
Semi-Supervised Node Classification on Graphs: Markov Random Fields
vs. Graph Neural Networks

Binghui Wang, Jinyuan Jia, Neil Zhenqiang Gong
ECE Department, Duke University, Durham, NC 27708, USA

{binghui.wang, jinyuan.jia, neil.gong}@duke.edu

Abstract

Semi-supervised node classification on graph-structured data
has many applications such as fraud detection, fake account
and review detection, user’s private attribute inference in so-
cial networks, and community detection. Various methods
such as pairwise Markov Random Fields (pMRF) and graph
neural networks were developed for semi-supervised node
classification. pMRF is more efficient than graph neural net-
works. However, existing pMRF-based methods are less ac-
curate than graph neural networks, due to a key limitation that
they assume a heuristics-based constant edge potential for all
edges. In this work, we aim to address the key limitation of
existing pMRF-based methods. In particular, we propose to
learn edge potentials for pMRF. Our evaluation results on var-
ious types of graph datasets show that our optimized pMRF-
based method consistently outperforms existing graph neural
networks in terms of both accuracy and efficiency. Our re-
sults highlight that previous work may have underestimated
the power of pMRF for semi-supervised node classification.

Introduction
Given an undirected graph, a feature vector for each node in
the graph, and a small set of labeled nodes, semi-supervised
node classification aims to classify the remaining unlabeled
nodes simultaneously. Semi-supervised node classification
has many applications such as fraud detection (Pandit et al.
2007; Chau et al. 2011; Ye et al. 2011; Tamersoy, Roundy,
and Chau 2014; Hooi et al. 2016), fake account and re-
view detection (Wang et al. 2011; Cao et al. 2012; Akoglu,
Chandy, and Faloutsos 2013; Rayana and Akoglu 2015;
Wang, Zhang, and Gong 2017; Wang, Gong, and Fu 2017;
Gao et al. 2018; Wang et al. 2018), user’s private attribute in-
ference in social networks (Gong et al. 2014; Jia et al. 2017;
Gong and Liu 2018; Wang, Jia, and Gong 2019), and com-
munity detection (He et al. 2018; Jin et al. 2019a,b). There-
fore, many methods have been proposed for semi-supervised
node classification. These include conventional methods
such as label propagation (LP) (Zhu, Ghahramani, and Laf-
ferty 2003), manifold regularization (ManiReg) (Belkin,
Niyogi, and Sindhwani 2006), deep semi-supervised embed-
ding (SemiEmb) (Weston et al. 2012), iterative classifica-
tion algorithm (ICA) (Lu and Getoor 2003), and pairwise

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Markov Random Fields (pMRF) (Gatterbauer 2017), as well
as recent graph neural networks (?Duvenaud et al. 2015;
Kipf and Welling 2017; Hamilton, Ying, and Leskovec
2017; Battaglia et al. 2018; Xu et al. 2018; Gao, Wang, and
Ji 2018; Ying et al. 2018; Veličković et al. 2018; Wu et al.
2019; Qu, Bengio, and Tang 2019; Ma et al. 2019a; Wang
et al. 2020).

In particular, pMRF associates a discrete random variable
with each node to model its label. pMRF defines a node po-
tential for each node, which is a function of the node’s ran-
dom variable and models the node’s label using the node’s
feature vector. pMRF also defines an edge potential for each
edge (u, v), which is a function of the two random vari-
ables associated with nodes u and v. Finally, pMRF defines
a joint probability distribution of all random variables as the
product of the node potentials and edge potentials. The edge
potential for an edge (u, v) is essentially a matrix, whose
(i, j)th entry indicates the likelihood that u and v have la-
bels i and j, respectively. Therefore, an edge potential is also
called coupling matrix. Moreover, the standard Belief Prop-
agation (Pearl 1988) or linearized Belief Propagation (Gat-
terbauer et al. 2015; Gatterbauer 2017; Jia et al. 2017) were
often used to perform inference on the pMRF. Compared
to graph neural networks, pMRF inferred via linearized Be-
lief Propagation is much more efficient in terms of running
time. However, existing pMRF-based methods (Pandit et al.
2007; Tamersoy, Roundy, and Chau 2014; Akoglu, Chandy,
and Faloutsos 2013; Rayana and Akoglu 2015; Jia et al.
2017; Wang, Gong, and Fu 2017) are often less accurate than
graph neural networks, due to a key limitation: they assume
a heuristics-based constant edge potential or coupling matrix
for all edges.

In this work, we aim to address the limitation of exist-
ing pMRF-based methods. In particular, we propose a novel
method to learn the coupling matrix. Specifically, we formu-
late learning the coupling matrix as an optimization prob-
lem, where the objective function is to learn a coupling ma-
trix such that 1) the training loss is small (modeled as cross-
entropy loss) and 2) the coupling matrix of an edge (u, v) is
consistent with the predicted labels of nodes u and v (mod-
eled as a regularization term). Moreover, we propose a novel
algorithm to solve the optimization problem. Our results on
various types of graph datasets show that our method is more
accurate and efficient than existing graph neural networks.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

10093

Problem Definition and Background
Problem Definition
We aim to solve the following semi-supervised node classi-
fication problem on graph-structured data.
Definition 1. Suppose we are given an undirected graph
G = (V,E) with n = |V | nodes and m = |E| edges. Each
node v has anF -dimension feature vector xv , and each node
has a label from a label set {1, 2, · · · , C}. Moreover, we are
given a small set of labeled nodes L, which we call training
dataset. Our goal is to predict the labels of the remaining
unlabeled nodes using the nodes’ feature vectors and graph
structure.

