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Abstract
Recent researches reveal that deep neural networks are
sensitive to label noises hence leading to poor generalization
performance in some tasks. Although different robust loss
functions have been proposed to remedy this issue, they suffer
from an underfitting problem, thus are not sufficient to learn
accurate models. On the other hand, the commonly used
Cross Entropy (CE) loss, which shows high performance in
standard supervised learning (with clean supervision), is non-
robust to label noise. In this paper, we propose a general
framework to learn robust deep neural networks with com-
plementary loss functions. In our framework, CE and robust
loss play complementary roles in a joint learning objective
as per their learning sufficiency and robustness properties
respectively. Specifically, we find that by exploiting the
memorization effect of neural networks, we can easily filter
out a proportion of hard samples and generate reliable pseudo
labels for easy samples, and thus reduce the label noise to a
quite low level. Then, we simply learn with CE on pseudo
supervision and robust loss on original noisy supervision. In
this procedure, CE can guarantee the sufficiency of optimiza-
tion while the robust loss can be regarded as the supplement.
Experimental results on benchmark classification datasets
indicate that the proposed method helps achieve robust and
sufficient deep neural network training simultaneously.

Introduction
With highly efficient stochastic optimization methods and
loss functions, deep neural networks (DNNs) have been
shown to be very powerful modeling tools for many real-
world learning tasks involving complex input patterns.
However, current deep neural networks have been shown to
be sensitive to label noises and can easily overfit noisy labels
in training, leading to poor performance in generalization
(Zhang et al. 2017). Moreover, labeling large-scale datasets
is costly in terms of expense and time, and stands as a critical
bottleneck in many tasks. For this reason, learning from less
expensive labeled data has been extensively studied in the
last decades (Zhou 2017).

In recent years, learning from noisy labels has been
extensively studied and a number of methods have been
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proposed. They can be grouped into four main categories.
The first one is based on estimating the label transition
matrix, which reflects the probabilities that most probable
true labels flip into other noise ones (Patrini et al. 2017;
Hendrycks et al. 2018; Han et al. 2018a). The second type
is based on importance reweighting which tries to assign
small weights to the possibly mislabeled samples and large
weights to the potentially clean samples (Jiang et al. 2018;
Ren et al. 2018; Shu et al. 2019). The third one is based on
self/co-training strategy which tries to learn a classifier from
the supervision generated by the classifier itself or its peer
classifier (Han et al. 2018b; Yu et al. 2019; Li, Socher, and
Hoi 2020; Li, Huang, and Chen 2021).

The fourth type of approaches is based on the robust
loss functions. In the last several years, different researches
have been studied to leverage proper loss function for
robust DNN learning. Compared to the other three types
of methods, using robust loss functions is a simpler and
arguably more generic solution. Mean Absolute Error
(MAE), as a symmetric loss function, has been theoretically
proved robust to label noise (Ghosh, Kumar, and Sastry
2017). In (Ma et al. 2020), the authors provide theoretical
insights that a simple normalization can make any loss
function robust to noisy labels. However, it has been found
empirically that the robust losses usually lead to underfitting
problem and hence are not able to achieve good performance
(Zhang and Sabuncu 2018; Ma et al. 2020). On the other
hand, the commonly used Cross Entropy (CE) has the
superiority of learning sufficiency while it is not noise-
tolerant. Motivated by this, several researches have been
studied for seeking a generalized mixture of MAE and CE to
balance their weakness and superiority (Zhang and Sabuncu
2018; Feng et al. 2020). Whilst these loss functions have
demonstrated improved robustness and learning sufficiency
at same time, they are only partially robust to noisy labels
and unsatisfactory when dealing with complex datasets.

