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Abstract

Identifying the best arm of a multi-armed bandit is a central
problem in bandit optimization. We study a quantum compu-
tational version of this problem with coherent oracle access to
states encoding the reward probabilities of each arm as quan-
tum amplitudes. Specifically, we provide an algorithm to find
the best arm with fixed confidence based on variable-time am-
plitude amplification and estimation. This algorithm gives a
quadratic speedup compared to the best possible classical re-
sult in terms of query complexity. We also prove a matching
quantum lower bound (up to poly-logarithmic factors).

Introduction
The multi-armed bandit (MAB) model is one of the most
fundamental settings in reinforcement learning. This simple
scenario captures crucial issues such as the tradeoff between
exploration and exploitation. Furthermore, it has wide appli-
cations to areas including operations research, mechanism
design, and statistics.

A basic challenge about multi-armed bandits is the prob-
lem of best-arm identification, where the goal is to effi-
ciently identify the arm with the largest expected reward.
This problem captures a common difficulty in practical sce-
narios, where at unit cost, only partial information about the
system of interest can be obtained. A real-world example is
a recommendation system, where the goal is to find appeal-
ing items for users. For each recommendation, only feed-
back on the recommended item is obtained. In the context of
machine learning, best-arm identification can be viewed as
a high-level abstraction and core component of active learn-
ing, where the goal is to minimize the uncertainty of an un-
derlying concept, and each step only reveals the label of the
data point being queried.

Quantum computing is a promising technology with po-
tential applications to diverse areas including cryptanalysis,
optimization, and simulation of quantum physics. Quantum
computing devices have recently been demonstrated to ex-
perimentally outperform classical computers on a specific
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sampling task (Arute et al. 2019). While noise limits the cur-
rent practical usefulness of quantum computers, they can in
principle be made fault tolerant and thus capable of execut-
ing a wide variety of algorithms. It is therefore of significant
interest to understand quantum algorithms from a theoreti-
cal perspective to anticipate future applications. In particu-
lar, there has been increasing interest in quantum machine
learning (see for example the surveys by Biamonte et al.
2017; Schuld, Sinayskiy, and Petruccione 2015; Arunacha-
lam and de Wolf 2017; Dunjko and Briegel 2018). In this
paper, we study best-arm identification in multi-armed ban-
dits, establishing quantum speedup.

Problem setup. We work in a standard multi-armed bandit
setting (Even-Dar, Mannor, and Mansour 2002) in which the
MAB has n arms, where arm i ∈ [n] := {1, . . . , n} is a
Bernoulli random variable taking value 1 with probability pi
and value 0 with probability 1− pi. Each arm can therefore
be regarded as a coin with bias pi. As our algorithms and
lower bounds are symmetric with respect to the arms, we
assume without loss of generality that p1 ≥ · · · ≥ pn, and
denote ∆i := p1 − pi for all i ∈ {2, . . . , n}. We further
assume that p1 > p2, i.e., the best arm is unique. Given a
parameter δ ∈ (0, 1), our goal is to use as few queries as
possible to determine the best arm with probability ≥ 1− δ.
This is known as the fixed-confidence setting. We primarily
characterize complexity in terms of the parameter

H :=
n∑
i=2

1

∆2
i

(1)

which arises in the analysis of classical MAB algorithms (as
discussed below).

We consider a quantum version of best-arm identification
in which we can access the arms coherently. This means we
have access to a quantum oracle O that acts as

O : |i〉I |0〉B |0〉J
7→ |i〉I (

√
pi |1〉B |vi〉J +

√
1− pi |0〉B |ui〉J),

(2)

where |vi〉 and |ui〉 are arbitrary states, for all i ∈ [n].
We have used standard Dirac notation which we review in
the Preliminaries section. Register I is the “index” regis-
ter with n states that correspond to the n arms. Register
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B is the single-qubit “bandit” register with two states, |1〉
corresponding to a reward and |0〉 corresponding to no re-
ward. Register J is a multi-qubit “junk” register. For con-
venience, we omit register labels when this causes no con-
fusion. Compared to pulling an arm classically—which can
be implemented by measuring the bandit register—the quan-
tum oracle allows access to different arms in superposition, a
necessary feature for quantum speedup. In real-world appli-
cations, we usually have junk when instantiating our oracle
(see below). When deriving our results however, we will as-
sume there is no junk (i.e., we set |vi〉 = |ui〉 = 1 for all
i ∈ [n] in (2)). This is without loss of generality as the algo-
rithm we construct is insensitive to junk.

Previous work on quantum algorithms for cluster-
ing (Kerenidis et al. 2019; Wiebe, Kapoor, and Svore 2015)
and reinforcement learning (Dunjko, Taylor, and Briegel
2016; Dunjko and Briegel 2018) has discussed how to in-
stantiate O. In clustering, O is created using the SWAP test
where for each i, pi encodes the distance between some fixed
vector and the ith vector in some collection. Our algorithm
can be used to speed up the algorithms of Kerenidis et al.
(2019) and Wiebe, Kapoor, and Svore (2015). In reinforce-
ment learning, O naturally appears in stochastic agent envi-
ronments; for instance, O can be viewed as a special case
of the oracle in Dunjko, Taylor, and Briegel (2016) for a
Markov decision problem (MDP) of epoch length 1 and state
set {0, 1}, where the goal of the agent is to reach the state 1.

