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Abstract

Deep neural networks (DNNs) have been widely applied to
active learning. Despite of its effectiveness, the generaliza-
tion ability of the discriminative classifier (the softmax clas-
sifier) is questionable when there is a significant distribution
bias between the labeled set and the unlabeled set. In this pa-
per, we attempt to replace the softmax classifier in deep neu-
ral network with a nearest neighbor classifier, considering its
progressive generalization ability within the unknown sub-
space. Our proposed active learning approach, termed near-
est Neighbor Classifier Embedded network (NCE-Net), tar-
gets at reducing the risk of over-estimating unlabeled samples
while improving the opportunity to query informative sam-
ples. NCE-Net is conceptually simple but surprisingly pow-
erful, as justified from the perspective of the subset informa-
tion, which defines a metric to quantify model generalization
ability in active learning. Experimental results show that, with
simple selection based on rejection or confusion confidence,
NCE-Net improves state-of-the-arts on image classification
and object detection tasks with significant margins.

Introduction
With the rise of deep neural networks (DNNs), image
recognition has made unprecedented progress. Nevertheless,
DNN models are typically trained on large-scale datasets
which require intensive human effort for data annotation.
Active learning, which interactively queries the data it
wants to learn from, defines an effective method to reduce
data annotation cost in practical image recognition appli-
cations (Settles 2012; Sener and Savarese 2018; Yoo and
Kweon 2019; Sinha, Ebrahimi, and Darrell 2019).

Conventional active learning methods can be catego-
rized into uncertainty-based methods (Settles 2012; Set-
tles and Craven 2008; Luo, Schwing, and Urtasun 2013;
Joshi, Porikli, and Papanikolopoulos 2009; Gal, Islam, and
Ghahramani 2017) and representative-based methods (Guo
2010; Elhamifar et al. 2013; Yang et al. 2015; Sener and
Savarese 2018). The objective is to find the most informative
unlabeled samples based on their uncertainty or diversity.
In DNN, the uncertainty/diversity is usually calculated upon
the predictions of a softmax classifier, with the assumption
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Figure 1: Comparison of the softmax classifier with the near-
est neighbor classifier for sample selection. m and n are un-
labeled samples within the labeled sub-space. p and q are
unlabeled samples within the unlabeled space. The softmax
classifier, when falsely generalized to the unlabeled space,
tends to select sample m and p which are closer to the clas-
sification boundary but miss the informative sample q. The
nearest neighbor classifier can select m, p and q, for its
stronger generalization ability to the unknown space.

that the feature and classifier trained on the labeled set can
be always generalized to the unlabeled set.

In this study, we argue that such an assumption is prob-
lematic, particularly when there is a significant bias be-
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tween the distributions of labeled and unlabeled samples.
We raise the concern through an intuitive analysis, Fig. 1,
where the labeled samples cover a closed sub-space (within
the dashed circle) while the unlabeled samples spread over
an unknown space (outside the dashed circle). If the distri-
butions of labeled and unlabeled samples are identical, the
unlabeled samples close to the softmax classifier boundary
(solid curves) are hard samples, which have large classifica-
tion uncertainty and tend to be informative samples. How-
ever, if there is a significant bias between the distributions of
labeled and unlabeled samples, the true classification bound-
ary could be either of the dashed curves. The softmax clas-
sifier, a totally discriminative model based on assumption of
the closed labeled set, tends to be falsely generalized to the
unlabeled space and select sample m and p but misses the
informative sample q.

To solve the false generalization problem, we propose to
consider the simplest nearest neighbor classifier for active
learning, based upon the common sense that simpler clas-
sifiers have stronger generalization ability. In Fig. 1(lower),
when using a distance metric, the nearest neighbor classifier
would assign significant score to m, p and q and make all
of them selective. Once q is selected in an active learning
cycle, the change of classification boundary (dashed curves)
caused by the sample q is more significant than that caused
by m and p, Fig. 1(upper). The essence behind the phe-
nomenon is that the nearest neighbor classifier generalizes
to its neighbors in a progressive fashion, avoiding making
early decision on the unlabeled samples far away from the
labeled ones.