In this paper, we show that the dilemma between
overfitting and underfitting in learning from noisy labels
can be addressed with complementary loss functions. Our
main idea is to learn DNNs with both CE and a noise-
tolerant loss (like MAE) from mixed supervision. The mixed
supervision consists of two part: one is the original noisy
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supervision which guides the robust learning with noise-
tolerant loss, and another one is the pseudo supervision
which is generated by the model itself. Specifically, we
find that by exploiting the memorization effect of DNNs,
we can easily filter out a proportion of hard samples and
generate reliable pseudo labels for easy samples, and thus
reduce the label noise to a quite low level. Then, we
learn the classifier with CE on the pseudo supervision
to guarantee the sufficiency of optimization, while regard
the original noisy supervision as the supplement and learn
from this noisy supervision with robust loss functions.
In our framework, non-robust loss and robust loss play
complementary roles in a joint learning objective with their
learning sufficiency and robustness properties respectively.
We evaluate our method on benchmarks and empirically
demonstrate that the complementary loss outperforms other
loss functions by considerable margins. Furthermore, we
push the state-of-the-art on noise-label learning one step
forward by combining our method with mixup (Zhang et al.
2018) data augmentation.

Related Work
In this section, we briefly review existing approaches for
robust learning with noisy labels.

Learning with Noise Transition Goldberger and Ben-
Reuven (2017) proposed to model the noise transition by
adding an additional linear layer on top of the neural
network that connects the correct labels to the noisy ones.
Patrini et al. (2017) proposed a loss correction method based
on pre-calculated Backward or Forward noise transition
matrix, which are obtained by exploiting anchor points (i.e.,
data points that belong to a specific class almost surely).
The method proposed in (Hendrycks et al. 2018) assumes
that the model has access to a small set of clean samples
to estimate the noise transition matrix and proposes Gold
Loss Correction (GLC) which corrects the loss function with
the estimated transition matrix. Xia et al. (2019) proposed
a transition revision method to effectively learn transition
matrices from noisy data without employing anchor points.

Sample Reweighting By assigning small weights to
the possibly mislabeled samples and large weights to the
potentially clean samples, importance reweighting strategy
can filter out noisy labels and hence guarantee robust
model training. Self-paced learning (Kumar, Packer, and
Koller 2010) and its extensions (Jiang et al. 2014) specify
the weighting function as monotonically decreasing so the
classifier can focus on the easy samples first and then
fit the hard samples. This weighting scheme has been
shown to be helpful to address the overfitting problem
in noise-label learning. Jiang et al. (2018) proposed to
use a learned Mentor-Net to output the weights of the
examples to teach the Student-Net based on the training
loss. Ren et al. (2018) proposed a meta-learning algorithm
that learns to assign weights to training examples based on
their gradient directions. Then, Shu et al. (2019) proposed to
automatically learn an explicit loss-weight function, which
is parameterized by an MLP, from an additional clean
dataset in a meta-learning manner.

Self/Co-Training Self-training (Scudder 1965) and Co-
training (Blum and Mitchell 1998) are two of the earliest
and simplest strategies in weakly supervised learning, and
have been widely revisited recently (He et al. 2020; Xie
et al. 2020). Han, Luo, and Wang (2019) proposed a self-
training framework to train the network in an end-to-end
manner, which iteratively generates the corrected labels
by selecting multiple prototypes for each class. Laine and
Aila (2017) introduced self-ensembling for dealing with
semi-supervised learning. In self-ensembling, a consensus
prediction is formed as the pseudo supervision for each
unlabeled sample using the outputs of the network-in-
training over different training epochs. Nguyen et al. (2020)
extended this idea to noise-label learning and proposed self-
ensemble label filtering (SELF) to progressively filter out
the wrong labels during training. Han et al. (2018b) and
Yu et al. (2019) proposed a paradigm called Co-teaching
which trains two networks simultaneously and let them
teach each other. Recent study in (Li, Socher, and Hoi 2020)
proposed a novel method named DivideMix by leveraging
semi-supervised learning techniques in the Co-teaching
framework. By adapting mixup augmentation (Zhang et al.
2018), they achieved state-of-the-art performance on several
benchmarks.

