits over classic (instantaneous)
traces in temporal-difference learning, and show that some-
times substantial improvements can be attained. We provide
a way to smoothly interpolate between instantaneous and ex-
pected traces by a mechanism similar to bootstrapping, which
ensures that the resulting algorithm is a strict generalisation
of TD(λ). Finally, we discuss possible extensions and connec-
tions to related ideas, such as successor features.

Motivation and Summary
Appropriate credit assignment has long been a major research
topic in artificial intelligence (Minsky 1963). To make effec-
tive decisions and understand the world, we need to accu-
rately associate events, like rewards or penalties, to relevant
earlier decisions or situations. This is important both for learn-
ing accurate predictions, and for making good decisions.

Temporal credit assignment can be achieved with repeated
temporal-difference (TD) updates (Sutton 1988). One-step
TD updates propagate information slowly: when a surpris-
ing value is observed, the state immediately preceding it is
updated, but no earlier states or decisions are updated. Multi-
step updates (Sutton 1988; Sutton and Barto 2018) propagate
information faster over longer temporal spans, speeding up
credit assignment and learning. Multi-step updates can be
implemented online using eligibility traces (Sutton 1988),
without incurring significant additional computational ex-
pense, even if the time spans are long; these algorithms have
computation that is independent of the temporal span of the
predictions (van Hasselt and Sutton 2015).
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Figure 1: A comparison of TD(0), TD(λ), and the new
expected-trace algorithm ET(λ) (with λ = 0.9). The MDP
is illustrated on the left. Each episode, the agent moves ran-
domly down and right from the top left to the bottom right,
where any action terminates the episode. Reward on termi-
nation are +1 with probability 0.2, and zero otherwise—all
other rewards are zero. We plot the value estimates after the
first positive reward, which occurred in episode 5. We see
a) TD(0) only updated the last state, b) TD(λ) updated the
trajectory in this episode, and c) ET(λ) additionally updated
trajectories from earlier (unrewarding) episodes.

Traces provide temporal credit assignment, but do not as-
sign credit counterfactually to states or actions that could
have led to the current state, but did not do so this time.
Credit will eventually trickle backwards over the course of
multiple visits, but this can take many iterations. As an ex-
ample, suppose we collect a key to open a door, which leads
to an unexpected reward. Using standard one-step TD learn-
ing, we would update the state in which the door opened.
Using eligibility traces, we would also update the preceding
trajectory, including the acquisition of the key. But we would
not update other sequences that could have led to the reward,
such as collecting a spare key or finding a different entrance.

The problem of credit assignment to counterfactual states
may be addressed by learning a model, and using the model
to propagate credit (cf. Sutton 1990; Moore and Atkeson
1993; Chelu, Precup, and van Hasselt 2020); however, it
has often proven challenging to construct and use models
effectively in complex environments (cf. van Hasselt, Hessel,
and Aslanides 2019).

We introduce a new approach to counterfactual credit as-
signment, based on the concept of expected eligibility traces.
We present a family of algorithms, which we call ET(λ), that
use expected traces to update their predictions. We analyse
the nature of these expected traces, and illustrate their ben-
efits empirically in several settings—see Figure 1 for a first
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illustration. We introduce a bootstrapping mechanism that
provides a spectrum of algorithms between standard eligi-
bility traces and expected eligibility traces, and also discuss
ways to apply these ideas with deep neural networks. Finally,
we discuss possible extensions and connections to related
ideas such as successor features.

Background
Sequential decision problems can be modelled as Markov
decision processes1 (MDP) (S,A, p) (Puterman 1994), with
state space S, action space A, and a joint transition and
reward distribution p(r, s′|s, a). An agent selects actions ac-
cording to its policy π, such that At ∼ π(·|St) where π(a|s)
denotes the probability of selecting a in s, and observes ran-
dom rewards and states generated according to the MDP, re-
sulting in trajectories τt:T = {St, At, Rt+1, St+1, . . . , ST }.
A central goal is to predict returns of future discounted re-
wards (Sutton and Barto 2018)

Gt ≡ G(τt:T ) = Rt+1 + γt+1Rt+2 + γt+1γt+2Rt+3 + . . .