As a concrete example, consider a classical Monte Carlo
strategy1: at a given position, evaluate the quality of a next
move i by uniformly randomly playing out games x ∈ X(i),
where X(i) is the set of valid games from move i onwards,
and querying a computer program f that computes a bit
f(i, x) ∈ {0, 1} indicating if game x is won (1) or lost (0).
In the classical case, we obtain one sample of win or loss
using one query to f . In the quantum case, we can also in-
stantiate one query to the quantum oracle in Eq. (2) using
just one query to f . To do this, we apply the circuit for f ,
made reversible in the usual way (Nielsen and Chuang 2000,
Sec. 1.4.1), on the quantum state corresponding to uniformly
random play as follows:

|i〉 |0〉 1√
|X(i)|

∑
x∈X(i)

|x〉

f7→ |i〉
∑

x∈X(i)

1√
|X(i)|

|f(i, x)〉 |x〉

= |i〉 (
√
pi |1〉 |ui〉+

√
1− pi |0〉 |vi〉),

(3)

where |ui〉 and |vi〉 are some states, and pi is the empirical
probability that move i leads to a win. Our quantum algo-
rithm then uses quadratically fewer calls to f compared with
classical Monte Carlo search to find the best next move.

We stress that we do not need to know the pis to instanti-
ate the quantum oracle above. We also remark that our algo-
rithm does not apply to every MAB situation. For example,
in clinical trials to identify the best drug, we cannot instan-
tiate the quantum oracle because human participants, unlike
computer programs, cannot be queried in superposition.

1This is Monte Carlo tree search without tree expansion.

Our algorithm can also be adapted to work when the re-
ward distributions are promised to have bounded variance
(for example, if they are sub-Gaussian). The adaptation es-
sentially follows by replacing amplitude estimation (intro-
duced in the Preliminaries section) with quantum mean esti-
mation (Montanaro 2015), which works on any distribution
with bounded variance. We remark that the situation is dif-
ferent for the other main type of bandits: adversarial bandits.
Studies on adversarial bandits are mainly focused on regret
minimization and a quantum analogue first requires a proper
notion of regret which we are unsure how to even define.

Contributions. In this paper, we give a comprehensive
study of best-arm identification using quantum algorithms.
Specifically, we obtain the following main result:

Theorem 1. Given a multi-armed bandit oracleO and con-
fidence parameter δ ∈ (0, 1), there exists a quantum algo-
rithm that, with probability ≥ 1 − δ, outputs the best arm
using Õ

(√
H
)

queries to O. Moreover, this query complex-
ity is optimal up to poly-logarithmic factors in n, δ, and ∆2.

This represents a quadratic quantum speedup over what
is possible classically. The speedup essentially derives from
Grover’s search algorithm (Grover 1996), where a marker
oracle is used to approximately “rotate” a uniform ini-
tial state to the marked state. One way to understand the
quadratic speedup is to observe that each rotation step, mak-
ing one query to the oracle, increases the amplitude of the
marked state by Ω(1/

√
n). This is possible since quan-

tum computation linearly manipulates amplitudes, which are
square roots of probabilities.

However, to establish Theorem 1 we use more sophisti-
cated machinery that extends Grover’s algorithm, namely
variable-time amplitude amplification (VTAA) (Ambainis
2010b; Childs, Kothari, and Somma 2017) and estimation
(VTAE) (Chakraborty, Gilyén, and Jeffery 2019). We apply
VTAA and VTAE on a variable-time quantum algorithm A
that we construct.A outputs a state with labeled “good” and
“bad” parts. Using that label, VTAA removes the bad part
so that only the good part remains, and VTAE estimates the
proportion of the good part. In our application, the good part
is eventually the best-arm state.

We emphasize that our quantum algorithm, like classi-
cal ones (Even-Dar, Mannor, and Mansour 2002; Gabil-
lon, Ghavamzadeh, and Lazaric 2012; Jamieson et al. 2014;
Karnin, Koren, and Somekh 2013; Mannor and Tsitsiklis
2004), does not require any prior knowledge about the pis.

Given knowledge of p1 and p2, our quantum algorithm
is conceptually related to the classical successive elimi-
nation (SE) algorithm (Even-Dar, Mannor, and Mansour
2002). Namely, we use that knowledge to help eliminate
sub-optimal arms i by checking whether pi < (p1 + p2)/2,
say. The quantum quadratic speedup arises because we can
check this “in superposition” across the different arms. For
intuition only, checking in superposition can be thought of as
a form of checking in parallel. We stress however that while
it does not make sense to compare the parallel (classical)
sample complexity of best-arm identification with its usual
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(classical) sample complexity, it does makes sense to com-
pare the latter with the quantum query complexity. We also
stress that the similarity of our quantum algorithm to SE,
given knowledge of p1 and p2, ends at the conceptual level.
Technically, our algorithm makes the SE concept work by
first marking all sub-optimal arms and then rotating towards
the unmarked best arm in quantum state space via a careful
application of VTAA. This has no classical analogue.

