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Abstract

Humans possess an inherent ability to chunk sequences into
their constituent parts. In fact, this ability is thought to boot-
strap language skills and learning of image patterns which
might be a key to a more animal-like type of intelligence.
Here, we propose a continual generalization of the chunk-
ing problem (an unsupervised problem), encompassing fixed
and probabilistic chunks, discovery of temporal and causal
structures and their continual variations. Additionally, we pro-
pose an algorithm called SyncMap that can learn and adapt to
changes in the problem by creating a dynamic map which pre-
serves the correlation between variables. Results of SyncMap
suggest that the proposed algorithm learn near optimal solu-
tions, despite the presence of many types of structures and their
continual variation. When compared to Word2vec, PARSER
and MRIL, SyncMap surpasses or ties with the best algorithm
on 66% of the scenarios while being the second best in the
remaining 34%. SyncMap’s model-free simple dynamics and
the absence of loss functions reveal that, perhaps surprisingly,
much can be done with self-organization alone.

Introduction
Humans are able to rapidly detect patterns in sequences
(Bekinschtein et al. 2009; Strauss et al. 2015). By detecting
and chunking together patterns found, even without a super-
vised signal, humans are able to classify sounds, images and
other information signals (Bulf, Johnson, and Valenza 2011),
(Orbán et al. 2008). Therefore, this unsupervised learning
process is thought to bootstrap many of the initial cogni-
tive capabilities such as natural language processing, speech
recognition and even image recognition.

Here, motivated by this general learning ability we pro-
pose the continual general chunking problem. To evaluate
the quality of an algorithm in the proposed problem a set
of tests are defined, including chunks with fixed time series,
chunks based on graphs with probabilistic transitions, over-
lapping chunks, chunks with probabilistic cycles, temporal
and causal structures identification and continual scenarios.
In other words, the continual general chunking problem gen-
eralizes the chunking problem to the identification of tempo-
ral and causal structures. All this taking into consideration
continual learning (change of the underlying structure as well
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as the probabilistic distribution of variables throughout the
experiment).Thus, the proposed problem joins the neurosci-
entific/psychologic chunking problem to the discovery of
causal/temporal structure and unsupervised feature learning
of time series.

To tackle the continual general chunking problem, we pro-
pose an algorithm, that without any parameter adjustment
between problems, works for all the continual general chunk-
ing problems and achieves near optimal solutions. In other
words, it can cope with probabilistic and fixed chunks as
well as causal structures. This algorithm is inspired by Heb-
bian learning and negative feedback signals. It works by first
converting inputs into spikes with slow decaying rate and
creating a map on which signals self-organize through neu-
ron group attraction/repeal forces. By creating a dynamic in
which signals that activate together or deactivate together are
attracted to a common center, the self-organizing dynamics
are able to create clusters of correlated signals. It is worth
noticing that attraction of the activated signals (which is
closely related to Hebbian learning) by itself is not enough.
Attraction of both activated and deactivated signals are nec-
essary for the dynamics to reach the cohesive behavior de-
scribed here.

Our Contributions
In this paper, a general problem is proposed called Continual
General Chunking Problem as well as an algorithm to solve
it called SyncMap. The key contributions are as follows:
• We generalize various problems from neuroscience and

computer science (i.e., chunking problem, discovery of
causal/temporal communities, unsupervised feature learn-
ing of time series and their continual variations) into a prob-
lem called Continual General Chunking Problem (CGCP).
CGCP is defined formally and experiments are developed
to evaluate an algorithm’s performance. Chunking prob-
lem alone encompasses problems from learning image
features to sounds as shown in (Asabuki and Fukai 2020).
It originates from detecting repetitive patterns of neural
spike sequences, but its primitives are thought to be widely
used in the brain. Discovery of causal and/or temporal
communities was explored in (Schapiro et al. 2013) with
applications in (Jiao et al. 2018). Here we shown how all
these problems and their continual variations can be seen
as a single one.
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• We propose an algorithm for tackling CGCP called
SyncMap. SyncMap is a different type of self-organizing
map with dynamics of attraction between all nodes that
activate or deactivate at the same time. It shares with other
self-organizing systems such as Self-Organizing Map (Ko-
honen 2013) and Novelty Map (Vargas, Takano, and Mu-
rata 2015) only the idea of using a map as all other dynam-
ics and intent differ. Moreover, its self-organizing dynam-
ics enables it to flexibly respond to changing environments
which is a challenge for most algorithms that optimize loss
functions.