=

T∑
i=1

γ
(i−1)
t+1 Rt+i ,

where T is for instance the time the current episode termi-
nates or T = ∞, and where γt ∈ [0, 1] is a (possibly con-
stant) discount factor and γ(n)t =

∏n−1
k=0 γt+k, and γ(0)t = 1.

The value vπ(s) = E [Gt|St = s, π ] of state s is the ex-
pected return for a policy π. Rather than writing the return as
a random variable Gt, it will be convenient to instead write it
as an explicit function G(τ) of the random trajectory τ . Note
that G(τt:T ) = Rt+1 + γt+1G(τt+1:T ).

We approximate the value with a function vw(s) ≈ vπ(s).
This can for instance be a table—with a single separate entry
w[s] for each state—a linear function of some input features,
or a non-linear function such as a neural network with param-
eters w. The goal is to iteratively update w with

wt+1 = wt + ∆wt

such that vw approaches the true vπ. Perhaps the simplest
algorithm to do so is the Monte Carlo (MC) algorithm

∆wt ≡ α(Rt+1 + γt+1G(τt+1:T )− vw(St))∇wvw(St) .

Monte Carlo is effective, but has high variance, which can
lead to slow learning. TD learning (Sutton 1988; Sutton and
Barto 2018) instead replaces the return with the current esti-
mate of its expectation v(St+1) ≈ G(τt+1:T ), yielding

∆wt ≡ αδt∇wvw(St) , (1)
where δt ≡ Rt+1 + γt+1vw(St+1)− vw(St) ,

where δt is called the temporal-difference (TD) error. We
can interpolate between these extremes, for instance with
λ-returns which smoothly mix values and sampled returns:

Gλ(τt:T ) = Rt+1+γt+1

(
(1−λ)vw(St+1)+λGλ(τt+1:T )

)
.

‘Forward view’ algorithms, like the MC algorithm, use returns
that depend on future trajectories and need to wait until the

1The ideas in this paper extend naturally to POMDPs (cf. ?).

end of an episode to construct their updates, which can take a
long time. Conversely, ‘backward view’ algorithms rely only
on past experiences and can update their predictions online,
during an episode. Such algorithms build an eligibility trace
(Sutton 1988; Sutton and Barto 2018). An example is TD(λ):

∆wt ≡ αδtet , with et = γtλet−1 +∇wvw(St) ,

where et is an accumulating eligibility trace. This trace can
be viewed as a function et ≡ e(τ0:t) of the trajectory of past
transitions. The TD update in (1) is known as TD(0), because
it corresponds to using λ = 0. TD(λ = 1) corresponds to an
online implementation of the MC algorithm. Other variants
exist, using other kinds of traces, and equivalences have been
shown between these algorithms and their forward views that
use λ-returns: these backward-view algorithms converge to
the same solution as the corresponding forward view, and can
in some cases yield equivalent weight updates (Sutton 1988;
van Seijen and Sutton 2014; van Hasselt and Sutton 2015).

Expected Traces
The main idea of this paper is to use the concept of an ex-
pected eligibility trace, defined as

z(s) ≡ E [ et | St = s ] ,

where the expectation is over the agent’s policy and the MDP
dynamics. We introduce a concrete family of algorithms,
which we call ET(λ) and ET(λ, η), that learn expected traces
and use them in value updates. We analyse these algorithms
theoretically, describe specific instances, and discuss compu-
tational and algorithmic properties.