It is classically easy to remove any assumed knowledge
of p1 and p2 because classical samples from a multi-armed
bandit contain information about their values. Quantumly
however, we cannot simply ask our quantum multi-armed
bandit to supply classical samples as that would prevent in-
terference, eliminating any quantum speedup. Therefore, we
need to do something conceptually different in the quan-
tum case. We construct another quantum algorithm whose
goal is to estimate both p1 and p2 to precision Θ(∆2) using
Õ(
√
H) quantum queries. For a given test point l, VTAE

(roughly) gives us the ability to count the number of arms i
with pi > l, and thus allows us to perform binary search to
find p1 and p2.

Related work. Classically, a naive algorithm for best-
arm identification is to simply sample each arm the same
number of times and output the arm with the best empiri-
cal bias (Even-Dar, Mannor, and Mansour 2002). This al-
gorithm has complexity O( n

∆2
2

log(nδ )) but is sub-optimal
for most multi-armed bandit instances. Therefore, classi-
cal research on best-arm identification (Even-Dar, Mannor,
and Mansour 2002; Gabillon, Ghavamzadeh, and Lazaric
2012; Jamieson et al. 2014; Karnin, Koren, and Somekh
2013; Mannor and Tsitsiklis 2004) has primarily focused
on proving bounds of the form Õ(H) (recall that H :=∑n
i=2

1
∆2

i
), which can be shown to be almost tight for ev-

ery instance. The first work to provide an algorithm with
such complexity is Even-Dar, Mannor, and Mansour (2002),
giving O(H log(nδ ) +

∑n
i=2 ∆−2

i log(∆−1
i )). This was fur-

ther improved to O
(
H log( 1

δ ) +
∑n
i=2 ∆−2

i log log(∆−1
i )
)

by Gabillon, Ghavamzadeh, and Lazaric (2012); Jamieson
et al. (2014); Karnin, Koren, and Somekh (2013), which
is almost optimal except for the additive term of∑n
i=2 ∆−2

i log log(∆−1
i ) (Mannor and Tsitsiklis 2004).

More recent work (Chen and Li 2015; Chen, Li,
and Qiao 2017) has focused on bringing down even
this additive term by tightening both the upper and
lower bounds, leaving behind a gap only of the order∑n
i=2 ∆−2

i log log(min{n,∆−1
i }).

Prior work on quantum machine learning has focused
primarily on supervised (Lloyd, Mohseni, and Reben-
trost 2014, 2013; Rebentrost, Mohseni, and Lloyd 2014;
Li, Chakrabarti, and Wu 2019) and unsupervised learn-
ing (Lloyd, Mohseni, and Rebentrost 2013; Wiebe, Kapoor,
and Svore 2015; Amin et al. 2018; Kerenidis et al. 2019).
Dunjko, Taylor, and Briegel (2017); Dunjko et al. (2017);
Jerbi et al. (2019) gave quantum algorithms for general re-
inforcement learning with provable guarantees, but do not
consider the best-arm identification problem. The only di-

rectly comparable previous work on quantum algorithms
for best-arm identification that we are aware of are Casalé
et al. (2020) and Wiebe, Kapoor, and Svore (2015).2 By ap-
plying Grover’s algorithm, Casalé et al. (2020) shows that
quantum computers can find the best arm with confidence
p1/

∑n
i=1 pi quadratically faster than classical ones. How-

ever, Casalé et al. (2020) does not show how to find the
best arm with a given fixed confidence, which is the stan-
dard requirement. In fact, there is a relatively simple quan-
tum algorithm, analogous to the naive classical algorithm,
that can achieve arbitrary confidence with quadratic speedup
in terms of n/∆2

2. This algorithm, which appears in Fig. 3
of Wiebe, Kapoor, and Svore (2015), works by using the
quantum minimum finding of Dürr and Høyer (1996) on top
of quantum amplitude estimation (Brassard et al. 2002). As
in the classical case, we show that this simple quantum algo-
rithm is suboptimal for most multi-armed bandit instances.
Specifically, we show that a quantum algorithm can achieve
quadratic speedup in terms of the parameter H .

Preliminaries
Definitions and notations. Quantum computing is nat-
urally formulated in terms of linear algebra. An n-
dimensional quantum state is a unit vector in the com-
plex Hilbert space Cn, i.e., ~x = (x1, . . . , xn)> such that∑n
i=1 |xi|2 = 1. Such a column vector ~x is written in

Dirac notation as |x〉 and called a “ket”. The complex con-
jugate transpose of |x〉 is written 〈x| and called a “bra”,
i.e., 〈x| := ~x†. The reason for the names is because the
combination of a bra and a ket is a inner product bracket:
〈x|y〉 := 〈x| |y〉 = ~x†~y = 〈x, y〉 ∈ C.