Pairwise Markov Random Field (pMRF)
pMRF was traditionally widely used for semi-supervised
node classification in various applications such as auction
fraud detection (Pandit et al. 2007), fake accounts and re-
views detection (Wang et al. 2011; Cao et al. 2012; Akoglu,
Chandy, and Faloutsos 2013; Rayana and Akoglu 2015;
Wang, Zhang, and Gong 2017; Wang, Gong, and Fu 2017;
Wang, Jia, and Gong 2019), malware detection (Tamersoy,
Roundy, and Chau 2014), and user’s private attribute infer-
ence in social networks (Gong et al. 2014; Jia et al. 2017;
Gong and Liu 2018; Wang, Jia, and Gong 2019). Specifi-
cally, we associate a random variable rv with each node v
to model its label, where rv = i means that v’s label is i.
pMRF essentially models the joint probability distribution
of the random variables r1, r2, · · · , rn, where the statistical
correlations/independence between the random variables are
captured by the graph structure. Formally, pMRF models the
joint probability distribution as follows:

Pr(r1, r2, · · · , rn) ∝
∏
v∈V

φv(rv)
∏

(u,v)∈E

ψuv(ru, rv), (1)

where φv(rv) is called node potential and ψuv(ru, rv) is
called edge potential. For convenience, we represent the
node potential φv(rv) as a probability distribution q̃v over
the C labels {1, 2, · · · , C}. Specifically, q̃v is a row vec-
tor and q̃v(i) = φv(rv = i) for i ∈ {1, 2, · · · , C}. If
nodes’ feature vectors are available, q̃v can be learnt. In par-
ticular, given the labeled nodes L and nodes’ feature vec-
tors, we learn a multi-class logistic regression classifier and
use the classifier to predict the probability distribution q̃v
for each node. If nodes’s feature vectors are unavailable,
we can assign q̃v based on the labeled nodes L. Specifi-
cally, if node v is a labeled node, q̃v is set as the node v’s
one-hot label vector; otherwise, all entries in q̃v have the
equal value 1/C. Moreover, we represent the edge potential
ψuv(ru, rv) as a symmetric matrix H̃uv ∈ RC×C , where
H̃uv(i, j) = ψuv(ru = i, rv = j) for i, j ∈ {1, 2, · · · , C}.
H̃uv models the coupling strength between the labels of
nodes u and v, and thus H̃uv is also called coupling ma-
trix. In particular, a larger H̃uv(i, j) means that u and v are
more likely to have labels i and j, respectively.
Inference via linearized Belief Propagation
(LinBP): Given the joint probability distribution in
Equation 1, the probability distribution q̃v for each node,

and the coupling matrix H̃uv for each edge, we infer the
marginal probability distribution p̃v (a row vector) for each
node v and use it to predict v’s label. Specifically, Belief
Propagation (BP) (Pearl 1988) is a standard method to
infer the marginal probability distributions. However, BP
is not guaranteed to converge on loopy graphs and is not
scalable due to message maintenance on each edge. Recent
work (Gatterbauer et al. 2015; Gatterbauer 2017) proposed
to linearize BP (LinBP) to address these limitations. Given
LinBP, the approximate marginal probability distributions
pv are solutions to the following linear system (Gatterbauer
2017):

pv = qv +
∑
u∈Γv

puHuv, ∀v ∈ V, (2)

where Γv is the set of neighbors of v, qv = q̃v − 1
C , and

Huv = H̃uv − 1
C . Roughly speaking, qv and Huv are cen-

tered versions of q̃v and H̃uv , respectively. Note that pv
solved by LinBP from Equation 2 is not necessarily a prob-
ability distribution any more, e.g., it may not sum to 1. The
label of v is predicted as the one that has the largest value in
pv .
Limitation: The key limitation of existing pMRF-based
semi-supervised node classification methods is that they as-
sume a heuristics-based constant coupling matrix for all
edges. For example, H̃uv(i, i) = 0.9 and H̃uv(i, j) = 0.1

C−1 ,
where i, j ∈ {1, 2, · · · , C} and i 6= j, which means that
two linked nodes are more likely to have the same label and
does not distinguish between labels and between edges. In
this work, we address this limitation via proposing a method
to learn the coupling matrix. Moreover, we empirically show
that, after learning the coupling matrix, pMRF outperforms
state-of-the-art graph neural networks on multiple bench-
mark datasets.

Learning the Coupling Matrix (LCM)
Formulating an Optimization Problem
Constraining the coupling matrices: In pMRF, each
edge has a coupling matrix Huv . Therefore, it is challenging
to learn a different coupling matrix for each edge as the num-
ber of parameters is much larger than the training dataset
size. To address the challenge, we constrain the coupling
matrices of different edges as different scalings of the same
coupling matrix. In particular, we assume Huv = WuvH
for each edge (u, v) ∈ E. We model the scaling parameter
Wuv as the weight of the edge (u, v) and we denote all the
scaling parameters as a symmetric weight matrix W of the
graph. Given such assumption on the coupling matrices, we
can transform Equation 2 as follows:

P = Q+WPH, (3)

where the matrix P = [p1;p2; · · · ;pn] and the matrix
Q = [q1;q2; · · · ;qn]. According to (Gatterbauer et al.
2015), Equation 3 has a solution when I−H⊗W is invert-
ible, where I is an identity matrix and ⊗ is the Kronecker
product. LinBP uses the power iteration method to solve
Equation 3 and it can find the solution when ρ(H) < 1

ρ(W) ,
where ρ(·) is the spectral radius of a matrix.1

1The spectral radius of a square matrix is the maximum of the
absolute values of its eigenvalues.