ET(λ)
We propose to learn approximations zθ(s) ≈ z(s), with pa-
rameters θ ∈ Rd (e.g., the weights of a neural network). One
way to learn zθ is by updating it toward the instantaneous
trace et, by minimizing an empirical loss L(et, zθ(St)). For
instance, L could be a component-wise squared loss, opti-
mized with stochastic gradient descent:

θt+1 = θt + ∆θt , where (2)

∆θt = −β ∂

∂θ

1

2
(et − zθ(St))

>(et − zθ(St))

= β
∂zθ(St)

∂θ
(et − zθ(St)) , (3)

where ∂zθ(St)
∂θ is a |θ| × |e| Jacobian2 and β is a step size.

The idea is then to use zθ(s) ≈ E [ et | St = s ] in place
of et in the value update, which becomes

∆wt ≡ αδtzθ(St) . (4)

We call this ET(λ). Below, we prove that this update can
be unbiased and can have lower variance than TD(λ). Algo-
rithm 1 shows pseudo-code for a concrete instance of ET(λ).

2The Jacobian-vector product can efficiently be computed (e.g.,
via auto-differentiation) with computational requirements that are
comparable to the computation of the loss.
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Algorithm 1 ET(λ)

1: initialise w, θ
2: for M episodes do
3: initialise e = 0
4: observe initial state S
5: repeat for each step in episode m
6: generate R and S′
7: δ ← R+ γvw(S′)− vw(S)
8: e← γλe+∇wvw(S)

9: θ ← θ + β ∂zθ(S)∂θ (e− zθ(S))
10: w← w + αδzθ(S)
11: until S is terminal
12: end for
13: Return w

Interpretation and ET(λ, η)
We can interpret TD(0) as taking the MC update and replac-
ing the return from the subsequent state, which is a function
of the future trajectory, with a state-based estimate of its ex-
pectation: vw(St+1) ≈ E [G(τt+1:T )|St+1 ]. This becomes
most clear when juxtaposing the updates:

α(Rt+1 + γt+1G(τt+1:T )− vw(St))∇wvw(St) , (MC)
α(Rt+1 + γt+1vw(St+1)− vw(St))∇wvw(St) . (TD)

TD(λ) also uses a function of a trajectory: the trace et. We
propose replacing this as well with a function of state: the
expected trace zθ(St) ≈ E [ e(τ0:t)|St ]. Again juxtaposing:

∆wt ≡ αδte(τ0:t) , (TD(λ))
∆wt ≡ αδtzθ(St) . (ET(λ))

We can interpolate smoothly between MC and TD(0) via
λ. This is often useful to trade off variance of the return with
potential bias of the value estimate. For instance, we might
not have access to the true state s, and might instead have to
rely on features x(s). Then we cannot always represent or
learn the true values v(s)—for instance different states may
be aliased (Whitehead and Ballard 1991).

Similarly, when moving from TD(λ) to ET(λ) we replaced
a trajectory-based trace with a state-based estimate. This
might induce bias and, again, we can smoothly interpolate by
using a recursively defined mixture trace yt, as defined as3

yt = (1− η)zθ(St) + η
(
γtλyt−1 +∇wvw(St)

)
. (5)

This recursive usage of the estimates zθ(s) at previous states
is analogous to bootstrapping on future state values when
using a λ-return, with the important difference that the arrow
of time is opposite. This means we do not first have to convert
this into a backward view: the quantity can already be com-
puted from past experience directly. We call the algorithm
that uses this mixture trace ET(λ, η):

∆wt ≡ αδty(St) . (ET(λ, η))

3While yt depends on both η and λ we leave this dependence
implicit, as is conventional for traces.

Note that if η = 1 then yt = et equals the instantaneous
trace: ET(λ, 1) is equivalent to TD(λ). If η = 0 then yt = zt
equals the expected trace; the algorithm introduced earlier
as ET(λ) is equivalent to ET(λ, 0). By setting η ∈ (0, 1), we
can smoothly interpolate between these extremes.

Theoretical Analysis
We now analyse the new ET algorithms theoretically. First
we show that if we use z(s) directly and s is Markov then the
update has the same expectation as TD(λ) (though possibly
with lower variance), and therefore also inherits the same
fixed point and convergence properties.