The computational basis of Cn is the set of vectors
{~e1, . . . , ~en}, where ~ei = (0, . . . , 1, . . . , 0)> is a one-hot
column vector with 1 in the ith coordinate. In Dirac no-
tation, it is common to reserve symbols |i〉 := ~ei and
〈i| := ~e†i = ~e>i . Then, for example, |x〉 =

∑n
i=1 xi |i〉 and

〈x| =
∑n
i=1 x

∗
i 〈i|.

The tensor product of quantum states is their Kronecker
product: if |x〉 ∈ Cn1 and |y〉 ∈ Cn2 , then

|x〉 |y〉 := |x〉 ⊗ |y〉 (4)

:= (x1y1, x1y2, . . . , xn1
yn2

)> ∈ Cn1 ⊗ Cn2 . (5)

A quantum algorithm is a sequence of unitary matrices,
i.e., a linear transformation U such that U † = U−1.

For any p ∈ [0, 1], we define the coin state in C2 as

|coin p〉 :=
√
p |1〉+

√
1− p |0〉 = (

√
1− p,

√
p)>. (6)

Measuring |coin p〉 in the computational basis gives 1 with
probability p, hence the name.

Quantum multi-arm bandit oracle. Recall the quantum
multi-armed bandit oracle defined in (2). The arms are ac-
cessed in superposition by applying the unitary oracle O on

2Wiebe, Kapoor, and Svore (2015) is not framed as solving
best-arm identification, but is partly concerned with this problem.
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a state |x〉I |0〉B in the joint register of I and B. This results
in the output quantum state

O |x〉I |0〉B =
n∑
i=1

xi |i〉I |coin pi〉B (7)

(recall that we assume there is no junk). A classical pull of
the i-th arm can be simulated by choosing |x〉I = |i〉I with
|i〉I |coin pi〉B as the output, and then measuring register B
to observe 1 with probability pi.

In this paper, we mainly focus on quantum query com-
plexity, which is defined as the total number of oracle
queries. If we have an efficient quantum algorithm for an
explicit computational problem in the query complexity set-
ting, then if we are given an explicit circuit realizing the
black-box transformation, we will have an efficient quantum
algorithm for the problem.

Amplitude amplification and estimation. Our quantum
speed-up can be traced back to amplitude amplification and
estimation (Brassard et al. 2002). For a classical random-
ized algorithm for a search problem that returns a correct
solution y with probability psucc, the success probability
can be amplified to a constant by O(1/psucc) repetitions.
Let A be a quantum procedure that outputs a quantum state√
psucc |1〉 |y〉+

√
1− psucc |0〉 |y′〉 for some arbitrary quan-

tum state |y′〉. Measuring the output state yields the solu-
tion y with probability psucc just like a classical random-
ized algorithm. Brassard et al. (2002) provided an ampli-
tude amplification procedure that amplifies the amplitude of
|1〉 |y〉 to a constant with O(1/

√
psucc) queries to the quan-

tum procedure A. This effectively provides a randomized
algorithm with constant success probability with query com-
plexity O(t/

√
psucc) if A makes t queries to the oracle. The

same speed-up can be achieved for the closely related task
of estimating psucc with amplitude estimation.

Amplitude amplification and estimation originates from
Grover’s search algorithm. (Grover 1996). The formal state-
ments of Grover’s algorithm and amplitude amplification
and estimation are postponed to the start of the appendix. We
refer the interested reader to the book Nielsen and Chuang
(2000) on quantum computing for a detailed introduction to
basic definitions (Section 3), Grover’s algorithm and ampli-
tude amplification (Section 6), and related topics.

Variable-time amplitude amplification and estimation.
Variable-time amplitude amplification (VTAA) and estima-
tion (VTAE) are procedures that apply on top of so-called
variable-time quantum algorithms that may stop at differ-
ent (variable) time steps with certain probabilities. More
precisely, for t = (t1, t2, · · · , tm) ∈ Rm and w =
(w1, w2, · · · , wm) ∈ Rm, a (t, w)-variable-time algorithm
A is one that can be divided into m steps (i.e., A =
Am · · · A1) where tj is the query complexity of Aj · · · A1

and wj is the probability of stopping at step j. We have:

Theorem 2 (Informal: Variable-time amplitude amplifi-
cation and estimation–Ambainis 2010b; Childs, Kothari,
and Somma 2017; Chakraborty, Gilyén, and Jeffery 2019).

Given a (t, w)-variable-time quantum algorithm A =
Am · · · A1 with success probability psucc, there exists a
quantum algorithm A′ that uses O(Q) queries to output the
solution with probability ≥ 1

2 , where

Q := tm log(tm) +
tavg√
psucc

log(tm). (8)

with tavg :=
√∑m

j=1 wjt
2
j being the root-mean-square av-

erage query complexity of A.
There also exists a quantum algorithm that uses

O(Qε log2(tm) log log( tmδ )) queries to estimate psucc with
multiplicative error ε with probability ≥ 1− δ.