• Beyond generalizing the problems, we consider (perhaps
for the first time) continual variations of them in the CGCP.
The challenge here is to respond quickly to the environ-
ment, adapting previous learned structures and correlations
that have changed. This is motivated by the constant adap-
tation spotted in neural cells which can rapidly switch
behavior according to environmental changes (Dahmen
et al. 2010).

• Experiments on fixed chunks, probabilistic chunks and
temporal structures suggest that SyncMap reaches near
optimal solutions. The same is true for continual variations
of them, i.e., when such probabilistic chunks or temporal
structures change throughout the experiment. Moreover,
we extend the tests for detecting temporal structures of real
world scenarios.

Related Work
Chunking. Through the process, called “chunking”, the

brain attains compact representation of sequences, which
is thought to reduce the complexity of temporal informa-
tion processing and associated cost (Ramkumar et al. 2016).
Chunking in the brain computation is crucial to achieve high-
order functions that require hierarchical sequence processing,
such as motor-skill learning (Graybiel 1998; Jin, Tecuapetla,
and Costa 2014) and language acquisition (Buiatti, Peña, and
Dehaene-Lambertz 2009; Gentner et al. 2006). Cognitive
experiments suggests that children learn words as chunks
(Saffran and Wilson 2003). This process is thought to con-
tribute to higher-order learning process, and be fundamen-
tal mechanisms that children identify words from speech
(Dehaene et al. 2015; Hay et al. 2011). Recent study with
human subjects has shown that chunking occurs even when
the sequence has co-occurring structure rather than a repeti-
tive pattern (Schapiro et al. 2013). The influential chunking
(word segmentation) algorithm, PARSER has been proposed,
which extract the all frequently appeared n-grams within
the sequence (Perruchet and Vinter 1998). Despite PARSER
works well for simple chunking tasks and computational
linguistic applications (Goldwater, Griffiths, and Johnson
2009; Feldman et al. 2013) , yet fail to detect chunks if the
transition probability over all elements are uniform(Schapiro
et al. 2013). Recently, biology-inspired sequence learning
model, called Minimization of Regularised Information Loss
(MRIL) has been proposed (Asabuki and Fukai 2020). MRIL
is applicable to broad range of chunking task including uni-
form transitions. These studies suggest that chunking is a
fundamental process, yet the mechanism of which is still elu-

sive. Albeit the multitude of applications of chunking and the
wide interest of neuroscientists on the subject, this subject
was not fully explored from a machine learning perspective.
Chunking can be found in some articles focusing on natural
language processing. Sometimes chunking is modeled as a
supervised pre-processing step (Zhai et al. 2017). In other
cases, it is used for unsupervised grammar induction (Ponvert,
Baldridge, and Erk 2011). In both cases the problem taking
into account differs from the original task independent one
defined in neuroscience.

Unsupervised Learning for Sequences. Unsupervised
learning for sequences usually extract features which can pre-
dict future input (Clark, Livezey, and Bouchard 2019; Hyvari-
nen and Morioka 2016; Lei et al. 2019; Mikolov et al. 2013;
Wu, Zeng, and Yan 2018). These features, albeit descriptive
of the sequences and useful for classification of sequences,
do not uncover the chunks present. Related to unsupervised
learning for sequences, contrastive predictive encoding (CPE)
is a peculiar learning algorithm which makes use of a proba-
bilistic contrastive loss, inducing the latent space to encode
maximally useful information in its representation (Hjelm
et al. 2018). It requires the sequence of samples to have some
sort of order and could use a general chunking algorithm to
present images that are coherent to a certain class. In this
manner, CPE and its applied problem formulation is comple-
mentary rather than competing with the problem proposed
here. Moreover, self-organizing maps and their variations
tackle a related but different problem (Fortuin et al. 2019).
They can learn topological representations of time series and
static data while chunks are temporal correlations between
variables, therefore, their intent differ.

Latent Variable Estimation. Latent variable estimation
(Fox et al. 2011; Pfau, Bartlett, and Wood 2010; Qian and
Aslin 2014; Rabin 1963) resemble some of the chunking prob-
lems defined here. However, their objective differ. Chunking
is a clustering over the variables of the problem respecting
their temporal correlation. Even if chunks of variables are
abstracted as meta-variables (a set of variables) there is still
an inherent difference between chunks and latent variables.