Lemma 1. If s is Markov, then

E [ δtet | St = s ] = E [ δt | St = s ]E [ et | St = s ] .

Proof. In Appendix .

Proposition 1. Let et be any trace vector, updated in any
way. Let z(s) = E [ et | St = s ]. Consider the ET(λ) algo-
rithm ∆wt = αtδtz(St). For all Markov states s the expec-
tation of this update is equal to the expected update under
instantaneous trace et, and its variance is lower or equal:

E [αtδtz(St)|St = s ] = E [αtδtet|St = s ] and
V[αtδtz(St)|St = s] ≤ V[αtδtet|St = s] ,

where the second inequality holds component-wise for the
update vector, and is strict when V[et|St] > 0.

Proof. We have

E [αtδtet | St = s ]

= E [αtδt | St = s ]E [ et | St = s ] (Lemma 1)
= E [αtδt | St = s ] z(s)

= E [αtδtz(St) | St = s ] . (6)

Denote the i-th component of z(St) by zt,i and the i-th
component of et by et,i. Then, we also have

E
[

(αtδtzt,i)
2|St = s

]
= E

[
α2
t δ

2
t | St = s

]
z2t,i

= E
[
α2
t δ

2
t | St = s

]
E [ et,i|St = s ]

2

= E
[
α2
t δ

2
t | St = s

] (
E
[
e2t,i|St = s

]
− V[et,i|St = s]

)
≤ E

[
α2
t δ

2
t | St = s

]
E
[
e2t,i | St = s

]
= E

[
(αtδtet,i)

2 | St = s
]
,

where the last step used the fact that s is Markov, and the in-
equality is strict when V[et,i|St] > 0. Since the expectations
are equal, as shown in (6), the conclusion follows.

Interpretation Proposition 1 is a strong result: it holds for
any trace update, including accumulating traces (Sutton 1984,
1988), replacing traces (Singh and Sutton 1996), dutch traces
(van Seijen and Sutton 2014; van Hasselt, Mahmood, and
Sutton 2014; van Hasselt and Sutton 2015), and future traces
that may be discovered. It implies convergence of ET(λ)
under the same conditions as TD(λ) (Dayan 1992; Peng 1993;
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Tsitsiklis 1994) with lower variance when V[et|St] > 0,
which is the common case.

Next, we consider what happens if we violate the assump-
tions of Proposition 1. We start by analysing the case of a
learned approximation zt(s) ≈ z(s) that relies solely on
observed experience.
Proposition 2. Let et an instantaneous trace vector. Then
let zt(s) be the empirical mean zt(s) = 1

nt(s)

∑nt(s)
i etsi ,

where tsi denotes past times when we have been in state
s, that is Stsi = s, and nt(s) is the number of visits to s
in the first t steps. Consider the expected trace algorithm
wt+1 = wt +αtδtzt(St). If St is Markov, the expectation of
this update is equal to the expected update with instantaneous
traces et, while attaining a potentially lower variance:

E [αtδtzt(St) | St ] = E [αtδtet | St ] and
V[αtδtzt(St) | St] ≤ V[αtδtet | St] ,

where the second inequality holds component-wise. The in-
equality is strict when V[et | St] > 0.

Proof. In Appendix.

Interpretation Proposition 2 mirrors Proposition 1 but, im-
portantly, covers the case where we estimate the expected
traces from data, rather than relying on exact estimates. This
means the benefits extend to this pure learning setting. Again,
the result holds for any trace update. The inequality is typi-
cally strict when the path leading to state St = s is stochastic
(due to environment or policy).

Next we consider what happens if we do not have Markov
states and instead have to rely on, possibly non-Markovian,
features x(s). We then have to pick a function class and for
the purpose of this analysis we consider linear expected traces
zΘ(s) = Θx(s) and values vw(s) = w>x(s), as conver-
gence for non-linear values can not always be assured even
for standard TD(λ) (Tsitsiklis and Van Roy 1997), without
additional assumptions (e.g., Ollivier 2018; Brandfonbrener
and Bruna 2020).
Proposition 3. When using approximations zΘ(s) = Θx(s)
and vw(s) = w>x(s) then, if (1− η)Θ + ηI is non-singular,
ET(λ, η) has the same fixed point as TD(λη).