For comparison, recall that applying amplitude amplifi-
cation and estimation procedures on general quantum algo-
rithms requires O(tm/

√
psucc) queries. See the first section

of the appendix for a rigorous definition of variable-time al-
gorithms and formal statements of the query complexities of
variable-time amplitude amplification and estimation.

Fast Quantum Algorithm For Best-arm
Identification

In this section, we construct a quantum algorithm for best-
arm identification and analyze its performance. Specifically:
Theorem 3. Given a multi-armed bandit oracleO and con-
fidence parameter δ ∈ (0, 1), there exists a quantum algo-
rithm that outputs the best arm with probability ≥ 1 − δ
using Õ(

√
H) queries to O.

Throughout this section, the oracle O is fixed, so we may
omit explicit reference to it. All logs have base 2.

There are essentially two steps in our construction.
In the first step, we construct two subroutines Amplify
and Estimate using VTAA and VTAE, respectively, on
a variable-time quantum algorithm A. Roughly speaking,
given l ∈ [0, 1], Amplify outputs an arm index i randomly
chosen from those i with pi > l while Estimate counts the
number of such is. This means that if we knew the values of
p1 and p2, we could take l to be (p1 + p2)/2, then Amplify
would output the best arm. But we can use Estimate in a bi-
nary search procedure to estimate p1 and p2. This is exactly
what we do in the second step and so we are done.

We now discuss the construction more precisely. Amplify
and Estimate actually use two thresholds l2, l1 ∈ [0, 1]
with l2 < l1 instead of a single threshold l. In the first
step, we construct a variable-time quantum algorithm de-
noted A (Algorithm 1) that is initialized in a uniform su-
perposition state |u〉 := 1√

n

∑
i∈[n] |i〉 (since initially we

have no information about which arm is the best). Given
an input interval I = [l2, l1], A “flags” arm indices in
S′right := {i ∈ [n] : pi ≥ l1} with a bit f = 1 and
those in S′left := {i ∈ [n] : pi ≤ l2} with a bit f = 0.
The flag bit f is written to a separate flag register F , so that
the state (approximately) becomes 1√

n

(∑
i∈S′

right
|i〉 |1〉F +∑

i∈S′
left
|i〉 |0〉F +

∑
i∈S′

middle
|i〉 |ψi〉F

)
for some states

|ψi〉 ∈ C2, where S′middle := [n] − (S′left ∪ S′right) =

{i ∈ [n] : l2 < pi < l1}. The flag bit f stored in the F
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Quantum best-arm
identification (Alg. 4)

Amplify (best) arm i (= 1)
with pi > p2 + ∆2/4 (Alg. 1)

Estimate p1

and ∆2 = p1 − p2 (Alg. 2)
Shrink confidence interval
for p1, p2 via VTAE (Alg. 3) subroutine

Figure 1: Overview of our best-arm identification algorithm.

register indicates whether VTAA (resp. VTAE), when ap-
plied on A, should (f = 1) or should not (f = 0) amplify
(resp. estimate) that part of the state. We then apply VTAA
and VTAE on A to construct Amplify and Estimate, respec-
tively. Amplify produces a uniform superposition of all those
is with F register in |1〉, i.e., it amplifies such is relative
to the others. Estimate counts the number of such is. More
precisely, Estimate (approximately) counts the number of
indices in S′right, as their F register is in |1〉, plus some (un-
known) fraction of indices in S′middle as dictated by the frac-
tion of |1〉 in the (unknown) states |ψi〉.

In the second step, we use Estimate as a subroutine in
Locate (Algorithm 2) to find a interval [l2, l1] such that
p2 < l2 < l1 < p1 and that |l1− l2| ≥ ∆2/4. Then, running
Amplify with these l2, l1 in BestArm (Algorithm 4) gives the
state |1〉 containing the best-arm index because only p1 is to
the right of l2. Locate is a type of binary search that counts
the number of indices in S′right using Estimate. There is a
technical difficulty here because Estimate actually counts
the number of indices in S′right plus some fraction of indices
in S′middle. Trying to fix this by simply setting l2 = l1, so
that S′middle = ∅, does not work as it would increase the cost
of Estimate. We overcome this difficulty via the Shrink sub-
routine (Algorithm 3) of Locate, which employs a technique
from recent work on quantum ground state preparation (Lin
and Tong 2020). See Figure 1 for an illustration of the over-
all structure of the algorithm.

Amplify and Estimate

We first construct a variable-time quantum algorithm (Al-
gorithm 1) that we call A throughout. A uses the follow-
ing registers: input register I; bandit register B; clock reg-
ister C = (C1, . . . , Cm+1), where each Ci is a qubit; an-
cillary amplitude estimation register P = (P1, . . . , Pm),
where each Pi has O(m) qubits; and flag register F . We
set m := dlog(1/(l1− l2))e+ 2 as assigned in Algorithm 1.
A is indeed a variable-time quantum algorithm accord-

ing to Definition 1. This is because we can write A =
Am+1Am · · · A1A0 as a product of m + 2 sub-algorithms,
where A0 is the initialization step (Line 4), Aj consists of
the operations in iteration j of the for loop (Lines 6–9) for
j ∈ [m], and Am+1 is the termination step (Lines 10–11).
The state spaces HC and HA in Definition 1 correspond to
the state spaces of the C register and the remaining regis-
ters of A, respectively. Am+1 ensures that Condition 4 of
Definition 1 is satisfied.