Based upon above analysis, we propose to embed the
nearest neighbor classifier to DNN for active learning. To
guarantee the classification efficiency, we further propose to
squeeze samples into prototype vectors, which predict the
classification scores and adopt nearest neighbor classifica-
tion embedding (NCE) loss using a non-linear activate func-
tion on distances. DNN driven by NCE loss, termed nearest
neighbor classifier embedded network (NCE-Net), aims to
reduce the risk of over-fitting labeled samples and facilitate
selecting more informative unlabeled samples.

The contributions of this study include:
• We propose nearest neighbor classifier embedded network

(NCE-Net), with the aim to improve generalization abil-
ity of models trained on the labeled sub-space upon the
unlabeled sub-space in a simple-yet-effective way.

• We justify NCE-Net by sub-set information analysis, pro-
viding an effective metric to quantify model generaliza-
tion ability in active learning.

• We applied NCE-Net to the image classification task, im-
proving the state-of-the-arts of active learning with sig-
nificant margins. We also extend NCE-Net to the object
detection task, validating its task-agnostic advantage.

Related Works
Uncertainty-based Method. Active learning has been one
of the most important research topic in machine learning
and artificial intelligence areas for its practical application
value. Conventional methods used uncertainty as a metric

to select samples for active learning (Settles 2012). Un-
certainty can be defined as the posterior probability of a
predicted class (Lewis and Gale 1994; Lewis and Catlett
1994) or the margin between posterior probabilities of a pre-
dicted class and the secondly predicted class (Joshi, Porikli,
and Papanikolopoulos 2009; Roth and Small 2006). It can
be also calculated upon entropy (Settles and Craven 2008;
Luo, Schwing, and Urtasun 2013; Joshi, Porikli, and Pa-
panikolopoulos 2009), which is a natural metric about the
uncertainty for probabilistic systems.

Uncertainty has been calculated using Monte Carlo
Dropout and multiple forward passes (Gal, Islam, and
Ghahramani 2017), with the aim to introduce Bayesian in-
ference into the sample selection procedure. Despite of its
effectiveness, the efficiency is significantly reduced for the
usage of dense dropout layers which hinder the network con-
vergence.

Representative-based Method. This line of methods es-
timate the distribution of unlabeled samples to find out
representative samples. While discrete optimization meth-
ods (Guo 2010; Elhamifar et al. 2013; Yang et al. 2015) were
employed to perform sample subset selection, the clustering
method (Nguyen and Smeulders 2004) targeted at finding
out the center points of subsets. The expected model change
methods (Roy and McCallum 2001; Settles, Craven, and
Ray 2007) utilized the present model to estimate expected
gradient changes or expected output changes (Freytag, Rod-
ner, and Denzler 2014; Käding et al. 2016), which guide the
selection of informative samples.

A recent Core-set (Sener and Savarese 2018) method sug-
gested that many active learning heuristics based on global
distributions are not competent when applied to a batch of
samples. It thus defined the active learning as a core-set se-
lection problem, where a theoretical result is presented to
characterize the performance of any selected subset using
the geometry of the data points.

Learning Loss Method. In the deep learning era, many
active learning methods remain falling into the uncertainty-
based and representative-based routines (Lin et al. 2018;
Wang et al. 2017; Beluch et al. 2018). Sophisticated methods
have extended to open sets (Liu and Huang 2019), or com-
bined it with self-paced learning (Tang and Huang 2019).
Nevertheless, it remains questionable whether or not the in-
termediate feature representation is effective for sample se-
lection. Recent learning loss approach (LL4AL) (Yoo and
Kweon 2019) can be categorized either into an uncertainty
approach or a distribution-based approach. By introducing
the network structure to predict the “loss” of unlabeled sam-
ples, it can estimate sample uncertainty and diversity, and
select samples with large “loss” in a fashion like hard nega-
tive mining.

Despite of the encouraging progress, the model gener-
alization problem remains unsolved, which hinders the se-
lection of the most informative samples. The context-aware
methods (Hasan and Roy-Chowdhury 2015; Aodha et al.
2014) used the distance metric when selecting samples but
remained exploring the limitation of discriminative classi-
fiers. Recent adversarial classifiers (Sinha, Ebrahimi, and
Darrell 2019; Zhang et al. 2020) and self-supervised learn-
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Figure 2: Partitions of the unlabeled sub-space (outside the circle) using the models training within the labeled subspace (within
the circle). Informative samples are located in the gray areas.

ing (Gudovskiy et al. 2020) provided interesting solutions
for model generalization, but required higher computational
and/or complexity cost. In this paper, we attempt solving
the model generalization problem with a conceptually sim-
ple approach. Our work is inspired by the prototype learning
method (Yang et al. 2018), but goes beyond it to handle un-
labeled spaces.