Proof. In Appendix.

Interpretation This result implies that linear ET(λ, η) con-
verges under similar conditions as linear TD(λ′) for λ′ = λ·η.
In particular, when Θ is non-singular, using the approxima-
tion zΘ(s) = Θx(s) in ET(λ, 0) = ET(λ) implies conver-
gence to the fixed point of TD(0).

Though ET(λ, η) and TD(λη) have the same fixed point,
the algorithms are not equivalent. In general, their updates
are not the same. Linear approximations are more general
than tabular functions (which are linear functions of a indi-
cator vector for the current state), and we have already seen
in Figure 1 that ET(λ) behaves quite differently from both
TD(0) and TD(λ), and we have seen its variance can be lower
in Propositions 1 and 2. Interestingly, Θ resembles a precon-
ditioner that speeds up the linear semi-gradient TD update,

TD
(0

)

episode 5
1st reward

episode 12
2nd reward

episode 100
20 rewards

episode 1K
~200 rewards

episode 10K
~2K rewards

TD
(λ

)
ET

(λ
)

Figure 2: In the same setting as Figure 1, we show later value
estimates after more rewards have been observed. TD(0)
learns slowly but steadily, TD(λ) learns faster but with higher
variance, and ET(λ) learns both fast and stable.

similar to how second-order optimisation algorithms (Amari
1998; Martens 2016) precondition the gradient updates.

Empirical Analysis
From the insights above, we expect that ET(λ) yields lower
prediction errors because it has lower variance and aggre-
gates information across episodes better. In this section we
empirically investigate expected traces in several experiments.
Whenever we refer to ET(λ), this is equivalent to ET(λ, 0).

An Open World
First consider the grid world depicted in Figure 1. The agent
randomly moves right or down (excluding moves that would
hit a wall), starting from the top-left corner. Any action in the
bottom-right corner terminates the episode with +1 reward
with probability 0.2, and 0 otherwise. All other rewards are 0.

Figure 1 shows value estimates after the first positive re-
ward, which occurred in the fifth episode. TD(0) updated a
single state, TD(λ) updated earlier states in that episode, and
ET(λ) additionally updated states from previous episodes.

Figure 2 additionally shows value estimates after the
second reward (which occurred in episode 12), and after
roughly 20, 200, and 2000 rewards (or 100, 1000, and 10, 000
episodes, respectively). ET(λ) converged faster than TD(0),
which propagated information slowly, and faster than TD(λ),
which exhibited higher variance. All step sizes decayed as
α = β =

√
1/k, where k is the current episode number.

A Multi-Chain
We now consider the multi-chain shown in Figure 3. We
first compare TD(λ) and ET(λ) with tabular values on var-
ious variants of the multi-chain, corresponding to m ∈
{1, 2, 4, 8, ..., 128} parallel chains of length n = 4. The left-
most plot in Figure 4 shows the average root mean squared
error (RMSE) of the value predictions after 1024 episodes.
We ran 10 seeds for each combination of step size 1/td with
d ∈ {0.5, 0.8, 0.9, 1} and λ ∈ {0, 0.5, 0.8, 0.9, 0.95, 1}.
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Figure 3: Multi-chain environment. Each episode starts in
the left-most (white) state, and randomly transitions to one
of m parallel (blue) chains of identical length n. After n
steps, the agent always transitions to the same (orange) state,
regardless of the chain it was in. The next step the episode
terminates. Each reward is +1, except on termination when it
either is +1 with probability 0.9 or −1 with probability 0.1.