With ∆ := l1 − l2 being the length of [l2, l1], we define

Algorithm 1: A(O, l2, l1, α)

Input: Oracle O as in (2); 0 < l2 < l1 < 1;
approximation parameter 0 < α < 1.

1 ∆← l1 − l2
2 m← dlog 1

∆e+ 2
3 a← α

2mn3/2

4 Initialize state to
1√
n

∑n
i=1 |i〉I |coin pi〉B |0〉C |0〉P |1〉F

5 for j = 1, . . . ,m do
6 εj ← 2−j

7 if register I is in state |i〉 and registers
C1, . . . , Cj−1 are in state |0〉 then

8 Apply GAE(εj , a; l1) with Opi on registers
B, Cj , and Pj

9 Apply controlled-NOT gate with control on
register Cj and target on register F

10 if registers C1, . . . , Cm are in state |0〉 then
11 Flip the bit stored in register Cm+1

the following three sets that partition [n]:
Sleft := {i ∈ [n] : pi < l1 −∆/2}, (9)

Smiddle := {i ∈ [n] : l1 −∆/2 ≤ pi < l1 −∆/8}, (10)
Sright := {i ∈ [n] : pi ≥ l1 −∆/8}. (11)

These sets play the roles of aforementioned S′left, S
′
middle,

and S′right. They can be regarded as functions of (the input
to) A. For later convenience, we also define Slm := Sleft ∪
Smiddle and Smr := Smiddle ∪ Sright.
Lemma 1 (Correctness of A). Let psucc denote the success
probability A. Then |psucc − p′succ| ≤ 2α

n where p′succ =
1
n

(
|Sright|+

∑
i∈Smiddle

|βi,1|2
)

for some |βi,1|2 ∈ [0, 1].
At a high level, at iteration j, Line 8 approximately iden-

tifies those i ∈ Sleft with pi ∈ [l1 − 2εj , l1 − εj) and stops
computation on these is by setting their associated C reg-
isters to |1〉. Line 9 then flags these is by setting their as-
sociated F registers to |0〉, indicating failure. We defer the
detailed proof to the supplementary material which is mainly
concerned with bounding the error in the aforementioned ap-
proximation, as well as the lemma as follows.
Lemma 2 (Complexity of A). With ∆ = l1 − l2 being the
length of the interval, we have:

1. The jth stopping time tj of AjAj−1 · · · A0 is of order∑j
k=1

1
εk

log 1
a ≤ 2j+1 log 1

a . In particular, tm+1 =

O( 1
∆ log 1

a ).
2. The average stopping time squared, t2avg, is of order

1

n

(
|Sright|

∆2
+
∑
i∈Slm

1

(l1 − pi)2

)
log2

(1

a

)
. (12)

Now we fix algorithm A and its input parameters. We al-
ways assume that |Sright| ≥ 1, which we need for some of
the following results to hold. This is without loss of general-
ity as we can always add an artificial arm 0 with bias p0 = 1
to the bandit oracle O, as we do in Line 3 of Algorithm 3.
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Algorithm 2: Locate(O, δ)
Input: Oracle O as in (2); confidence parameter

0 < δ < 1.
1 I1, I2 ← [0, 1]
2 δ ← δ/8
3 while min I1 −max I2 < 2 |I1| do
4 I1 ← Shrink(O, 1, I1, δ)
5 I2 ← Shrink(O, 2, I2, δ)
6 δ ← δ/2

7 return I1, I2

We apply VTAA and VTAE (Theorem 2)3 on our
variable-time quantum algorithm A to prepare the state
|ψsucc〉 and to estimate the probability psucc, respectively.
This gives two new algorithms Amplify and Estimate with
the following performance guarantees.

Lemma 3 (Correctness and complexity of Amplify(A, δ),
Estimate(A, ε, δ)). Let A = A(O, l2, l1, 0.01δ). Then
Amplify(A, δ) uses O(Q) queries to output an index i ∈
Smr with probability ≥ 1 − δ, and Estimate(A, ε, δ) uses
O(Q/ε) queries to output an estimate r of p′succ (defined in
Lemma 1) such that

(1− ε)
(
p′succ −

0.1

n

)
< r < (1 + ε)

(
p′succ +

0.1

n

)
(13)

with probability ≥ 1− δ, where Q is(
1

∆2
+

1

|Sright|
∑
Slm

1

(l1 − pi)2

)
poly

(
log
( n

δ∆

))
, (14)

where ∆ = l1 − l2.

This lemma follows by applying Lemma 1 and Lemma 2
to Theorem 2. The proof detail is given in the appendices.