10094

Formulating an optimization problem: Intuitively, we
aim to achieve two goals when learning the coupling matrix
and weight matrix. The first goal is that the labels predicted
for the training nodes based on the leant coupling matrix
and weight matrix should match the ground truth labels of
the training nodes. The second goal is that the predicted la-
bel distributions σ(pu) and σ(pv) of nodes u and v should
be consistent with the coupling matrix WuvH for each edge
(u, v). Specifically, if u and v are more likely to be predicted
to have labels i and j (i.e., the probabilities σ(pu)i and
σ(pv)j are larger), respectively, then the entry WuvH(i, j)
should be larger. This is because WuvH(i, j) encodes the
likelihood that u and v have labels i and j, respectively.

To quantify the first goal, we adopt a loss function over the
training dataset. Specifically, we consider a standard cross-
entropy loss function L(W,H) as follows:

L(W,H) = −
∑
l∈L

yT
l log σ(pl), (4)

where σ is the softmax function, which is defined as
σ(pl)i = exp(pl(i))∑C

j=1 exp(pl(j))
and converts the vector pl to be

a probability distribution; the vector yl is the one-hot en-
coding of the node l’s label, i.e., if node l belongs to the ith
class, then yl(i) = 1 and yl(j) = 0, for all j 6= i. To quantify
the second goal, we define the following term R(W,H):

R(W,H) = −
∑

(u,v)∈E

σ(pu) ·WuvH · σ(pv)
T . (5)

R(W,H) is smaller if the second goal is better satisfied, i.e.,
the predicted label distributions of two nodes are more con-
sistent with the coupling matrix of the corresponding edge.
Combining the two goals, we propose to learn the coupling
matrix and weight matrix via solving the following opti-
mization problem:

min
W,H

L(W,H) = L(W,H) + λR(W,H), (6)

where λ > 0 is a hyperparameter that balances between the
two goals. Our term R(W,H) can also be viewed as a reg-
ularization term, and we call it consistency regularization.
We note that a similar consistency regularization term was
also proposed by (Wang, Jia, and Gong 2019), but only for
binary classification.

Challenge for solving the optimization problem: It is
computationally challenging to solve the optimization prob-
lem in Equation 6. The reason is each pv depends on ev-
ery edge weight and each entry of the coupling matrix. For
example, suppose we use gradient descent to solve the op-
timization problem. In each iteration, we need to compute
the gradient ∂L(W,H)

∂Wuv
, which involves the gradient ∂P

∂Wuv
.

However, according to Equation 3, ∂P
∂Wuv

is a solution to the
following system:

∂P

∂Wuv
= W

∂P

∂Wuv
H+

∂W

∂Wuv
PH. (7)

Therefore, in each iteration of gradient descent, we need
to solve the above system of equations for each edge, which
is computationally infeasible for large graphs.

Solving the Optimization Problem
We propose an approximate algorithm to efficiently solve
the optimization problem. Our key observation is that P is
often iteratively solved from Equation 3 as follows:

P(t) = Q+WP(t−1)H, (8)

where P(t) is the matrix P in the tth iteration. Based on the
observation, we propose to alternately update P and learn
the weight matrix W and coupling matrix H. Specifically,
given the current W, H, and P, we update P in the next
iteration. Then, given the current P, we learn W and H such
that 1) the matrix P in the next iteration has a small cross-
entropy loss on the training dataset and 2) the consistency
regularization term is large for the current P.
Updating P(t): Given the weight matrix W(t−1), the cou-
pling matrix H(t−1), and the matrix P(t−1) in the (t − 1)th
iteration, we compute P(t) in the tth iteration as follows:

P(t) = Q+W(t−1)P(t−1)H(t−1). (9)

Learning W(t) and H(t): Given the weight matrix W(t−1)

and the coupling matrix H(t−1) in the (t − 1)th iteration
as well as the matrix P(t) in the tth iteration, we learn the
weight matrix W(t) and the coupling matrix H(t) in the tth
iteration as a solution to the following optimization problem:

min
W(t),H(t)

L(W(t),H(t)) = −
∑
l∈L

yT
l log σ(p

(t+1)
l)

− λ
∑

(u,v)∈E

σ(p(t)
u) ·W (t)

uv H
(t) · (σ(p(t)

v))T , (10)

where P(t+1) = Q + W(t)P(t)H(t). We leverage gradient
descent to learn W(t) and H(t). Specifically, we have the
following gradients:

∂L(W(t),H(t))

∂W
(t)
uv

= −
∑
l∈L

C∑
j=1

(yl(j)− σ(p(t+1)
l)j)

∂p
(t+1)
l (j)

∂W
(t)
uv

− λσ(p(t)
u) ·H(t) · (σ(p(t)

v))T , (11)

∂L(W(t),H(t))

∂H
(t)
ij

= −
∑
l∈L

(
(yl(j)− σ(p(t+1)

l)j)
∂p

(t+1)
l (j)

∂H
(t)
ij

+ (yl(i)− σ(p(t+1)
l)i)

∂p
(t+1)
l (i)

∂H
(t)
ij

)
− λ

∑
(u,v)∈E

W (t)
uv · σ(p(t)

u)i · σ(p(t)
v)j , (12)

where we have:

∂p
(t+1)
l (j)

∂W
(t)
uv

=

(P(t)H(t))vj , if u = l

(P(t)H(t))uj , if v = l

0, otherwise,
(13)

∂p
(t+1)
l (j)

∂H
(t)
ij

= (W(t)P(t))li, (14)

∂p
(t+1)
l (i)

∂H
(t)
ij

= (W(t)P(t))lj . (15)

10095

We have both ∂p
(t+1)
l (j)/∂H

(t)
ij and ∂p

(t+1)
l (i)/∂H

(t)
ij

when computing ∂L(W(t),H(t))/∂H
(t)
ij because H is sym-

metric. We initialize W(t) and H(t) as W(t−1) and H(t−1),
respectively. Then, we use gradient descent to update W(t)

and H(t) with learning rates γ1 and γ2, respectively.
We note that the learnt weight matrix W and coupling

matrix H are bounded during optimization. This is because
the edge potential matrix H̃uv is non-negative and each row
sums to 1. Moreover, WuvH = Huv = H̃uv − 1/C. There-
fore, WuvH is bounded. During optimization, we can clip
WuvH to satisfy such constraints if they are too large. How-
ever, we found that WuvH is small even if we do not clip
in our experiments. This is because of our initializations of
Wuv and H̃uv and that our LCM method requires a small
number of iterations.