Robust Loss Functions Besides the above three kinds of
methods, designing robust loss functions that are inherently
tolerant to label noise has received increasing attention
recently since their simplicity and generality in DNNs
training. The pioneering study (Ghosh, Manwani, and Sastry
2015) proved that binary loss functions that satisfy the
symmetric condition (i.e., for some positive constant K,
`(ŷ, 1) + `(ŷ,−1) = K), are robust to uniform label noise.
In (Ghosh, Kumar, and Sastry 2017), the authors proved
that for multi-class classification, the loss functions which
satisfy the symmetric condition, would also be inherently
tolerant to both uniform and class conditional label noise.
For example, Mean Absolute Error (MAE), as a symmetric
loss function, has been theoretically proved robust to label
noise. However, a recent study (Zhang and Sabuncu 2018)
showed that it is not able to achieve good performance
by learning DNNs with MAE due to slow convergence
caused by gradient saturation. Ma et al. (2020) showed that
any loss can be made robust to noisy labels by applying
a simple normalization. Unfortunately, the authors also
empirically found that simply being robust is not sufficient
for a loss function to train accurate DNNs in practice.
The Generalized Cross Entropy (GCE) (Zhang and Sabuncu
2018) applies a Box-Cox transformation strategy, which can
behave like a generalized mixture of MAE and CE. Wang
et al. (2019) proposed the Symmetric Cross Entropy (SCE)
by combining Reverse Cross Entropy (RCE) (which satisfies
the symmetric condition) together with the CE. By applying
Taylor Series, Feng et al. (2020) derived an alternative
representation of CE, in which they can flexibly adjust the
order of Taylor Series to balance between MAE and CE.
Recently, Ma et al. (2020) proposed Active Passive Loss
(APL) which combines two robust loss functions namely
active loss and passive loss that mutually boost each other.
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Methodology
Preliminaries
We firstly consider the problem of ordinary multi-class
classification. Let p(X,Y ) be the distribution of a pair of
random variables (X,Y ) ∈ X × Y , where X denotes the
variable of instances, Y the variable of instance, X the fea-
ture space, Y = {1, 2, ..., c} the label space and c the size of
labels. The goal of learning is to learn a multi-class classifier
f , which is a function that maps the feature space to the
label space (X → Rc), that minimizes the classification risk:
R(f) = Ep(X,Y )` (f(X), Y ), where ` : Rc × Y → R is a
loss function that measures the learned classifier. In label-
noise learning, the samples are independently drawn from
noisy distribution p̄(X, Ȳ ). The goal of label-noise learning
is still to find a classifier that minimizes the classification
risk: R̄(f) = Ep(X,Ȳ )

¯̀
(
f(X), Ȳ

)
, where ¯̀ : Rc × Y → R

is a proper loss function for learning from noisy labels. In
this paper, we consider the common case where the function
f is a DNN with the softmax output layer.

Current state-of-the-art methods assume that the label
noise is conditionally independent to the inputs, i.e., P (Ȳ =
j | Y = i) = P (Ȳ = j | Y = i,X = x). Under the instance-
independent assumption, label noise is either uniform or
class-conditional. Denote the overall noise rate by η ∈ [0, 1]
and the class-wise noise rate from class i to class j by ηij . If
ηij = η

c−1 for all j 6= i, then the noise is said to be uniform,
otherwise, the noise is said to be class-conditional.

The Dilemma of Choosing Between Loss Functions
Denote fj(x) as the j-th element of f(x), and ej as a one-
hot vector with value 1 at the j-th element and 0 otherwise,
then CE and MAE can be represented as

`CE(f(x) , j) = −ej log f (x) = − log fj (x)

`MAE(f(x) , j) = ‖ej − f(x)‖1 = 2− 2fj(x)

Next, we analyse them from two perspectives: robustness
and learning sufficiency.

On the Robustness Previous work has theoretically proved
that for multi-class classification, the loss functions which
satisfy the symmetric condition

∑c
j=1 `(f(x) , j) = K for

some positive constant K, would be inherently tolerant to
label noise (Ghosh, Kumar, and Sastry 2017). For CE and
MAE, we have

c∑
j=1

`CE(f(x) , j) =
c∑
j=1

log
1

fj (x)
(1)

c∑
j=1

`MAE(f(x) , j) =
c∑
j=1

(2− 2fj (x)) = 2c− 2 (2)

Obviously, MAE satisfies symmetry condition while CE
does not satisfy. Then based on the theoretical results of
(Ghosh, Kumar, and Sastry 2017), MAE is noise-tolerant
for both uniform and class-conditional label noise within
certain range of noise level. Let f̄∗ be the global minimizers
of R̄(f). Robust loss functions like MAE ensure that f̄∗ is
also the global minimizer of R(f) under some constraints.
Specifically, MAE is robust (1) under uniform label noise
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Figure 1: Test accuracies on CIFAR-100 under 0.5 uniform
noise. The accuracy curve on clean data with CE is also
plotted in (a).