Methodology
In this section, we first revisit active learning based on DNN
with the softmax classifier. We then present the NCE-Net,
which leverages a soft nearest neighbor classifier for sample
selection under the guidance of “rejection” or “confusion”
confidence. We finally justify NCE-Net by defining a sub-
set information metric.

Active Learning with Softmax Classifier
The inputs of active learning consist of a small set of labeled
images X 0

L with labels Y0
L, and a large set of unlabeled im-

agesXU . Active learning algorithms first train models on the
labeled set X 0

L. The trained model is then applied to select
a subset X 1

L with M images from the unlabeled set XU and
query their labels Y1

L for next cycle of training.M is usually
far smaller than the total image number in XU .

The trained model consist of a backbone network and a
softmax classifier. While the backbone network is for ex-
tracting features fx for each image x, the softmax classifier,
parameterized by w and b, computes the classification prob-
ability p(fx), as

pc(fx) =
exp(wc · fx + bc)∑
c exp(wc · fx + bc)

, (1)

where wc and bc respectively denote the weight vector and
bias for class c. The image classification loss is defined as

Lsoftmax = − log pyx
(fx), (2)

where yx ∈ {1, 2, ..., C} denotes the label of images x and
C the number of classes.

In each learning cycle i, sample selection targets at find-
ing out a subset of samples, X i

L, which can boost the perfor-
mance of the trained model to the largest extent in the next
cycle. This procedure typically relies on the trained model
and a sample selection metric such as entropy.

Soft Nearest Neighbor Classifier
The heuristics behind the active learning is that the soft-
max classifier trained on the labeled sub-space can be well

generalized to the unlabeled sub-space for sample selection.
Accordingly, the valuable samples will be found around the
classification boundary (the gray region in Fig. 2(a)) while
most samples in the unlabeled space (the white region out-
side the dashed cycle) are thought to have low uncertainty.
However, as shown in Fig. 2(b), the unlabeled space (the
gray region outside the dashed cycle) is actually an un-
known area. When empirically generalizing the classifica-
tion boundary of the softmax classifier to the whole unla-
beled space, we face the risk of missing informative sam-
ples, which implies higher cost for sample annotation.

To solve this problem, we propose to replace the softmax
classifier with a soft nearest neighbor classifier, which pre-
dicts the class label y∗ of a test image x according to its soft
distance to the labeled images, as

y∗ = argmaxc
∑
i

δ(−d(fx, f cxi
)), (3)

where f cxi
denotes the feature vector of image xi with class

label c. d(·) is an Euclidean or cosine distance function and
δ(·) is a non-linear activate function which projects the dis-
tance into [0, 1]. The distance d(fx, f cxi

) can be easily ap-
plied to evaluate how far the test image is from the labeled
set, which can be used to calculate the uncertainty/value of
sample for sample selection.

According to Eq. 3, labeled samples close to the test sam-
ple have large impact on its classification probability, while
those far away from the test sample have little impact. In
active learning, the nearest neighbor classifier preferentially
predicts the unlabeled samples according to their distances
to labeled ones, and avoids making early decision on the un-
labeled samples far away from the labeled ones. For multiple
learning cycles, it predicts their labels in a progressive gener-
alization fashion, alleviating the false generalization caused
by the softmax classifier.

Nearest Neighbor Classifier Embedded Network
According to Eq. 3, for each test image, it requires to com-
pute the distances to all labeled images, which have the two
following drawbacks: (1) It can not be used in the batch-
mode DNNs; (2) It is computationally expensive, particu-
larly when the dimensionality of features is high. To embed
the nearest neighbor classifier to the deep neural networks
for efficient classification, we propose to learn N prototype
vectors mc,n(n = 1, ..., N for each class) using the labeled
images. The classification likelihood based upon the proto-
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type vectors is defined as

pc(fx) = max
n

δ(−d(fx,mc,n)), (4)

where mc,n is the n-th prototype of class c, which is learned
together with the feature extractor. During training, mc,n is
randomly initialized and jointly updated by gradient descend
with the network parameters.