Word Embeddings. To transform words and paragraphs
into vectors of numbers, word embeddings are used in natural
language processing (Mikolov et al. 2013), (Khattak et al.
2019). Some of them are enriched with information specific
to natural language processing such as FastText (Bojanowski
et al. 2017) or are contextualized word embeddings such as
ELMo (Peters et al. 2018) and BERT (Devlin et al. 2018).
However, prediction-based word2vec embeddings (Mikolov
et al. 2013) and co-occurrence matrix based GloVe embed-
dings (Pennington, Socher, and Manning 2014) can be also
used for more general problems similar to the one presented
in this paper.

Causal Graphs. As part of the general chunk problem,
this paper aims to discover temporal and causal structures in
sequences which are related to causal graphs. The detection
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of temporal structures has many practical applications and
can be used as well for facilitating the learning of causal
graphs by identifying confounders, identifying correlated
variables, among others (Cai and Xie 2019; Kocaoglu et al.
2019). Interestingly, some terms from causality studies also
take place in chunking problems albeit in different ways.
For example if variables x and y are confounded by a given
variable z, if both x and y pertains to a different chunk, z
is an overlapping variable. This overlapping variable can be
identified as a different chunk which should facilitate the
learning of causal graphs.

Continual General Chunking Problem
We define continual general chunking as the problem of ex-
tracting co-occurring states from a time series of which the
underlying generation process changes depending on the task
as well as throughout the task. Here, we first describe the
input time series structure considered in this problem.

Our input sequence consists of state variables, transition-
ing by first-order Markov chain, of which the element of
transition matrix is defined as: Pab = Pr[st+1 = b|st = a],
where st is the state variable at time t; and a and b are the
labels of states. Here, note that each state st is a vector. In
our sequence, each state belongs to either a fixed chunk or
a probabilistic one. In a fixed chunk, given the state at the
current time, the state at the next time step is selected deter-
ministically. Let a and b be elements of a fixed chunk, with
the direction a to b, then the transition matrix should satisfy:
Pab = 1. Note that since ΣbPab = 1, the state i has only one
possible next state.

In real situations, the deterministic chunks explained above
is unrealistic, and the stochastic transition even within the
chunks should be allowed. In order to include such cases, let
us first define a structure of the input sequences. Our input can
be generated by a random walk over graphs characterized by
the two types of degrees- internal and external degrees. The
internal degree kinta of state a is the number of connections
with nodes that belong to the same chunk. The external degree
kexta is the number of links that node a connects to nodes
belonging to other chunks. For all states, we assumed that
the following relation holds:

kinta > kexta (∀a ∈ A), (1)

where A is the set of states in the sequences. The above rela-
tions are satisfied if the graph has dense connections within
chunks yet sparse connections between nodes in different
chunks. The graph structure defined above is also known as
communities (Radicchi et al. 2004). In our setting, the transi-
tion probabilities were assigned to all links, hence stochastic
transitions were allowed in all connected states. Note that
both Pab and Pba can be assigned in a link between a pair
of states. A special case of our case was investigated in a
cognitive experiment (Schapiro et al. 2013). In their setting,
they assumed that transition probabilities Pab are uniform
over all states, which is not the case in our setting.

In our continual setting, the causal structure is behind
the generation process, hence the transition matrix can
change over time. In this paper, we assume that the input

sequence can take m graph structures. The label of tran-
sition matrixes, which determines the causal structure, is
termed as "tasks". Assume the set of transition matrixes,
P = {P (1), P (2), . . . , P (m)}. At the time when the tasks are
switched, one task is randomly selected from the set P, and
the time series is continuously generated. We set m = 2 and
since the generation process itself changes, the set of state
variables that constitute each chunk also change.