with η < c−1
c , or (2) under class-conditional noise with

ηij < ηii, ∀i 6= j andR(f∗) = 0.
On the contrary, loss function without the robustness

property is sensitive to noisy labels. In this case, as deep
networks have large learning capacities, they will eventually
overfit the noisy labels (Zhang et al. 2017). In practice, when
training DNNs with CE on noisy labeled data, the models
usually learn easy patterns and ignore the noisy labels in the
beginning epochs of training. After the warmup stage, neural
networks tend to memorize the noisy samples to minimize
the global risk, and hence result in poor generalization
performance.

On the Sufficiency of Learning Although MAE is demo-
nstrated to be theoretically robust to label noise, it has
some drawbacks as a classification loss function for training
DNNs on large scale datasets with stochastic gradient based
techniques. In practice, CE is preferred when training DNNs
with clean data since its optimization advantages. The
study (Zhang and Sabuncu 2018) suggests that this can be
explained in terms of their gradient forms. The gradients of
CE and MAE w.r.t. model parameters θ can be shown as:

∂`CE(f(x) , j)

∂θ
= − 1

fj(x)
∇θfj(x) (3)

∂`MAE(f(x) , j)

∂θ
= −2∇θfj(x) (4)

In CE, samples with smaller prediction confidences are
weighted more than those with larger ones for gradient up-
date. This means that, when training with CE, the optimizer
will pay more attention to the ambiguous samples. This
implicit weighting scheme is desirable for training DNNs
on clean data. On the contrary, MAE treats all the samples
equally. Therefore, there is no sufficient contribution made
by those ambiguous samples to the optimization. As a
result, this leads to significantly longer training time before
convergence and the underfitting problem. In (Ma et al.
2020), the authors provide new theoretical insights that a
simple normalization can make any loss function robust to
noisy labels. For example, we can easily derive normalized
CE loss:

`NCE(f(x), j)=
`CE(f(x) , j)∑c
k=1
`CE(f(x), k)

=
log fj (x)∑c
k=1

log fk(x)
(5)

However, all the normalized loss functions suffer from
similar underfitting issue with MAE, and thus are not
sufficient by themselves to train accurate DNNs.
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To demonstrate the above discussed dilemma, we train a
PreAct-ResNet-18 network (Krause et al. 2016) using CE,
NCE and MAE as loss function respectively on CIFAR-100
dataset. As can be observed in Figure 1a: (1) due to the
non-robust property, CE starts overfitting to noisy labels at
about epoch 30; (2) Although MAE and NCE are robust to
label noise, they suffer from severe underfitting problem and
thus can not lead to more accurate models. The performance
discrepancy of CE and MAE is introduced by the weighting
term in Eq. (3). In view of this fact, we conduct another ex-
periments with more fine-grained weights on the gradients.
Specifically, we using the following gradient form in model
updating:

∂`(f(x) , j)

∂θ
= − 1

(fj(x))q
∇θfj(x) (6)

This is consistent with the gradient form of GCE (Zhang
and Sabuncu 2018). With q ∈ [0, 1], the above form is
a generalization of the gradients of CCE and MAE. In
Figure 1b, we show different q values applied to the gradient
calculation. We find that larger q leads to more severe
overfitting, and smaller q leads to more severe underfitting.
Therefore, the dilemma of loss functions is actually the
dilemma between overfitting and underfitting.

Learning with Complementary Loss Functions
Our main idea is to learn with complementary loss functions
(i.e. CE and robust losses like MAE) on mixed supervision.
The mixed supervision consists of two parts: one is the
original noisy supervision which guides the robust learning
with noise-tolerant loss, and another one is the pseudo
supervision which is generated by the model itself. To
obtain this pseudo supervision, we use the self-ensembling
strategy which leverages the outputs of a DNN over different
learning iterations. For a specific instance x, we simply
calculate its average prediction in epoch k as

p(x) =
1

w

k−1∑
i=k−w

f (i)(x) (7)

where w denotes the window size of ensemble. Then, for
the instance of current mini-batch B, we can obtain a pseudo
labeled mini-batch B̃:

B̃={(x, ỹ)|(x, ȳ)∈B} (8)

where the pseudo label ỹ is generated by assigning the index
of the max element of p : ỹ = arg maxj∈[c] pj .