Evaluation
Benchmark Datasets
Following previous work (Yang, Cohen, and Salakhutdinov
2016; Kipf and Welling 2017), we use three benchmark ci-
tation graphs (i.e., Cora, Citeseer, and Pubmed) (Sen et al.
2008) and one benchmark knowledge graph NELL (Carl-
son et al. 2010; Yang, Cohen, and Salakhutdinov 2016).
We also adopt two real-world large-scale social graphs (i.e.,
Google+ (Gong et al. 2012; Jia et al. 2017) and Twit-
ter (Wang, Zhang, and Gong 2017)) to evaluate our method.
Descriptions of these datasets and their basic statistics are
shown in (Wang, Jia, and Gong 2020).

Training, Validation, and Testing
We split each dataset into a training dataset, a validation set,
and a testing dataset. We use the validation dataset to tune
hyperparameters and use the testing dataset for evaluation.

For the citation graphs, previous work (Kipf and Welling
2017; Veličković et al. 2018) has set 1,000 nodes in each
graph as the testing dataset. For consistent comparisons, we
adopt these testing datasets and fix them. Moreover, we sam-
ple 20 nodes from each class uniformly at random as the
training dataset, and we sample 500 nodes in total uniformly
at random as the validation dataset. For the NELL graph,
previous work (Yang, Cohen, and Salakhutdinov 2016) has
set 969 nodes as the testing dataset, which we adopt. More-
over, like previous work (Kipf and Welling 2017), we con-
sider the extreme case where just one node from each class is
sampled for training. We also randomly sample 500 nodes in
total as the validation dataset. We repeat sampling the train-
ing and validation datasets 5 trials and report the average
accuracies and standard deviations on the testing dataset.2

For the Google+ dataset, for each city, we randomly select
1,000 positive users, i.e., who live/lived in the city, and 1,000
negative users, i.e., who do/did not live in the city, as the
training dataset; we randomly select 1,000 positive users and

2Note that the results of the baseline methods reported in pre-
vious work only use one training and validation dataset without re-
porting the averages among multiple trials. Therefore, their results
are different from what we show in Table 1.

1,000 negative users as the validation dataset; and we treat
the remaining users who disclosed at least one city as the
testing dataset. Note that we have 50 cities in the Google+
dataset, where each city is treated as a binary classification
problem. The accuracy on the Google+ dataset is averaged
over the 50 cities. For the Twitter dataset, we randomly sam-
ple 1,000 genuine users and 1,000 fake users as the training
dataset; we randomly sample 1,000 genuine users and 1,000
fake users as the validation dataset; and we randomly select
another 5,000 genuine users and 5,000 fake users as the test-
ing dataset. We sample a relatively larger number of training
users in Google+ and Twitter, due to their large graph sizes.

Compared Methods
We compare our method with graph embedding methods,
graph neural networks, and belief propagation methods.
• Graph embedding methods: These methods first learn

an embedding vector for each node; then they train a stan-
dard classifier (we consider multi-class logistic regres-
sion) using the training dataset and the embedding vec-
tors; finally, they use the classifier to predict labels for the
testing nodes. We consider two representative graph em-
bedding methods, i.e., DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014) and Planetoid (Yang, Cohen, and Salakhut-
dinov 2016). We use 128-dimension embedding vectors.

• Graph neural network methods: These methods
learn the node embeddings and classify nodes si-
multaneously. In particular, we compare with Cheby-
shev (Kipf and Welling 2017), graph convolutional
network (GCN) (Kipf and Welling 2017), Graph-
SAGE (Hamilton, Ying, and Leskovec 2017), and graph
attention network (GAT) (Veličković et al. 2018).

• Belief propagation methods: We use the standard
BP (Pearl 1988) or the linearized BP (LinBP) (Gatter-
bauer et al. 2015) to perform inference in the pMRF. In
particular, BP and LinBP infer the approximate marginal
probability distributions P and use them to predict labels
of testing nodes. We obtained the implementation of BP
and LinBP from (Gatterbauer et al. 2015).

• Our method LCM and its variants: In order to
show the effectiveness of our consistency regulariza-
tion term, we consider several variants of LCM. Specif-
ically, LCM-wo is the variant of our method that does
not use the consistency regularization term. Moreover,
we compare our consistency regularization with the
standard L1 and L2 regularizations, which are denoted
as R(W,H) =

∑
(u,v)∈E |Wuv|1 +

∑
i,j |Hij |1 and

R(W,H) =
∑

(u,v)∈EW
2
uv +

∑
i,j H

2
ij , respectively.