By using the prototype vectors to substitute samples, the
computational cost of the classifier is largely reduced. Mean-
while, the classification probability pc(fx) can be inferred in
a mini-batch mode. Accordingly, the loss function is defined
using the binary cross entropy as

LNCE = −
∑
c

yx,c log pc(fx)+(1−yx,c) log(1−pc(fx)),

(5)
where yx,c ∈ {0, 1}.

In Eq. 4, d(·) is defined as either the Euclidean distance or
the cosine distance. Take the Euclidean distance for exam-
ple, the Gaussian kernel function is used for the activation
function δ(·). The likelihood of image x for class c is then
defined as

pEuc
c (fx) = max

n
exp(

−||fx −mc,n||2

2R2
c

), (6)

where Rc is a learnable parameter indicating the rejection
radius for class c. When the distance between feature fx and
the closest neighbor is larger thanRc, image x is categorized
to class c, otherwise it is rejected by class c. Considering that
the cosine distance is symmetric about the origin, we use
Sigmoid as the activation function and define the likelihood
as

pcosc (fx) = max
n

(
1

1 + exp (−cos(fx,mc,n) ·Rc)

)
. (7)

Sample Selection
In each learning cycle, the trained model is applied to select
unlabeled samples, according to either of the two following
metrics based on the output of the proposed NCE-Net.

Rejection Confidence. To reflect the probability of an im-
age being rejected by all of the image classes, the rejection
confidence is defined as

Mrej(x) =
∑
c

1− pc(fx). (8)

As illustrated in Fig. 2(b), the rejection confidence focuses
on the sub-space (the gray area) covering the most samples
of large uncertainty (the gray area between classes), where
the samples are far from the labeled sub-space.

Confusion Confidence. To reflect how much the model
is confused by the classes of non-maximum probability, the
confusion confidence is defined as

Mconf (x) =
∑
c

(
1 + pc(fx)−max

c
pc(fx)

)
. (9)

As illustrated in Fig. 2(c), the confusion confidence can be
regarded as a special kind of entropy upon the output of the
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Figure 3: Comparison of subset information of selected sam-
ples by the proposed NCE-Net and DNN with the softmax
classifier. The samples are sorted in the decreasing order ac-
cording to their information (upper). The samples selected
by NCE-Net have larger subset information (lower).

softmax classifier (Fig. 2(a)). While the most confused area
is filled with samples with large classification uncertainty, it
also includes samples far away from the labeled sub-space.

The images with the large rejection or confusion confi-
dence are queried and added to the labeled set for the next
training cycle. Note that with either the rejection or the con-
fusion confidence, we select samples not only of large clas-
sification uncertainty but also far away from the labeled sub-
space. This facilities quickly filling the unlabeled space us-
ing the selected samples for efficient active learning.

Subset Information Analysis
We make an analysis on NCE-Net and DNN with the soft-
max classifier from the perspective of subset information,
based on which the informative samples are selected in each
active learning cycle. To quantify the information of sam-
ple, we define the event probability of a sample xi being
correctly classified as p(xi) = maxc pc(fxi

). According to
the information theory (MacKay 2003), the information of
an event can be defined as

I(xi) = − log p(xi) = − log(max
c
pc(fxi

)), (10)

which means that smaller event probability p(xi) brings
more information. For an unlabeled set XU with K samples,
we suppose that its information is independent to classifica-
tion models. We therefore set the information ofXU to 1 and
define the information of sample xi as

Î(xi) =
I(xi)∑
xi
I(xi)

. (11)
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Figure 4: Visualization of sample distributions in different active learning cycles using t-SNE. (Best wiewed in color)

By sorting the information of xi ∈ XU in the decreasing
order using 10000 randomly selected unlabeled images from
CIFAR-10, we visualize the information of sample subsets
in Fig. 3(upper). The model of the first learning cycle is used
for both DNN with softmax and the NCE-Net. Sample infor-
mation by NCE-Net is concentrated on less samples (area A
in Fig. 3(upper)), which enables the learning model to ben-
efit from selecting more informative samples with smaller
query cost. The reason lies in that NCE-Net is able to re-
ject the unknown images and output small probability p(xi)
which indicating large information. Besides, it can classify
the easy samples with large probability p(xi) to prevent the
decentralization of information (area B in Fig. 3 (upper)).
The ability of rejecting unknown samples and classifying la-
beled samples are essential for active learning methods.