Quantum Algorithm for Best-arm Identification
In this subsection, we use Amplify and Estimate to con-
struct three algorithms (Algorithms 2–4) that work together
to identify the best arm following the outline that we de-
scribed at the beginning of this section.

We state the correctness and complexities of Amplify and
Estimate as follows:

Lemma 4 (Correctness and complexity of Algorithm 2). Fix
a confidence parameter 0 < δ < 1. Then the event E =
{p1 ∈ I1 and p2 ∈ I2 in all iterations of the while loop}
holds with probability ≥ 1− δ. When E holds, Algorithm 2
also satisfies the following for both k ∈ {1, 2}:
1. its while loop (Line 3) breaks at or before the end of iter-

ation dlog5/3( 1
∆2

)e+ 3 and then returns Ik with pk ∈ Ik
and min I1 −max I2 ≥ 2 |I1|; during the while loop, we
always have |I1| = |I2| ≥ ∆2/8; and

2. it uses O
(√
H poly

(
log
(

n
δ∆2

)))
queries.

3The state spaces HC , HF , and HW correspond to the state
spaces of the C, F , and remaining registers of A, respectively.

Algorithm 3: Shrink(O, k, I, δ)
Input: Oracle O as in (2); k ∈ {1, 2}; interval

I = [a, b]; confidence parameter 0 < δ < 1.
1 ε← (b− a)/5
2 δ ← δ/2
3 Append arm i = 0 with bias p0 = 1 to O; call the

resulting oracle O′
4 Construct variable-time quantum algorithms A1,A2:
5 A1 ← A(O′, l2 = a+ ε, l1 = a+ 3ε, 0.01δ)
6 A2 ← A(O′, l2 = a+ 2ε, l1 = a+ 4ε, 0.01δ)
7 r1 ← Estimate(A1, ε = 0.1, δ)
8 r2 ← Estimate(A2, ε = 0.1, δ)

9 B1 ← 1(r1 >
k+0.5
n+1 ); B2 ← 1(r2 >

k+0.5
n+1 )

10 switch (B1, B2) do
11 case (0, 0) : I ← [a, a+ 3ε]
12 case (0, 1) : I ← [a+ ε, a+ 4ε]
13 case (1, 0) : I ← [a+ ε, a+ 4ε]
14 case (1, 1) : I ← [a+ 2ε, a+ 5ε = b]

15 return I

Algorithm 4: BestArm(O, δ)
Input: Oracle O as in (2); confidence parameter

0 < δ < 1.
1 δ ← δ/2
2 I1, I2 ← Locate(O, δ)
3 l1 ← min I1 (left endpoint of I1)
4 l2 ← max I2 (right endpoint of I2)
5 Construct variable-time quantum algorithm A:
6 A ← A(O, l2, l1, 0.01δ)
7 i← Amplify(A, δ)
8 return i

Lemma 5 (Correctness and complexity of Algorithm 3). Fix
k ∈ {1, 2}, an interval I = [a, b], and a confidence param-
eter 0 < δ < 1. Suppose that pk ∈ I and |I| ≥ ∆2/8. Then
Algorithm 3

1. outputs an interval J with |J | = 3
5 |I| such that pk ∈ J

with probability ≥ 1− δ, and
2. uses O

(√
H poly

(
log
(

n
δ∆2

)))
queries.

The proofs of Lemma 4 and Lemma 5 appear in the sup-
plementary material.

The following theorem is equivalent to Theorem 3.
Theorem 4 (Correctness and complexity of Algorithm 4).
Fix a confidence parameter 0 < δ < 1. Then, with probabil-
ity ≥ 1− δ, Algorithm 4

1. outputs the best arm, and
2. uses O

(√
H poly

(
log
(

n
δ∆2

)))
queries.

Proof. Note that δ is halved at the beginning, on Line 1. For
the first claim, we know from the first claim of Lemma 4
that, with probability ≥ 1 − δ/2, the two intervals Ik as-
signed in Line 2 have min I1 − max I2 ≥ 2 |I1| ≥ ∆2/4
and pk ∈ Ik. Assuming this holds, we have p2 < l2 <
l2 + ∆2/4 ≤ l1 < p1 for the endpoints lk assigned in

10107



Lines 3 and 4. This means that the variable-time quantum
algorithmA defined in Line 6 has Sright∪Smiddle = {1}, so
Amplify(A, δ/2) returns index 1 with probability≥ 1−δ/2.
Therefore, the overall probability of Algorithm 4 returning
the best arm is at least 1− δ.

The second claim follows immediately from adding
the complexity of Locate(O, δ/2) (Lemma 4) and
Amplify(A, δ/2) (Lemma 3, using l1 − l2 ≥ ∆2/4).

By establishing Theorem 4, we have established Theo-
rem 3, our main claim. As discussed previously, the main
complexity measure of interest in the classical case is H ,
and we see that we get a quadratic speedup in terms of this
parameter.