The left plot in Figure 4 shows value errors for different
m, minimized over d and λ. The prediction error of TD(λ)
(blue) grew quickly with the number of parallel chains. ET(λ)
(orange) scaled better, because it updates values in multiple
chains (from past episodes) upon receiving a surprising re-
ward (e.g.,−1) on termination. The other three plots in Figure
4 show value error as a function of λ for a subset of problems
corresponding to m ∈ {8, 32, 128}. The dependence on λ
differs across algorithms and problem instances, but ET(λ)
consistently achieved lower error than TD(λ), especially with
high λ. Further analysis, including on step-size sensitivity, is
included in the appendix.

Next, we encode each state with a feature vector x(s)
containing a binary indicator vector of the branch, a binary
indicator of the progress along the chain, a bias that always
equals one, and two binary features indicating when we are in
the start (white) or bottleneck (orange) state. We extend the
lengths of the chains to n = 16. Both TD(λ) and ET(λ) use
a linear value function vw(s) = w>x(s), and ET(λ) uses a
linear expected trace zΘ(s) = Θx(s). All updates use the
same constant step size α. The left plot in Figure 5 shows the
average root mean squared value error after 1024 episodes
(averaged over 10 seeds). For each point the best constant
step size α ∈ {0.01, 0.03, 0.1} (shared across all updates)
and λ ∈ {0, 0.5, 0.8, 0.9, 0.95, 1} is selected. ET(λ) (orange)
attained lower errors across all values of m (left plot), and
for all λ (center two plots, for two specific m). The right plot
shows results for smooth interpolations via η, for λ = 0.9
and m = 16. The full expected trace (η = 0) performed well
here, we expect in other settings the additional flexibility of
η could be beneficial.

Expected Traces in Deep Reinforcement Learning
(Deep) neural networks are a common choice of function
class in reinforcement learning (e.g., Werbos 1990; Tesauro
1992, 1994; Bertsekas and Tsitsiklis 1996; Prokhorov and
Wunsch 1997; Riedmiller 2005; van Hasselt 2012; Mnih
et al. 2015; van Hasselt, Guez, and Silver 2016; Wang et al.
2016; Silver et al. 2016; Duan et al. 2016; Hessel et al. 2018).
Eligibility traces are not very commonly combined with deep
networks (but see Tesauro 1992; Elfwing, Uchibe, and Doya
2018), perhaps in part because of the popularity of experience

replay (Lin 1992; Mnih et al. 2015; Horgan et al. 2018).
Perhaps the simplest way to extend expected traces to deep

neural networks is to first separate the value function into
a representation x(s) and a value v(w,ξ)(s) = w>xξ(s),
where xξ is some (non-linear) function of the observations
s.4 We can then apply the same expected trace algorithm as
used in the previous sections by learning a separate linear
function zΘ(s) = Θx(s) using the representation which is
learned by backpropagating the value updates:

wt+1 = wt + αδzΘ(St) ,

ξt+1 = ξt + αδeξt ,

where eξt = γtλe
ξ
t−1 +∇ξv(w,ξ)(St) ,

ew
t = γtλe

w
t−1 +∇wv(w,ξ)(St) ,

and then updating Θ to minimise component-wise squared
differences between ew

t and zΘt
(St), as in (2) and (3).

Interesting challenges appear outside the fully linear case.
First, the representation will itself be updated and will have
its own trace eξt . Second, in the control case we optimise
behaviour: the policy will change. Both these properties of
the non-linear control setting imply that the expected traces
must track a non-stationary target. We found that being able to
track this rather quickly improved performance: the expected
trace parameters Θ in the following experiment were updated
with a relatively high step size of β = 0.1.

We tested this idea on two canonical Atari games: Pong and
Ms. Pac-Man. The results in Figure 6 show that the expected
traces helped speed up learning compared to the baseline
which uses accumulating traces, for various step sizes. Unlike
most prior work on this domain, which often relies on replay
(Mnih et al. 2015; Schaul et al. 2016; Horgan et al. 2018)
or parallel streams of experience (Mnih et al. 2016), these
algorithms updated the values online from a single stream
of experience. Further details on the experimental setup are
given in the appendix.