There will be some wrong ones among all the pseudo
labels. Therefore, using all the generated labels as super-
vision may cause error accumulation problem and hence
hurt the model. We remedy this issue by filtering out
the samples with low output confidences. The previous
study of Confidence-Aware Learning suggests that model
confidence can be estimated by True Class Probability
strategy (Corbière et al. 2019). However, the true class is
unavailable during training in noise-label learning. In our
work, we use entropy-based uncertainty as the measure of
output confidence. We argue that the easy samples tend to
have stable outputs over different learning iterations and the

Algorithm 1: Learning with Complementary Losses.
Input: Training set D, robust loss `ROB, T , Twarm, α,

γ1, γ2, batch size B and Optimizer O.
Output: Model parameters θ.

1 for t = 1; t ≤ T do
2 for b = 1; b ≤ |D|B do
3 Fetch mini-batch B from D;
4 if t < Twarm then . Warm up
5 L =

∑
(x,ȳ)∈B `CE(f(x) , ȳ);

6 Update θ = O(L,θ);
7 end
8 else . Main train
9 Calculate the average prediction for each

sample using Eq. (7);
10 Obtain B̃ using Eq. (8);
11 Obtain B̃ ′

using Eq. (9);
12 Obtain B̄ using Eq. (10);
13 Calculate LCE =

∑
(x,ỹ)∈B̃′ `CE(f(x), ỹ);

14 Calculate LROB =
∑

(x,ȳ)∈B̄ R̀OB(f(x), ȳ);
15 LCL = LCE + αLROB;
16 Update θ = O(LCL,θ)
17 end
18 end
19 Preserve the model outputs of current epoch;
20 end
21 return θ.

hard samples tend to have unstable predictions. Therefore,
we form a pseudo labeled mini-batch B̃ ′

by filtering out a
proportion of hard samples:

B̃
′
=arg minB′:|B′ |≥γ1|B|

∑
(x,y)∈B̃ ′ H(p(x)) (9)

where H(p) denotes the entropy of distribution p, and
γ1 denotes the proportion of easy samples which are
selected for guiding the training with CE. Then, we can
select a proportion of hard samples in mini-batch B as the
supplement:

B̄=arg maxB′:|B′ |≥γ2|B|

∑
(x,y)∈B′ E(p(x)) (10)

where γ2 denotes the proportion of hard samples which are
selected for guiding the training with robust loss.
After obtaining B̃′

and B̄ for current mini-batch, we propose
to combine CE loss function and a robust loss function
into an complementary loss framework for both sufficient
learning and robustness. Formally, we have

LCL =
∑

(x,ỹ)∈B̃ ′

`CE(f(x) , ỹ) + α
∑

(x,ȳ)∈B̄

`ROB(f(x) , ȳ) (11)

where α is used to balance the two terms. Our method is
summarized in Algorithm 1. In the beginning epochs of
our method, we need to warm up the model by training
on original noisy data using CE loss. The warm-up phase
is essential for our method, since the model outputs can be
significantly unreliable in the beginning epochs of training.
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Figure 2: (a),(b): Entropy distributions of the average predictions of correct and incorrect pseudo labeled samples (trained on
CIFAR-100 under 0.5 uniform noise). (c): Test accuracy curves on different subset of CIFAR-100.

Why Complementary Loss Works? Here, we provide
some insights for explaining why complementary-loss can
address learning sufficiency and robustness simultaneously.
We can understand it from the following two aspects.
1. Memorization effect benefits noise reduction.
In our method, CE loss on pseudo labeled samples guar-
antees the sufficient optimization, hence generating quality
pseudo labels is crucial. Fortunately, the memorization
effect of deep networks can help us achieve this goal. The
memorization effect implies that DNNs learn easy patterns
before overfitting the noisy samples. Therefore, in the early
training epochs, the outputs of easy samples are usually
sharper than those of harder samples. On the other hand,
the easy samples tend to have stable outputs over different
learning epochs and the outputs of hard samples tend to be
unstable. We use an illustrative experiment to demonstrate
this point. Figure 2a shows the density of correct pseudo
labels and incorrect ones after warm up stage (at epoch
60) according to the entropy of mean outputs. We can
see that the correct and incorrect samples are separable
according to the entropy value. In particular, after filtering
out 30% hard samples with large entropy, the noise rate of
the retaining dataset drops to 0.14. Furthermore, in Figure
2b we show the distributions when the model is trained
with complementary loss functions after 300 epochs. The
proposed strategy can significantly reduce the mislabeling
rate and leads to a smaller overlap between the entropy
distributions of correct and incorrect samples. In this case,
after filtering out 30% hard samples with large entropy, the
noise rate of the retained dataset drops to 0.06.