SyncMap
Inspired by how Hebbian volume learning complements Heb-
bian, taking into consideration the effects of nearby neurons
learning (Mitchison and Swindale 1999) as well as how feed-
back systems affect the learning of algorithms for chunking
problems (Asabuki and Fukai 2020); here we propose a map
in which neurons in a group can learn together to represent in-
terrelated concepts . The main idea here is to use a simplified
Hebbian learning together with feedback dynamics to create
a projection that encodes the probability of two variables
activating at the same time with their distances in this new
generated space, i.e., encoding the relative probabilistic cor-
relation between variables as distances between them. Thus,
variables that activate together will have their respective pro-
jections drawn to their middle point while variables that do
not activate together will be, consequently, pulled away from
each other.

SyncMap is divided into two steps: (a) the activation of
nodes and their update inside the map (b) a clustering phase
on the learned map, revealing their clusters. The following
subsections explain these steps in detail.

Input Encoding
Let st = s1,t, s2,t, ..., sn,t be the set of state values at time t
for st ∈ {0, 1}n :

∑n
i=1 si,t = 1. The input encoding is an

exponentially decaying vector xt with the same size as the
number of states:

xi,t =

{
si,ta ∗ e−0.1∗(t−ta), ta < m ∗ tstep
0, otherwise

(2)

where ta is the most recent state transition to state si. State
transitions happen every tstep steps and variables which
have their time of activation greater than m ∗ tstep are set
to 0. Consequently, the system can only remember the last
m variables presented. All experiments here are conducted
using m = 2 and tstep = 10.

This representation of input can also be encoded differently
without any change in result, e.g., by storing the lastm inputs
directly. In other words, the details of implementation for
the input is not important for the method itself. It suffices to
remember the last m states.

Dynamics
First all inputs xi,t have a corresponding weight wi,t initial-
ized to a random position in the map wi,t ∈ Rk, creating a
pair (xi,t, wi,t). wi,t is a k dimensional variable and k is a
parameter defined a priori (the dimension of the map).

Every time a new input xt is presented, each of its con-
stituents xi,t are divided into activated or recently activated
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(positive) and non-recently activated (negative) inputs. Specif-
ically, all inputs are converted into two sets: positive PSt and
negative NSt sets. Inputs with value greater than 0.1 are a
member of PSt. Otherwise, inputs are a member of NSt. In
other words, the following holds true:

PSt = {i|xi,t > 0.1} (3)
NSt = {i|xi,t ≤ 0.1} (4)

If the cardinality of both sets are greater than one, i.e.
|PSt| > 1 and |NSt| > 1; then the center of both sets are
calculated as follows:

cpt =

∑
i∈PSt

wi,t

|PS|
(5)

cnt =

∑
i∈NSt

wi,t

|NS|
, (6)

in which cnt and cpt are respectively the centers of NSt and
PSt sets. If the cardinality of both sets are not greater than
nothing is updated in this iteration.

After the center of both sets are calculated, the position
wi,t of each input is updated.

φ(i, t) =

{
1, i ∈ PSt
0, i ∈ NSt

(7)

wi,t+1 = wi,t + α ∗ φ(i,t)∗cpt+(1−φ(i,t))∗cnt

‖wi,t−cpt‖ (8)

whereα is the learning rate. Subsequently, all values ofwi,t+1

are normalized to be within a hypersphere of radius r = 1.

Clustering
The clustering step happens after the dynamics described in
the previous section is repeated for each input. In the clus-
tering step, the projected map w is clustered to determine
effectively the chunks/communities. Here, DBSCAN (Schu-
bert et al. 2017) is used for this procedure because it does
not require the number of clusters as input. The required
parameter is the density of clusters eps, which is somewhat
fixed for a given hypersphere of radius r, and the minimum
size of each cluster mc which can also be set independent of
problem. eps and mc are set to respectively 3 and 2. Having
said that, other clustering algorithms together with the use
of clustering analysis techniques for discovering number of
clusters should be equally or even more effective. For sim-
plicity we are narrowing the scope of this paper to DBSCAN
alone.

Experiments
The experiments compose a total of nine different tests en-
compassing fixed chunks, mixed structures, their continual
variations, long chunks, overlapped chunks and real world
scenarios. Both overlapped chunks and real world scenarios
have two distinctive tasks.

Settings. In all experiments, the learning algorithm is
first exposed to 100000 samples of the problem and followed
by an extraction of the chunks predicted. This is also true

for continual variations, where the problem changes after
100000 samples are inputted, with the second problem also
presenting 100000 samples before the run is finished. All
tests are run on a MacBook Pro 10.15.5 2.3Ghz 16GB laptop
as they demand little computational effort.