When selecting a subset ofM (M << K) unlabeled sam-
ples X ∗U , the increase of information (subset information) is
calculated as

I(X ∗U ) =
∑

xi∈X∗
U

Î(xi). (12)

In Fig. 3, it can be seen that when M is small, the
subset information INCE(X ∗U ) is significantly larger than
Isoftmax(X ∗U ) (Fig. 3(lower)), justifying NCE-Net’s effec-
tiveness for informative sample selection.

Experiments
NCE-Net was evaluated on image classification and object
detection tasks. In each task, we first introduced experi-
mental settings and then reported the active learning perfor-
mances. We then compared NCE-Net with the state-of-the-
art methods.

Experimental Settings
For image classification, CIFAR-10 and CIFAR-100 were
used as the benchmarks and the top-1 accuracy was used as
the evaluation metric. All performances were averaged by
three trials.

Datasets. CIFAR-10 dataset contains 60000 images of
10 object categories. Images were split into two sets where
50000 for train and 10000 for test. The CIFAR-100 dataset
is made up of 60000 images containing 100 object categories
which are split into two subsets: 50000 for train, and 10000
for test. We applied random crop and random horizontal flip
for data augmentation (Yoo and Kweon 2019). Images were

normalized by the mean and standard deviation vectors of
each channel estimated over the training set.

CNN Models. The ResNet-18 (He et al. 2016) was em-
ployed as the backbone network, following the settings in
(Yoo and Kweon 2019; Zhang et al. 2020). To implement
the NCE-Net, the last fully-connected (FC) layer of ResNet-
18 was replaced with the soft nearest neighbor classifier.

Training Details. NCE-Net was implemented with Py-
torch and run on a single NVIDIA RTX 2080Ti GPU. On
CIFAR-10, we first initialized the labeled set X 0

L using 1000
randomly selected images. For each active learning cycle,
we selected 1000 images from the unlabeled set and moved
them into labeled set, until the labeled set increased to
10000. The classification model was trained for 200 epochs
in each cycles, where the learning rate were set to 0.1 for
the first 160 epoch and decreased to 0.01 for the remaining
epochs. The batch size was set to 128. The momentum and
the weight decay were set to 0.9 and 0.0005, respectively.
For CIFAR-100, we initialized the labeled setX 0

L using 5000
randomly selected images and selected 2500 images in each
cycle.

Model Effect
Visualization. In Fig. 4, we visualize the sample distribu-
tions from learning cycles. It can be seen that the unla-
beled samples are clearly separated by NCE-Net, which ben-
efits querying informative samples. The sample features ex-
tracted by the softmax classifier cover a large space for better
generalization. However, this makes the labeled and unla-
beled samples highly overlapped with each other and there-
fore aggregates the difficulty of querying informative sam-
ples.

In Fig. 4(right), we show the distributions of selected
informative samples (light color). NCE-Net with rejection
metric selects samples which are far from the labeled sam-
ples, while softmax classifier selects samples overlapped
with the labeled samples. NCE-Net demonstrates progres-
sive generalization ability within the unlabeled sub-space.

NCE-Net. In Table 1, NCE-Net was compared with the
baseline method (network with the softmax classifier) un-
der different sample selection metrics including “Random”,
“Entropy”, “LL4AL”(Yoo and Kweon 2019), “Rejection”
(Eq. 8) and “Confusion” (Eq. 9). “BEntropy” denotes firstly
computing entropy for each class and then averaging them
for the final selection score, solving the problem that the sum

10045



Classifier Method
Proportion of Labeled Samples

2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 100%

Softmax
Random 51.20 61.72 69.85 76.09 79.64 83.20 84.56 85.79 86.61 87.28

92.63Entropy 51.20 61.49 70.62 77.83 81.81 85.75 86.94 88.62 89.60 90.39
LL4AL 51.20 64.68 75.36 81.09 83.54 86.91 88.45 89.71 90.29 90.56

NCE-Net

Random 56.22 66.44 73.52 78.87 80.88 83.63 85.38 86.07 87.28 87.61

92.81

BEntropy 56.22 60.12 70.73 77.84 81.79 84.92 87.09 88.01 89.19 90.21
LL4AL 56.50 67.87 76.7 81.54 83.94 86.35 87.76 89.07 89.73 90.41
Rejection- 56.22 67.83 76.05 80.82 83.78 86.22 87.68 88.87 89.78 90.54
Confusion- 56.22 67.64 75.85 80.63 83.26 86.32 87.74 89.16 90.19 90.73
Rejection 56.22 69.38 77.32 82.33 84.41 86.59 88.03 89.27 90.21 91.01
Confusion 56.22 69.17 76.91 82.16 84.49 87.04 87.98 89.43 90.14 90.72

Table 1: Effect of sample selection metrics on CIFAR-10 using Resnet18 backbone.