2. Hard samples are important.
From above analysis we see that after filtering out a
proportion of hard samples, the label noise can be reduced to
a quite low level. However, these discarded hard samples are
usually carrying much useful knowledge about the decision
boundary, and hence important for improving a classifier.
We demonstrate this point with another illustrative experi-
ment. We divide the CIFAR-100 dataset into two subsets,
i.e., an easy one and a hard one, with same size according
to the entropy of each sample’s average prediction, and
then retrain a classifier with CE on each subset respectively.
We also train another classifier on a subset which consists

of randomly selected samples. As is shown in Figure 2c,
the model trained on the hard subset and random subset
are significantly more accurate than the model trained on
the easy subset. Therefore, only using the easy samples is
not enough to learn a good classifier. Motivated by this
phenomenon, our method treats the original noisy data as the
supplement and learns from this supplementary supervision
with a robust loss function.

Experiments
Experimental Setup
Datasets To verify the superiority of our approach, we
conduct experiments on two commonly used image clas-
sification datasets in the literature of noise-label learning:
CIFAR-10 and CIFAR-100, consisting of 32x32 color
images arranged in 10 and 100 classes, respectively. Both
datasets contain 50,000 training and 10,000 test images. We
further use TinyImageNet (subset of ImageNet (Deng et al.
2009)) to test the generality of our approach. TinyImageNet
contains 200 classes with 100K training images, 10K
validation ones with resolution 64x64. Following previous
works (Li, Socher, and Hoi 2020; Zhang and Sabuncu
2018), we experiment with two types of label noise: uniform
and class-conditional noise. In addition, we also conduct
experiment on Clothing1M, which contains 14 classes with
1M real-world noisy training samples.

Comparison Methods We compare our method with mul-
tiple baselines. First, we consider 3 noise-tolerant loss
functions: GCE, SCE and APL. These losses are introduced
in Related Work. We also reported the results of CE. Second,
we consider 2 recently proposed state-of-the-art methods M-
correction (Arazo et al. 2019) and DivideMix (Li, Socher,
and Hoi 2020). M-correction is a loss correction approach
that optimizes networks with a dynamically weighted loss
by fitting a two-component beta mixture model (BMM)
on the loss values. Note that M-correction is specifically
designed for uniform noise, thus we only report its results
under uniform noise setting. DivideMix is introduced in
Related Work. These two methods both adapt mixup aug-
mentation.

Implementation The implementation is based on PyTorch
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Noise type Uniform Class-conditional
Noise ratio 0.2 0.4 0.6 0.2 0.3 0.4

Standard CE 83.78±0.32 67.73±0.72 47.79±0.82 86.54±0.52 81.86±0.70 76.02±0.93

GCE (2018) 90.44±0.08 88.08±0.13 81.13±0.21 90.30±0.16 88.68±0.10 84.77±0.87

SCE (2019) 91.68±0.17 87.54±0.47 78.88±0.69 89.91±0.58 84.86±0.77 76.52±1.33

APL (2020) 87.79±0.48 79.13±0.75 66.51±1.38 90.14±0.34 83.70±1.08 76.02±1.20

Ours (CE+MAE) 93.49±0.14 92.04±0.20 89.37±0.14 94.10±0.17 93.01±0.20 91.52±0.21
Ours (CE+APL) 92.20±0.54 90.47±0.87 88.01±0.55 94.08±0.14 93.39±0.17 91.89±0.19

M-correction (2019) 93.69±0.32 93.18±0.10 90.59±0.33 —— —— ——
DivideMix (2020) 95.23±0.22 93.62±0.15 92.84±0.19 93.20±0.28 92.38±0.24 91.15±0.69