Here we compare four distinct algorithms: SyncMap (pro-
posed one), MRIL (Asabuki and Fukai 2020), PARSER and
Word2vec. SyncMap’s parameters α and k are fixed to respec-
tively 0.1 and 3. Regarding the PARSER algorithm, since
it finds possible n-grams, hence not whole chunks, we first
excluded the unnecessary long n-grams (n > 6), and con-
catenated the rest of the short segments, of which share the
same element. These resultant segments were regarded as
"chunks" that PARSER extracted. To evaluate how a word
embedding algorithm would fair in CGCP, we include a skip-
gram Word2vec embedding modified to work in the context
of CGCP. A dense deep neural network model was used as
model for the Word2vec with a latent dimension of 3 and an
output layer with softmax and size equal to the number of
inputs. The chosen training parameters are 10 epochs, 1e− 3
learning rate and 64 batch size with a mean squared error
as loss. These parameters were the best performing without
unnecessary slowdown after a dozen trials. A window of 100
steps was used to calculate the output probability of skip
gram. The input was kept the same as SyncMap, since varia-
tions of non-decaying ones performed (perhaps surprisingly)
worse. Therefore, the window for Word2vec include 10 state
transitions; equivalent of 100 time steps. Regarding MRIL,
we used five output neurons for all tasks, with the learning
rate 1e−3. For comparison, we used the same decaying input
as SyncMap, rather than the Poisson spiking input used in
the original setting of MRIL. We grouped the output neurons
showing correlation larger than 0.5, and determining chunk
by assigning an index of groups that maximally respond to
each input.

Fixed Chunks. The problem considered here has four
fixed chunks each containing three different variables. Transi-
tion between chunks happen at the end of the chunk sequence,
i.e., after the third variable inside the chunk is presented. A
chunk can transition to any other chunk with equal probabil-
ity.

Overlapped and Long Chunks. In one hand, over-
lapped chunks evaluate the capability of systems to perceive
chunks that share some variables. On the other hand, long
chunks evaluate if the frequency of chunks affect the system.
Both overlapped and long chunks are probabilistic chunks.

For the overlapped chunks, two problems are tested: over-
lap1 and overlap2. Overlap1 have two chunks composed
respectively of variables a,b,c,d,e and d,e,f,g,h while over-
lap2 has chunks with respectively variables a,b,c,d,e and
a,b,c,d,e,f,g,h,i,j. In other words, they either share variables
of are a subset of each other. For the long chunk experi-
ment, each chunk has four non-repeating variables a,b,c,d
and e,f,g,h presented randomly each step, however, the du-
ration of the first chunk is four transitions while the sec-
ond has a stochastic duration of 5 + unif(0, 20) transitions.
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Figure 1: Problem description (up left), learned input-output map (upper middle) and respective learned clustering (upper right).
The problem is a cyclic directed graph with node numbers as indicated. Each node number consists of a given input which is
activated and inputted by a random walk over the graph (see the Section for more details). The learned input-output map is as
follows: input (red line) and learned output (dash-dotted line). In direct correspondence to the learned output, it is possible to
cluster the nodes with the colors shown (upper right). The learned map is shown in Fig 2.

unif(min,max) defines a uniform distribution within the
half-open interval [min,max).

Mixed Structures. In this problem, both probabilistic
chunks together with fixed one are present in the system. The
graph with the structure and transitions of the problem is
shown in the left of Fig. 1. It has 2 probabilistic chunks and
one fixed chunk.

Figure 2: The learned map by SyncMap together with colors
showing the chunks learned for problem described in Fig1.

Continual Variations. Two continual variations of pre-
vious problems are proposed: continual fixed and continual
mixed. They are variations of respectively the fixed chunk
and the mixed structures. In both variations, variables are
permuted between chunks when tasks are changed. For the
continual variation of the fixed chunk, in the first task the
configuration of chunks is (a,b,c), (d,e,f), (g,h,i), (j,k,l). In
the second task, the fixed chunks become respectively (a,k,i),
(g,e,j), (d,h,c) and (f,b,l). Regarding the continual mixed prob-
lem, Fig. 3 shows how the structure of the problem changes
throughout.