Accordingly, we denote the two variants as LCM-L1 and
LCM-L2, respectively.
We observe that BP and LinBP outperform other tra-

ditional methods such as label propagation (LP) (Zhu,
Ghahramani, and Lafferty 2003), manifold regularization
(ManiReg) (Belkin, Niyogi, and Sindhwani 2006), deep
semi-supervised embedding (SemiEmb) (Weston et al.
2012), and iterative classification algorithm (ICA) (Lu and
Getoor 2003). For instance, using the same experimen-
tal setting as Velickovic et al. (Veličković et al. 2018),

10096

Methods Cora Citeseer Pubmed NELL Google+ Twitter
Graph

Embedding
DeepWalk 0.669±0.017 0.428±0.019 0.651±0.015 0.352±0.013 – –
Planetoid 0.746±0.011 0.645±0.029 0.699±0.035 0.435±0.015 – –

Graph
Neural

Network

Chebyshev 0.786± 0.018 0.694± 0.023 0.701± 0.024 – – –
GCN 0.823± 0.009 0.714± 0.016 0.756± 0.032 0.596±0.026 – –

GraphSAGE 0.811± 0.009 0.664± 0.010 0.757± 0.014 0.574±0.015 – –
GAT 0.824± 0.021 0.708± 0.016 0.755± 0.030 0.578±0.010 – –

Belief
Propagation

BP 0.804± 0.023 0.704± 0.011 0.734± 0.024 0.587±0.015 – –
LinBP 0.809± 0.014 0.707± 0.004 0.744± 0.028 0.588±0.013 0.741±0.013 0.687±0.002

Our
Methods

LCM-wo 0.813± 0.007 0.716± 0.006 0.754± 0.018 0.626±0.013 0.757±0.012 0.712±0.002
LCM-L1 0.808± 0.009 0.711± 0.005 0.752± 0.013 0.609±0.008 0.749±0.018 0.699±0.004
LCM-L2 0.811± 0.013 0.713± 0.007 0.753± 0.016 0.616±0.002 0.751±0.016 0.709±0.004

LCM 0.833± 0.007 0.722± 0.005 0.770± 0.019 0.647±0.005 0.779±0.012 0.748±0.002

Table 1: Average accuracies and standard deviations of compared methods on the six graphs. ”–” means the methods cannot be
executed on our machine as they require more memory than we have. We note that all the compared graph embedding methods
and graph neural networks cannot be executed on our machine for the two large-scale social graphs.

Dataset Cora Citeseer Pubmed NELL Google+ Twitter
homo heter homo heter homo heter homo heter homo heter homo heter

Ave. initialized weights 0.225 0.197 0.315 0.347 0.138 0.147 0.039 0.035 0.107 0.091 0.022 0.017
Ave. learnt weights 0.354 0.261 0.493 0.448 0.652 0.548 0.105 0.089 0.569 0.242 0.595 0.329

Table 2: Average initialized weights and weights learnt by our method for homogeneous edges vs. heterogeneous edges on the
six graphs. “homo” and “heter” mean homogeneous edges and heterogeneous edges, respectively. Our method learns larger
average weights for homogeneous edges than heterogeneous edges.

LinBP achieves classification accuracies 0.785, 0.709, and
0.787 on the three citation graphs, respectively. According
to (Veličković et al. 2018), ICA consistently outperforms LP,
ManiReg, and SemiEmb on the three citation graphs. How-
ever, ICA only achieves accuracies 0.751, 0.691, and 0.739
on the three citation graphs, respectively. Thus, we omit the
results of these traditional methods for simplicity. The pa-
rameter settings of these methods are detailed in (Wang, Jia,
and Gong 2020).

Results
Table 1 shows the classification accuracies averaged over 5
trials and the standard deviations of all compared methods
on the six graphs. We note that the compared graph embed-
ding methods and graph neural networks cannot be executed
on our machine for the two large-scale social graphs due to
insufficient memory. We have the following observations.
LCM outperforms the compared methods: First, we
observe that graph neural networks outperform standard
BP and LinBP methods. For example, GCN consistently
achieves higher average accuracies than BP and LinBP on
the three citation graphs and the NELL knowledge graph.

Second, LCM is consistently more accurate than BP and
LinBP. For example, LCM achieves 0.018 to 0.060 higher
accuracies than BP on the three citation graphs and the
NELL knowledge graph; and achieves 0.015 to 0.059 higher
accuracies than LinBP on the six graphs. The reason is that
BP and LinBP do not learn the edge weights and coupling
matrix (i.e., they use the initialized edge weights and cou-
pling matrix), while LCM does. To further illustrate the dif-
ference between LCM and BP/LinBP, Table 2 shows the av-
erage initialized weights and average weights learnt by LCM

for homogeneous edges and heterogeneous edges on the six
graphs. An edge is homogeneous if the two corresponding
nodes have the same label, otherwise the edge is heteroge-
neous. Moreover, Figure 1 shows the learnt coupling ma-
trices for the six graphs. Our learnt coupling matrices are
diagonal dominant, which means that two linked nodes are
more likely to have the same label. Moreover, homogeneous
edges have larger weights than heterogeneous edges on av-
erage after learning the edge weights. In particular, LCM in-
creases edge weights for both homogeneous edges and het-
erogeneous edges, but LCM increases the weights of homo-
geneous edges more substantially.

Third, after learning the weight matrix and the coupling
matrix, our method outperforms the graph neural networks
and graph embedding methods. Specifically, LCM achieves
0.009 to 0.051 higher average accuracies than the graph
neural networks, and 0.071 to 0.212 higher average accura-
cies than the graph embedding methods on the three citation
graphs and the NELL knowledge graph.
Our consistency regularization is effective: Our results
also show that our consistency regularization term is effec-
tive. In particular, LCM outperforms LCM-wo, LCM-L1,
and LCM-L2. Our method achieves 0.006 to 0.036 higher
accuracies when using the consistency regularization term
(i.e., LCM vs. LCM-wo). One possible reason is that L1/L2
regularization aims to prevent overfitting of complex mod-
els. However, pMRF is a simple model, which may not have
overfitting on the datasets. Therefore, L1/L2 regularization
could make LCM worse. Note that our consistency regular-
ization does not aim to prevent traditional overfitting. In-
stead, it aims to improve the pMRF model itself and thus
can outperform LCM-wo.