We can see that the poly-logarithmic factor has degree
about 6 from (38), (40), and (42). It would be interesting
to reduce this degree. A more fundamental challenge is to
remove the variable n that appears in our log factors. In
the classical case, n was already removed from log factors
in early work (Even-Dar, Mannor, and Mansour 2002) by
a procedure called “median elimination”. However, quan-
tizing the median elimination framework is nontrivial, as
the query complexity for outputting the n/2 smallest items
among n elements is Θ(n) (Ambainis 2010a, Theorem 1),
exceeding our budget of O(

√
n).

As corollaries of our main results in the fixed-confidence
setting, we provide results on best-arm identification in the
PAC (Probably Approximately Correct) and fixed-budget
settings. In the (ε, δ)-PAC setting, the goal is to identify an
arm i with pi ≥ p1 − ε with probability ≥ 1 − δ. Our best-
arm identification algorithm can be modified to work in this
setting as well. More precisely, we can modify Locate (Al-
gorithm 2) by adding a breaking condition to the while loop
when |I1| (or equivalently |I2|) is smaller than ε. This gives
the following result:

Corollary 1. There is a quantum algorithm that finds an
ε-optimal arm with query complexity O

(√
min{ nε2 , H} ·

poly
(
log
(

n
δ∆2

)))
.

Note that our modification means that the Amplify step
in Algorithm 4 takes an input interval I with |I| = l1 −
l2 ∈ [ε/2, ε]. The correctness and complexity follow directly
from Lemma 1 and Lemma 3. For comparison, Even-Dar,
Mannor, and Mansour (2002) gave a classical PAC algo-
rithm with complexity O

(
n
ε2 log

(
n
δ

))
, which was later im-

proved to O
(∑n

i=1 min{ε−2,∆−2
i } · log

(
n
δ∆2

))
by Gabil-

lon, Ghavamzadeh, and Lazaric (2012).
In the supplementary material, we also show how to iden-

tify the best arm with high probability for a fixed number of
total queries (the fixed-budget setting) given knowledge of
H .

Quantum Lower Bound
In this section, we describe a lower bound for the quantum
best-arm identification problem. Our lower bound shows
that the algorithm of Theorem 3 is optimal up to poly-
logarithmic factors.

Theorem 5. Let p ∈ (0, 1/2). For any biases pi ∈ [p, 1−p],
any quantum algorithm that identifies the best arm requires
Ω(
√
H) queries to the multi-armed bandit oracle O.

To prove this lower bound, we use the quantum adversary
method to show quantum hardness of distinguishing n ora-
cles Ox, x ∈ [n], corresponding to the following n bandits.
In the 1st bandit, we assign bias pi to arm i for all i. In the
xth bandit for x ∈ {2, . . . , n}, we assign bias p1 + η to arm
x and pi to arm i for all i 6= x, where η is an appropriately
chosen parameter. This hard set of bandits is inspired by the
proof of a corresponding classical lower bound (Mannor and
Tsitsiklis 2004, Theorem 5).

More precisely, for a positive integer T , consider an arbi-
trary T -query quantum algorithm that distinguishes the ora-
cles Ox. The main idea of the adversary method is to keep
track of certain quantities sk ∈ R where k ∈ {0, 1, . . . , T}.
For each k, sk quantifies how close the states of the quantum
algorithm are when it operates using k queries to the differ-
ent Ox. At the start, when k = 0, s0 must be large because
when no queries have been made, the states must be close.
At the end, when k = T , sT must be small because the states
are distinguishable by assumption.

The key point is that we can also bound how much sk
can change in one query, that is we can bound the quantities
|sk+1 − sk| for each k. Of course, this bound immediately
gives a lower bound on T , the number of queries it takes
to go from s0 (large) to sT (small). To bound |sk+1 − sk|,
the key point is to bound the distance between oracles, i.e.
matrices, Ox and Oy for different x, y ∈ [n].

We defer the full proof and full description of the quantum
adversary method to the supplementary material.

Conclusions
In this paper, we propose a quantum algorithm for identi-
fying the best arm of a multi-armed bandit, which gives a
quadratic speedup compared to the best possible classical
result. We also prove a matching quantum lower bound (up
to poly-logarithmic factors).

This work leaves several natural open questions:

• Can we give fast quantum algorithms for the exploitation
of multi-armed bandits? In particular, can we give online
algorithms with favorable regret? The quantum hedging
algorithm (Hamoudi et al. 2020) and the quantum boost-
ing algorithm (Arunachalam and Maity 2020) might be
relevant to this challenge.

• Can we give fast quantum algorithms for other types of
multi-armed bandits, such as contextual bandits or ad-
versarial bandits (e.g., Beygelzimer et al. 2011; Agarwal
et al. 2014; Auer et al. 2002)?

• Can we give fast quantum algorithms for finding a near-
optimal policy of a Markov decision process (MDP)?
MDPs are a natural generalization of MABs, where the
goal is to maximize the expected reward over sequences
of decisions. Even-Dar, Mannor, and Mansour (2002)
gave a reduction from this problem to best-arm identifi-
cation by viewing the Q-function of each state as a multi-
armed bandit.
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