Real World Scenarios. We test in two variations of a
real world scenario. Specifically, the recognition of prob-
abilistic chunks in the first-order Markov model of theme
transitions for humpback whales’ song types (Garland et al.
2017). Since the transition between nodes are not given, they
are considered equally probable. Sequence 1 and 2 are de-
fined as respectively the graphs A and B from Fig 1 in the
supplementary materials.

Results and Analysis

In this paper, we define the optimality of solutions by the
degree of correlation with the ground truth. For all tests, as a
correlation metric, we measured the normalized mutual infor-
mation scores for Wor2vec, MRIL, PARSER and SyncMap
(Tables 1, 2 and 3). Here, the normalized mutual information
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Figure 3: Illustration of the continual version of the mixed structures problem and an example of SyncMap’s learning output.
The structure changes after 100000 steps and then the experiment ends after 200000 steps. The upper graphs show the start (left)
and end (right) problem structures and their respective variables. The start and end outputs of SyncMap are shown at the bottom.

Model Fixed Chunks Long Chunks Mixed Structures
PARSER 0.95±0.07 0.16±0.27 0.36±0.40

Word2vec 1.0±0.0 0.68±0.22 0.78±0.07

MRIL 0.86±0.13 0.76±0.17 0.85±0.16

Ours: SyncMap 0.97±0.09 0.97±0.06 0.95±0.06

Table 1. Mutual information comparison over SyncMap, PARSER, Word2vec and MRIL in Fixed chunks, Long chunks and
Mixed structures settings. Best mean and statistically similar results (results with p<0.05 in a t-test with null hypothesis of having
the same mean as the best mean) are in bold.

score is defined as:

NMI(Ŷ , Y ) = 2
I(Ŷ ;Y )

H(Ŷ ) +H(Y )
, (9)

where Ŷ and Y are the output of algorithms and the ground
truth, respectively. I(Ŷ ;Y ) is the mutual information be-
tween Ŷ and Y , and H(·) is the entropy. This NMI measure
takes value between a minimum of 0 (no mutual information)
and a maximum of 1 (perfect correlation).

The proposed algorithm SyncMap performed better over-
all. It surpassed or performed within the standard deviation
of other algorithms in 7 out of the 9 tests. PARSER and
Word2vec performed similarly, but had only 3 out of the 9
results that were comparable with the others. MRIL was bet-
ter in only one of the tests but if SyncMap is removed from
the comparison it performs slightly better than both PARSER
and Word2vec. In other words, SyncMap and MRIL are both

general algorithms while Word2vec and PARSER have some
specific problems they are very good at.

Regarding SyncMap, it performs similarly for long chunks
and mixed structures (Table 1). Long chunks frequency is
less of an issue because once variables are sufficient far away
in the projected map, the update becomes weaker as well
as deactivating together has also a similar attraction force.
Moreover, SyncMap considers only one-to-one correlations
and create groups through the emergent attraction/repulsion
behavior, consequently, the nature of the chunk or structure
do not matter in this regard. Continual variations of the prob-
lems (Table 2) suggests that SyncMap is capable of adapting
to changes in the structure without any observed deleteri-
ous effect. This is expected since SyncMap steadily updates
the correlation between variables projected into the map w.
Once the dynamics reach an equilibrium the updates affect
less the map distribution, however, a change in the under-
lying problem structure affects the place of attractors and

10011



Model Continual fixed Continual mixed
Task 1 Task 2 Task 1 Task 2

PARSER 0.97±0.06 0.96±0.07 0.47±0.40 0.28±0.38

Word2vec 1.0±0.0 0.29±0.20 0.76±0.08 0.0±0.0

MRIL 0.80±0.16 0.53±0.12 0.85±0.15 0.32±0.16

Ours: SyncMap 0.93±0.13 0.89±0.15 0.97±0.04 0.99±0.03

Table 2. Mutual information comparison over SyncMap, PARSER, Word2vec and MRIL in continual fixed and continual mixed
settings. In task 2, Best mean and statistically similar results (results with p<0.05 in a t-test with null hypothesis of having the
same mean as the best mean) are in bold.