N
Proportion of Labeled Samples

10% 15% 20% 25% 30% 35% 40%
1 37.60 48.19 55.33 60.36 63.25 66.25 68.36
2 40.74 49.86 56.31 61.02 64.41 66.86 69.25
3 39.43 49.16 56.22 60.92 63.58 66.90 68.77
5 38.19 48.81 55.77 60.07 63.45 66.12 68.60
10 33.90 48.07 55.21 60.15 63.16 66.16 68.19

Table 2: Evaluation of number N of nearest neighbors (pro-
totypes) on CIFAR-100.

of output score of NCE-Net is not equal to 1. “LL4AL” is a
state-of-the-art method, which predicts the learning loss of
unlabeled sample (Yoo and Kweon 2019). Larger learning
loss corresponds to more informative samples.

With the “Random” metric, NCE-Net achieved signif-
icantly better performance (56.22% vs. 51.20%) than the
baseline when using 2% labeled images, and slightly better
performance (87.61% vs. 87.28%) when using 20% labeled
images. With the “Entropy” metric, NCE-Net improved the
accuracy by 2.4% (90.21% vs. 87.61%) with 20% labeled
images compared with the “Random” metric. It also outper-
formed the baseline with significant margins. When using
the “LL4AL” method to select samples, NCE-Net achieved
comparable performance with the baseline.

Sample Selection Metric. For “Rejection-” and
“Confusion-”, parameter R defined in Eq. 6 was fixed to
0.5. The proposed rejection and confusion metrics respec-
tively outperformed the baseline by 2.93% and 3.12%, and
outperformed the “BEntropy” by 0.33% and 0.52%. Note
that under the same settings, “Rejection-” and “Confusion-”
slightly outperformed the state-of-the-art method “LL4AL”.
With learnable R, “Rejection” outperformed the “Ran-
dom” by 3.4% and “LL4AL” by 0.6%. As shown in Fig.
5, when using the cosine distance in NCE-Net (Eq.7),
both “Rejection-Cos” and “Confusion-Cos” outperformed
“BEntropy” and was on par with “LL4AL”.

Number of Nearest Neighbors (N ). In Table 2, we show
the results of the number N of nearest neighbors (proto-
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Figure 5: Comparison of NCE-Net with state-of-the-art
methods including Core-set (Sener and Savarese 2018),
VAAL (Sinha, Ebrahimi, and Darrell 2019), LL4AL (Yoo
and Kweon 2019) and SRAAL (Zhang et al. 2020) on
CIFAR-10 using ResNet-18.

.

types) on CIFAR-100. When N = 1, NCE-Net achieved
68.36% classification accuracy using 40% labeled images,
which outperformed the state-of-the-art method (LL4AL)
by 2.08%, demonstrating the effectiveness. The performance
reached the best when N = 2. When N became larger, the
performance slightly dropped. The reason could be that the
CIFAR-100 dataset is a middle-scale dataset, upon which 2
nearest neighbors (prototypes) are sufficient to represent the
labeled images. NCE-Net with largerN values might aggre-
gate the risk of over-fitting problem but can achieve good
performance given more training samples, e.g., with 40%
labeled images in the last column of Table 2.