10097

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a) Cora

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

(b) Citeseer

2

3

4

5

6

7

8

9

10

11

(c) Pubmed

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) NELL

1

2

3

4

5

6

7

8

9

(e) Google+

10

15

20

25

30

35

40

45

(f) Twitter

Figure 1: Learnt coupling matrices H on the six graphs. The coupling matrices are diagonal dominant. For the NELL graph, it
is better to zoom in the subfigure to observe the diagonal dominant property of the learnt coupling matrix.

20 10 5 2 1
#Training nodes per class

0.1

0.3

0.5

0.7

0.9

A
cc

ur
ac

y

DeepWalk
Planetoid
GraphSAGE
GCN

GAT
BP
LinBP
LCM

(a) Cora

20 10 5 2 1
#Training nodes per class

0.1

0.3

0.5

0.7

0.9

A
cc

ur
ac

y

(b) Citeseer

20 10 5 2 1
#Training nodes per class

0.1

0.3

0.5

0.7

0.9
A

cc
ur

ac
y

(c) Pubmed

20 10 5 2 1
#Training nodes per class

0.1

0.3

0.5

0.7

0.9

A
cc

ur
ac

y

(d) NELL

1000 500 100 50 10
#Training nodes per class

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

LinBP
LCM

(e) Google+

1000 500 100 50 10
#Training nodes per class

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

(f) Twitter

Figure 2: Impact of the number of training nodes per class.

Impact of the number of training nodes per class: Fig-
ure 2 further shows the average accuracies of different meth-
ods on the six graph datasets when we sample a particular

number of training nodes from each class. Our method con-
sistently outperforms the compared methods when the train-
ing dataset size is small. For instance, when each class has

10098

Methods Time (seconds)
Graph

Embedding
DeepWalk 1,312
Planetoid 1,033

Graph
Neural

Network

GCN 304
GraphSAGE 196

GAT 2,115
Belief

Propagation
BP 443

LinBP 8
Our Method LCM 50

Table 3: Time of the compared methods on NELL.

only 1 training node, LCM has an around 0.08 higher aver-
age accuracy than GCN on NELL. When each class has 10
training nodes, LCM has an around 0.04 higher average ac-
curacy than LinBP on Twitter. Note that in semi-supervised
node classification, we often assume the number of labeled
nodes is small, compared to the total number of nodes.
LCM is more efficient than graph embedding and graph
neural network methods: For simplicity, we only show
efficiency on NELL, which is the largest dataset that the
compared methods can be executed on our machine. Table 3
shows the running time of the compared methods in one of
our experiments. We have two observations. First, LCM is
more efficient than graph embedding and graph neural net-
work methods. Second, LCM is less efficient than LinBP.
This is because LinBP does not learn the edge weight ma-
trix and coupling matrix. However, both LCM and LinBP
are much more efficient than BP. This is because BP needs
to maintain messages on each edge.

Related Work
Conventional methods: Semi-supervised node classifi-
cation in graph-structured data has been studied exten-
sively and many methods have been proposed. For in-
stance, conventional methods include label propagation
(LP) (Zhu, Ghahramani, and Lafferty 2003), manifold
regularization (ManiReg) (Belkin, Niyogi, and Sindhwani
2006), deep semi-supervised embedding (SemiEmb) (We-
ston et al. 2012), iterative classification algorithm (ICA) (Lu
and Getoor 2003), and pairwise Markov Random Fields
(pMRF) (Gatterbauer 2017). In particular, pMRF associates
a discrete random variable with each node to model its la-
bel and defines a joint probability distribution for the ran-
dom variables associated with all nodes, where the statis-
tical correlations/independence between the random vari-
ables are captured by the graph structure. Then, either the
standard Belief Propagation (BP) (Pearl 1988) or linearized
BP (LinBP) (Gatterbauer et al. 2015; Gatterbauer 2017) is
used for inference. Existing studies on pMRF-based semi-
supervised node classification share a common limitation:
they set a constant edge potential for all edges in the graph.
Graph embedding methods and graph neural net-
works: A recent trend is to extend neural networks to
graph-structured data for semi-supervised node classifica-
tion. Methods along this direction can be roughly grouped
into two categories, i.e., graph embedding (Perozzi, Al-

Rfou, and Skiena 2014; Tang et al. 2015; Cao, Lu, and Xu
2015; Yang, Cohen, and Salakhutdinov 2016; Grover and
Leskovec 2016; Ribeiro, Saverese, and Figueiredo 2017;
Cui et al. 2020) and graph neural networks (?Duvenaud
et al. 2015; Atwood and Towsley 2016; Kipf and Welling
2017; Hamilton, Ying, and Leskovec 2017; Veličković et al.
2018; Xu et al. 2019; Battaglia et al. 2018; Gao, Wang,
and Ji 2018; Xu et al. 2018; Ying et al. 2018; Qu, Ben-
gio, and Tang 2019; Ma et al. 2019a; Zhang et al. 2019;
Ma et al. 2019b; Wu, He, and Xu 2019; Chiang et al.
2019; Wang et al. 2020). Graph embedding methods first
learn node embeddings and then learn a standard classifier
(e.g., logistic regression) using the embeddings to classify
nodes, where learning the embeddings and learning the clas-
sifier are performed separately. Different graph embedding
methods leverage different techniques to learn node em-
beddings. For instance, DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014) learns nodes’ embeddings via generalizing the
word to vector technique (Mikolov et al. 2013) developed
for natural language processing to graph data. Specifically,
DeepWalk treats a node as a word in natural language, gen-
erates node sequences using truncated random walks on a
graph, and leverages the skip-gram model (Mikolov et al.
2013) to learn an embedding vector for each node.