These experiments demonstrate that the idea of expected
traces extends to non-linear function approximation, such as
deep neural networks. We consider this to be a rich area of
further investigations. The results presented here are similar
to earlier results (e.g., Mnih et al. 2015) and are not meant to
compete with state-of-the-art performance results, which of-
ten depend on replay and much larger amounts of experience
(e.g., Horgan et al. 2018).

Discussion and Extensions
We now discuss various interesting interpretations and rela-
tions, and discuss promising extensions.

Predecessor Features
For linear value functions the expected trace z(s) can be
expressed non-recursively as follows:

z(s) = E

[ ∞∑
n=0

λ
(n)
t γ

(n)
t xt−n | St = s

]
, (7)

4Here s denotes observations to the agent, not a full environment
state—s is not assumed to be Markovian.
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Figure 4: Prediction errors in the multi-chain. ET(λ) (orange) consistently outperformed TD(λ) (blue). Shaded areas depict
standard errors across 10 seeds.

Figure 5: Comparing value error with linear function approximation a) as function of the number of branches (left), b) as
function of λ (center two plots) and c) as function of η (right). The left three plots show comparisons of TD(λ) (blue) and ET(λ)
(orange), showing ET(λ) attained lower prediction errors. The right plot interpolates between these algorithms via ET(λ, η),
from ET(λ) = ET(λ, 0) to ET(λ, 1) = TD(λ), with λ = 0.9 (corresponding to a vertical slice indicated in the second plot).

where γ(n)k ≡
∏k
j=k−n γj . This is interestingly similar to the

definition of successor features (Barreto et al. 2017):

ψ(s) = E

[ ∞∑
n=1

γ
(n−1)
t+1 xt+n | St = s

]
. (8)

The summation in (8) is over future features, while in (7)
we have a sum over features already observed by the agent.
We can thus think of linear expected traces as predecessor
features. A similar connection was made in the tabular set-
ting by Pitis (2018), relating source traces, which aim to
estimate the source matrix (I − γP )−1, to successor repre-
sentations (Dayan 1993). In a sense, the above generalises
this insight. In addition to being interesting in its own right,
this connection allows for an intriguing interpretation of z(s)
as a multidimensional value function. Like with successor
features, the features xt play the role of rewards, discounted
with γ · λ rather than γ, and with time flowing backwards.

Although the predecessor interpretation only holds in the
linear case, it is also of interest as a means to obtain a practical
implementation of expected traces with non-linear function
approximation, for instance applied only to the linear ‘head’
of a deep neural network. We used this ‘predecessor feature
trick’ in our Atari experiments described earlier.

Relation to Model-Based Reinforcement Learning
Model-based reinforcement learning provides an alternative
approach to efficient credit assignment. The general idea is
to construct a model that estimates state-transition dynamics,
and to update the value function based upon hypothetical

transitions drawn from the model (Sutton 1990), for example
by prioritised sweeping (Moore and Atkeson 1993; van Seijen
and Sutton 2013). In practice, model-based approaches have
proven challenging in environments (such as Atari games)
with rich perceptual observations, compared to model-free
approaches that more directly update the agent’s policy and
predictions (van Hasselt, Hessel, and Aslanides 2019).

In some sense, expected traces also construct a model of
the environment—but one that differs in several key regards
from standard state-to-state models used in model-based re-
inforcement learning. First, expected traces estimate past
quantities rather than future quantities. Backward planning
(e.g., Chelu, Precup, and van Hasselt 2020) is possible with
explicit transition models, but is less common in practice.
Second, expected traces estimate the accumulation of gradi-
ents over a multi-step trajectory, rather than trying to learn
the full transition dynamics, thereby focusing only on those
aspects that matter for the eventual weight update. Third, ex-
pected traces allow credit assignment across these potential
past trajectories with a single update, without the iterative
computation that is typically required when using a dynamics
model. These differences may be important to side-step some
of the challenges faced in model-based learning.