Training Time. We evaluated the training time of NCE-
Net and Softmax approaches on CIFAR10 using a NVIDIA
GTX 1080Ti GPU. Softmax+Random costs 1.50 hours for
10 cycles of active learning, while NCE-Net+Rejection costs
1.51 hours and Softmax+LL4AL costs 1.55 hours. It is ob-
vious that compared with the baseline method the training
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Classifier Method
Number of Labeled Samples

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 16.55k

Softmax
Core-set 52.36 62.34 65.87 67.67 68.79 69.44 70.16 70.83 71.16 71.72

77.43
LL4AL 52.36 60.92 64.87 66.88 69.04 70.34 71.5 72.16 72.74 73.39

NCE-Net
Random 52.28 59.75 63.84 67.46 68.86 70.60 71.31 72.45 73.45 73.97

77.59
Rejection 52.28 62.97 67.16 70.04 71.34 72.87 73.58 74.55 75.19 75.75

Table 3: Object detection performance and comparison with the state-of-the-art methods including Core-set and LL4AL which
use softmax classifers on PASCAL VOC 2007.
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Figure 6: Comparison of NCE-Net with state-of-the-art
methods on CIFAR-100 using ResNet-18.

and computational cost of our method is negligible. Further-
more, it runs faster than the SOTA method LL4AL.

Performance and Comparison on CIFAR-10. NCE-Net
was compared with state-of-the-art approaches including
Core-Set, VAAL, LL4AL, and SRAAL, Fig. 5. It respec-
tively outperformed the compared methods which all used
the softmax classifier, by 1.5% ∼ 5% with 2%, 4% and 6%
labeled images, which shows the superiority of NCE-Net. In
the last cycle, with 20% samples, NCE-Net achieved 91.01%
accuracy, which was very close to (1.80% lower than) that
on the full training set. With NCE-Net, the proposed rejec-
tion metric also outperformed the state-of-the-art LL4AL by
0.6% (91.01% vs. 90.41%).

Performance and Comparison on CIFAR-100. Fig. 6
shows that “NCE-Net-Rejection” significantly outper-
formed all other methods with softmax classifier. Particu-
larly, it respectively outperformed the state-of-the-arts by
2.51%, 4.40%, and 2.25% when using 10%, 15% and 20%
samples. We implemented LL4AL with NCE-Net to eval-
uate the sample selection metric. It can be seen that with
a simple rejection metric, “NCE-Net-Rejection” outper-
formed “NCE-Net-LL4AL” in all cycles.

Object Detection
Dataset. For object detection, the PASCAL VOC 2007 and
2012 datasets (Mark et al. 2010) were used for evaluation.
The VOC 2007 trainval and VOC 2012 trainval were

merged as the training set, which contains 16551 images.
The VOC 2007 test was used to evaluate the mean Aver-
age Precision (mAP). All images are set to 300×300 with
standard channel-wise normalization.

Base Detector. Following LL4AL (Yoo and Kweon
2019), SSD equipped with the VGG-16 backbone (Si-
monyan and Zisserman 2015) was employed as the base de-
tector. In SSD, the last convolutional layer with kernel size
N × (A × C) × 3 × 3 was used for bounding-box clas-
sification, where A, N and C are the number of anchors,
channels and classes respectively. We replaced it with an
N × (A×N)× 3× 3 convolutional layer to extract features
for each anchor and used the soft nearest neighbor classifier
defined in Eq. 7 for classification.

Training Details. The labeled set X 0
L was initialized us-

ing 1000 randomly selected images. In each learning cycle,
1000 images was selected and added to the labeled set, until
the labeled set increased to 10000. The detector was trained
for 150 epochs in each cycle, where the learning rate was
set to 0.001, and decreased to 0.0001 after 100 epochs and
0.00001 after 125 epochs. The batch size was set to 8. The
momentum was set to 0.9 and the weight decay 0.0005.

Performance and Comparison. In Table 3, NCE-Net
(“Random”) achieved comparable results with the softmax-
based SSD with 1000 initial images. When using the “Rejec-
tion” strategy to select samples, NCE-Net significantly out-
performed the baseline detector in all cycles. When using
10000 images, NCE-Net outperforms “Random” by 1.78%
(75.75% vs. 73.97%) and softmax classifier based “LL4AL”
by 2.36% (75.75% vs. 73.39%).

Conclusion

In this paper, we proposed a conceptually simple method,
termed nearest neighbor classifier embedded network (NCE-
Net), for active learning. NCE-Net can reduce the risk of
over-estimating the unlabeled samples and is less likely to
miss the informative samples. NCE-Net was supported by
intuitive analysis and justified from the perspective of the
subset information analysis, which provides a way to quan-
tify the ability of model generalization in active learning.
Experiments on image classification and object detection
benchmarks validate the superior performance and the task-
agnostic advantage of NCE-Net. The proposed NCE-Net
method provides a fresh insight to the classical active learn-
ing problem.
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