Graph neural networks learn the node embeddings and the
classifier to classify nodes simultaneously. In particular, the
hidden layers represent node embeddings and the last layer
models a classifier to classify nodes. Different graph neu-
ral networks use different neural network architectures. For
instance, Graph Convolutional Network (GCN) (Kipf and
Welling 2017) uses an architecture that is motivated by spec-
tral graph convolutions (Duvenaud et al. 2015). Specifically,
the input layer is the nodes’ features. A hidden layer models
nodes’ embeddings. In particular, the neural network itera-
tively computes a node’s embedding vector in a hidden layer
via aggregating the embedding vectors of the node’s neigh-
bors in the previous layer. State-of-the-art graph neural net-
works are more accurate than conventional methods such as
LP and pMRF on multiple benchmark datasets. However,
graph neural networks are less efficient than conventional
methods such as LP and LinBP. Our method addresses the
limitation of pMRF-based methods and is more accurate and
efficient than graph neural networks.

Conclusion and Future Work
We propose a novel method to learn the coupling matrix in
pairwise Markov Random Fields for semi-supervised node
classification in graph-structured data. We formulate learn-
ing coupling matrix as an optimization problem, whose ob-
jective function is the sum of the training loss and a con-
sistency regularization term that we propose. Moreover, we
propose an iterative algorithm to solve the optimization
problem. Our evaluation results on six benchmark datasets
show that our optimized pMRF-based method is more accu-
rate and efficient than state-of-the-art graph neural networks.
An interesting future work is to explore the connections be-
tween our optimized pMRF-based method and graph neural
networks as well as unify them in a general framework.

10099

Acknowledgments
We would like to thank the anonymous reviewers for their
insightful reviews. This work was supported by the National
Science Foundation under grants No. 1937787 and 1937786.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the funding agencies.

References
Akoglu, L.; Chandy, R.; and Faloutsos, C. 2013. Opinion
Fraud Detection in Online Reviews by Network Effects. In
ICWSM.
Atwood, J.; and Towsley, D. 2016. Diffusion-convolutional
neural networks. In NIPS, 1993–2001.
Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-
Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.;
Raposo, D.; Santoro, A.; Faulkner, R.; et al. 2018. Relational
inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261 .
Belkin, M.; Niyogi, P.; and Sindhwani, V. 2006. Manifold
regularization: A geometric framework for learning from la-
beled and unlabeled examples. JMLR 7: 2399–2434.
Cao, Q.; Sirivianos, M.; Yang, X.; and Pregueiro, T. 2012.
Aiding the Detection of Fake Accounts in Large Scale Social
Online Services. In NSDI, 197–210.
Cao, S.; Lu, W.; and Xu, Q. 2015. Grarep: Learning graph
representations with global structural information. In CIKM,
891–900.
Carlson, A.; Betteridge, J.; Kisiel, B.; Settles, B.; Hruschka,
E. R.; and Mitchell, T. M. 2010. Toward an architecture for
never-ending language learning. In AAAI.
Chau, D. H. P.; Nachenberg, C.; Wilhelm, J.; Wright, A.; and
Faloutsos, C. 2011. Polonium: Tera-scale graph mining and
inference for malware detection. In SIAM SDM, 131–142.
Chiang, W.-L.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; and Hsieh,
C.-J. 2019. Cluster-gcn: An efficient algorithm for training
deep and large graph convolutional networks. In KDD, 257–
266.
Cui, G.; Zhou, J.; Yang, C.; and Liu, Z. 2020. Adaptive
Graph Encoder for Attributed Graph Embedding. In KDD,
976–985.
Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell,
R.; Hirzel, T.; Aspuru-Guzik, A.; and Adams, R. P. 2015.
Convolutional networks on graphs for learning molecular
fingerprints. In NIPS, 2224–2232.
Gao, H.; Wang, Z.; and Ji, S. 2018. Large-scale learnable
graph convolutional networks. In KDD, 1416–1424.
Gao, P.; Wang, B.; Gong, N. Z.; Kulkarni, S. R.; Thomas, K.;
and Mittal, P. 2018. Sybilfuse: Combining local attributes
with global structure to perform robust sybil detection. In
IEEE CNS, 1–9.
Gatterbauer, W. 2017. The linearization of belief propaga-
tion on pairwise markov random fields. In AAAI, 3747–
3753.