Model Overlap1 Overlap2 Sequence1 Sequence2
PARSER 0.77±0.42 0.30±0.46 0.27±0.11 0.57±0.1

Word2vec 0.21±0.28 0.06±0.09 0.28±0.03 0.79±0.08
MRIL 0.03±0.18 0.0±0.0 0.38±0.11 0.51±0.10

Ours: SyncMap 0.70±0.19 0.64±0.10 0.39±0.16 0.61±0.06

Table 3. Mutual information comparison over SyncMap, PARSER, Word2vec and MRIL in Overlapped chunks and Real world
scenarios. Sequence1 and sequence2 correspond to parts A and B in Figure 1 in the supplementary materials, respectively
(problem defined in (Garland et al. 2017)). Best mean and statistically similar results (results with p<0.05 in a t-test with null
hypothesis of having the same mean as the best mean) are in bold.

therefore naturally put the system in an unstable state initiat-
ing the adaptation. SyncMap performs better than the other
algorithms in overlapped chunks problems (Table 3). How-
ever, there is still ground for improvement here as it cannot
represent a hierarchical structure. In real world scenarios,
SyncMap performs equally to all other in Sequence1 and is
the second best in Sequence2. Increasing past state memory
m should enable better performance.

Word2vec usually generates a map in which variables are
more dispersed than the one produced by SyncMap which
makes clustering difficult. For long chunks and mixed struc-
tures, the map becomes fuzzier and therefore the MI score
drops accordingly. Moreover, it does not have a built-in adap-
tation which makes changes in the problem structure cause
probabilities of nearby nodes to even out. Big overlaps do
a similar effect, probabilities of nearby nodes are similar, it
ends up recognizing all nodes as a single chunk. Real world
sequences have mixed results, being the best in one and sec-
ond worse on the other.

Regarding PARSER, it extracts chunks based on the bias of
transition probabilities, therefore, performance deteriorates
in time series with equal probability such as our long chunk
and mixed structures. In the continual variations, PARSER
performs well in both tasks involving the fixed problem since
forgetting phase during learning enables it to adapt to the
new environment (i.e., second task). Unlike the fixed case, it
failed to learn in the mixed structures even in the first task,
as shown previously. MI score for overlap2 becomes less
than half of overlap1. We speculate this is because sequence
of overlap2 has higher fraction of overlaps than sequence1.
Therefore, the transition becomes much uniform which dete-

riorates the performance of PARSER. Since real world tasks
have uniform transition part, the MI was lower than the fixed
case.

Since MRIL detects spatio-temporal correlation over
inputs, it showed better performance than PARSER and
Word2vec if the sequence has uniform probability. MRIL
learns not only the feedforward weights, but also lateral in-
hibition weight with the spike train correlation of output.
Since each state in our sequence was presented only 10 time
steps, MRIL failed to detect spike correlation by its slower
timescales, hence showed MI less than 0.9 in all problems.
Similarly, the MI of the second task in continual problems
was lower than that of first one because lateral inhibition
could not be trained efficiently. In the overlap tasks, since
MRIL creates chunks including both non-overlapped and
overlapped states, the MI was significantly low. In the real
world problems, the MI in sequence1 was almost comparable
to that of SyncMap, yet lowest in sequence2.

Conclusions
In this paper, we proposed both a general problem called
CGCP and an algorithm called SyncMap which outperforms
or ties with competitive algorithms from neuroscience and
machine learning in 7 out of 9 tests. We expect that variations
of SyncMap should further better its performance relative to
other algorithms in CGCP and will probably become a strong
alternative in applications from natural language process-
ing to image recognition. Future directions will investigate
problems with noise, hierarchy and causal relations as well
as tasks specific to language processing and image/action
recognition.
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Broader Impact
In this paper, we proposed the continual general chunking
problem which merges many problems from neuroscience
and machine learning into a continual general one. This
should promote the exchange of knowledge between dis-
tant fields for both the development of new more animal-like
intelligent algorithms as well as to aid in the understanding
of intelligence. The proposed algorithm, SyncMap, is an ex-
ample of this with features inspired by neuroscience and the
simplicity of machine learning. Therefore, we believe that
many researchers beyond machine learning may benefit from
this research. There is nobody put at disadvantage with this
research. Both the problem and the proposed solution are
new developments which aim at increasing overall gener-
ality and robustness of AI systems. Failure is expected to
decrease if more importance is giving to such general prob-
lems as proposed here. CGCP aims at evaluating algorithms
in many variations of problem types and settings. Therefore
algorithms are not able to take advantage from biases even
from specific problem classes.
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