Batch Learning and Replay
We have mainly considered the online learning setting in this
paper. It is often convenient to learn from batches of data, or
replay transitions repeatedly, to enhance data efficiency. A
natural extension is replay the experiences sequentially (e.g.
Kapturowski et al. 2018), but perhaps alternatives exist. We
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Figure 6: Performance of Q(λ) (η = 1, blue) and QET(λ) (η = 0, orange) on Pong and Ms.Pac-Man for various learning rates.
Shaded regions show standard error across 10 random seeds. All results are for λ = 0.95. Further implementation details and
hyper-parameters are in the appendix.

now discuss one potential extension.
We defined a mixed trace yt that mixes the instantaneous

and expected traces. Optionally the expected trace zt can
be updated towards the mixed trace yt as well, instead of
towards the instantaneous trace et. Analogously to TD(λ) we
propose to then use at least one real step of data:

∆θt ≡ β (∇t + γtλtyt−1 − zθ(St))
> ∂zθ(St)

∂θ
, (9)

with ∇t ≡ ∇wvw(St). This is akin to a forward-view λ-
return update, with∇wvw(St) in the role of (vector) reward,
and zθ of value, and discounted by λtγt, but reversed in time.
In other words, this can be considered a sampled Bellman
equation (Bellman 1957) but backward in time.

When we then choose η = 0, then yt−1 = zθ(St−1), and
then the target in (9) only depends on a single transition.
Interestingly, that means we can then learn expected traces
from individual transitions, sampled out of temporal order,
for instance in batch settings or when using replay.

Application to Other Traces
We can apply the idea of expected trace to more traces than
considered here. We can for instance consider the character-
istic eligibility trace used in REINFORCE (Williams 1992)
and related policy-gradient algorithms (Sutton et al. 2000).

Another appealing application is to the follow-on trace
or emphasis, used in emphatic temporal difference learning
(Sutton, Mahmood, and White 2016) and related algorithms
(e.g., Imani, Graves, and White 2018). Emphatic TD was
proposed to correct an important issue with off-policy learn-
ing, which can be unstable and lead to diverging learning
dynamics. Emphatic TD weights updates according to 1) the
inherent interest in having accurate predictions in that state
and, 2) the importance of predictions in that state for updating

other predictions. Emphatic TD uses scalar ‘follow-on’ traces
to determine the ‘emphasis’ for each update. However, this
follow-on trace can have very high, even infinite, variance.
Instead, we might estimate and use its expectation instead of
the instantaneous emphasis. A related idea was explored by
Zhang, Boehmer, and Whiteson (2019) to obtain off-policy
actor critic algorithms.

Conclusion
We have proposed a mechanism for efficient credit assign-
ment, using the expectation of an eligibility trace. We have
demonstrated this can sometimes speed up credit assignment
greatly, and have analyzed concrete algorithms theoretically
and empirically to increase understanding of the concept.

Expected traces have several interpretations. First, we can
interpret the algorithm as counterfactually updating multi-
ple possible trajectories leading up to the current state. Sec-
ond, they can be understood as trading off bias and variance,
which can be done smoothly via a unifying η parameter, be-
tween standard eligibility traces (low bias, high variance) and
estimated traces (possibly higher bias, but lower variance).
Furthermore, with tabular or linear function approximation
we can interpret the resulting expected traces as predecessor
states or features—object analogous to successor states or fea-
tures, but time-reversed. Finally, we can interpret the linear
algorithm as preconditioning the standard TD update, thereby
potentially speeding up learning. These interpretations sug-
gest that a variety of complementary ways to potentially
extend these concepts and algorithms.

We have shown expected traces can already be used to
enhance learning in non-linear settings (i.e., deep reinforce-
ment learning), and in the control setting where we update
the policy. Further work is needed to determine the full extent
of the possibilities of these new algorithms.
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