Gatterbauer, W.; Günnemann, S.; Koutra, D.; and Falout-
sos, C. 2015. Linearized and single-pass belief propagation.
VLDB 581–592.
Gong, N. Z.; and Liu, B. 2018. Attribute Inference Attacks
in Online Social Networks. ACM TOPS 21(1): 3:1–3:30.
Gong, N. Z.; Talwalkar, A.; Mackey, L.; Huang, L.; Shin, E.
C. R.; Stefanov, E.; Shi, E. R.; and Song, D. 2014. Joint link
prediction and attribute inference using a social-attribute
network. ACM TIST 5(2): 1–20.
Gong, N. Z.; Xu, W.; Huang, L.; Mittal, P.; Stefanov, E.;
Sekar, V.; and Song, D. 2012. Evolution of Social-Attribute
Networks: Measurements, Modeling, and Implications using
Google+. In IMC, 131–144.
Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In KDD, 855–864.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In NIPS, 1024–
1034.
He, D.; You, X.; Feng, Z.; Jin, D.; Yang, X.; and Zhang, W.
2018. A network-specific Markov random field approach to
community detection. In AAAI, 306–313.
Hooi, B.; Song, H. A.; Beutel, A.; Shah, N.; Shin, K.; and
Faloutsos, C. 2016. FRAUDAR: Bounding Graph Fraud in
the Face of Camouflage. In KDD, 895–904.
Jia, J.; Wang, B.; Zhang, L.; and Gong, N. Z. 2017. Attri-
Infer: Inferring User Attributes in Online Social Networks
Using Markov Random Fields. In WWW, 1561–1569.
Jin, D.; Liu, Z.; Li, W.; He, D.; and Zhang, W. 2019a. Graph
convolutional networks meet markov random fields: Semi-
supervised community detection in attribute networks. In
AAAI, 152–159.
Jin, D.; You, X.; Li, W.; He, D.; Cui, P.; Fogelman-Soulié,
F.; and Chakraborty, T. 2019b. Incorporating network em-
bedding into markov random field for better community de-
tection. In AAAI, 160–167.
Kipf, T. N.; and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. ICLR .
Lu, Q.; and Getoor, L. 2003. Link-based classification. In
ICML, 496–503.
Ma, J.; Tang, W.; Zhu, J.; and Mei, Q. 2019a. A Flexible
Generative Framework for Graph-based Semi-supervised
Learning. In NeurIPS, 3276–3285.
Ma, Y.; Wang, S.; Aggarwal, C. C.; and Tang, J. 2019b.
Graph convolutional networks with eigenpooling. In KDD,
723–731.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NIPS, 3111–3119.
Pandit, S.; Chau, D. H.; Wang, S.; and Faloutsos, C. 2007.
Netprobe: a fast and scalable system for fraud detection in
online auction networks. In WWW, 201–210.
Pearl, J. 1988. Probabilistic reasoning in intelligent systems
- networks of plausible inference. Morgan Kaufmann series
in representation and reasoning. Morgan Kaufmann.

10100

Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In KDD, 701–710.

Qu, M.; Bengio, Y.; and Tang, J. 2019. GMNN: Graph
Markov Neural Networks. In ICML, 5241–5250.

Rayana, S.; and Akoglu, L. 2015. Collective Opinion Spam
Detection: Bridging Review Networks and Metadata. In
KDD, 985–994.

Ribeiro, L. F.; Saverese, P. H.; and Figueiredo, D. R. 2017.
struc2vec: Learning node representations from structural
identity. In KDD, 385–394.

Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine 29(3): 93–93.

Tamersoy, A.; Roundy, K.; and Chau, D. H. 2014. Guilt by
association: large scale malware detection by mining file-
relation graphs. In KDD, 1524–1533.

Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
WWW, 1067–1077.

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph attention networks. In ICLR.

Wang, B.; Gong, N. Z.; and Fu, H. 2017. GANG: Detecting
Fraudulent Users in Online Social Networks via Guilt-by-
Association on Directed Graphs. In IEEE ICDM, 465–474.

Wang, B.; Jia, J.; and Gong, N. Z. 2019. Graph-based Secu-
rity and Privacy Analytics via Collective Classification with
Joint Weight Learning and Propagation. In NDSS.

Wang, B.; Jia, J.; and Gong, N. Z. 2020. Semi-Supervised
Node Classification on Graphs: Markov Random Fields vs.
Graph Neural Networks. arXiv preprint arXiv:2012.13085 .

Wang, B.; Jia, J.; Zhang, L.; and Gong, N. Z. 2018.
Structure-based sybil detection in social networks via local
rule-based propagation. IEEE Transactions on Network Sci-
ence and Engineering 6(3): 523–537.

Wang, B.; Zhang, L.; and Gong, N. Z. 2017. SybilSCAR:
Sybil Detection in Online Social Networks via Local Rule
based Propagation. In IEEE INFOCOM, 1–9.

Wang, G.; Xie, S.; Liu, B.; and Philip, S. Y. 2011. Review
graph based online store review spammer detection. In IEEE
ICDM, 1242–1247.

Wang, Y.; Wang, W.; Liang, Y.; Cai, Y.; Liu, J.; and Hooi, B.
2020. NodeAug: Semi-Supervised Node Classification with
Data Augmentation. In KDD, 207–217.

Weston, J.; Ratle, F.; Mobahi, H.; and Collobert, R. 2012.
Deep learning via semi-supervised embedding. In Neural
Networks: Tricks of the Trade, 639–655. Springer.

Wu, F.; Zhang, T.; Souza Jr, A. H. d.; Fifty, C.; Yu, T.; and
Weinberger, K. Q. 2019. Simplifying graph convolutional
networks. In ICML, 6861–6871.

Wu, J.; He, J.; and Xu, J. 2019. Demo-Net: Degree-specific
graph neural networks for node and graph classification. In
KDD, 406–415.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
powerful are graph neural networks? In ICLR.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.;
and Jegelka, S. 2018. Representation learning on graphs
with jumping knowledge networks. In ICML, 5449–5458.
Yang, Z.; Cohen, W. W.; and Salakhutdinov, R. 2016. Re-
visiting semi-supervised learning with graph embeddings. In
ICML, 40–48.
Ye, Y.; Li, T.; Zhu, S.; Zhuang, W.; Tas, E.; Gupta, U.; and
Abdulhayoglu, M. 2011. Combining file content and file
relations for cloud based malware detection. In KDD, 222–
230.
Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; and
Leskovec, J. 2018. Hierarchical graph representation learn-
ing with differentiable pooling. In NeurIPS, 4805–4815.
Zhang, C.; Song, D.; Huang, C.; Swami, A.; and Chawla,
N. V. 2019. Heterogeneous graph neural network. In KDD,
793–803.
Zhu, X.; Ghahramani, Z.; and Lafferty, J. 2003. Semi-
supervised learning using gaussian fields and harmonic
functions. In ICML, 912–919.

10101