Ours∗ (CE) 93.62±0.21 93.21±0.17 92.33±0.24 93.83±0.18 92.82±0.22 91.39±0.26
Ours∗ (CE+MAE) 95.37±0.09• 94.79±0.11• 93.59±0.19• 94.98±0.14• 94.33±0.24• 92.18±0.42•
Ours∗ (CE+APL) 94.70±0.13 93.80±0.14 92.68±0.27 94.34±0.14 93.38±0.28 91.10±0.40

Table 1: Classification accuracy (%) of each comparing algorithm on CIFAR-10 with different noise types and levels. The
results (mean±std) are reported over 3 random runs and we use the last 10 epochs of each run. The best results of first 6 rows
(without mixup) and last 5 rows (with mixup) are boldfaced respectively. In addition, • indicates the best results among all
methods.

Noise ratio Uniform (0.5) Class-cond. (0.3)

Standard CE 23.16±0.53 43.67±0.22

SCE 23.89±0.32 38.92±0.44

APL 5.43±0.14 Fail
Ours (CE+MAE) 50.59±0.33 51.99±0.29
Ours (CE+APL) 50.67±0.29 51.31±0.19

Ours∗ (CE) 48.98±0.32 45.88±0.44
Ours∗ (CE+MAE) 56.73±0.35 57.27±0.40
Ours∗ (CE+APL) 55.24±0.39 56.64±0.29

Table 2: Comparison of accuracy (%) on TinyImageNet
with both Uniform and Class-conditional noise. The results
(mean±std) are reported over the last 10 epochs.

(Paszke et al. 2019) and experiments were carried out with
NVIDIA Tesla V100 GPU. We use PreAct-ResNet-18 and
train it using SGD with a momentum of 0.9, a weight decay
of 0.0005, and a batch size 100 in our experiments. For both
CIFAR-10 and CIFAR-100, the network is trained for 300
epochs in which the first 60 epochs are for warming up the
networks. In warm-up stage, we use the weighted gradient
as shown in Eq.(6) for parameter updating. We set the initial
learning rate as 0.02 and reduce it by a factor of 10 after
200 epochs. For other hyperparameters of our method, we
simply set α = 1, γ1 = 0.9 and γ2 = 1 for all cases. For
TinyImageNet, the total number of epochs is 200, and the
initial learning rate is reduced by a factor of 10 after 100
epochs. We consider two robust loss functions: MAE and
APL in our methods. APL consists of an active loss function
and a passive loss function, and in our implementation, we
use the combination of NCE (as active loss) and RCE (as

passive loss). We re-implement the comparison methods
using the same network architecture with our method. For
the loss function methods, we use the same scheme for the
learning rate policy and number of epochs. For M-correction
and DivideMix, we maintain the schemes reported in their
papers. We also implement another version of our method,
in which we adapt the same mixup and data augmentation
techniques used in (Li, Socher, and Hoi 2020), to compare
with M-correction and DivideMix. DivideMix trains two
networks simultaneously, thus we can choose to average
the predictions from both networks in test phase. For fair
comparison, we use the prediction from a single network,
and we show that we can improve our method by using same
averaging strategy at inference phase (See Appendix D1).

Experimental Results
Comparison on CIFAR-10/100 Tables 1 and 3 present
the comparison results on benchmark datasets CIFAR-10
and CIFAR-100. We can see that: (1) Complementary
loss outperforms existing loss functions with large margin,
especially when the noise rate is high. (2) By adopting mixup
technique, our method consistently outperforms current
state-of-the-arts. (3) The last three rows of Table 1 and
3 reveal that the robust losses play important roles in
complementary loss strategy.

Note that the improvement of complementary loss on
CIFAR-10 is relatively smaller than that on CIFAR-100.
We postulate this is because the pseudo labels generated by
self-ensembling strategy are very accurate (See Appendix
C) on CIFAR-10, thus we can obtain high performance by
only training on these pseudo labels with CE. As reported
in the tables, the combination of CE+MAE outperforms
CE+APL, and CE+APL loses to self-ensembling under 0.4

1See appendices in supplementary file
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Noise type Uniform Class-conditional
Noise ratio 0.2 0.4 0.6 0.2 0.3 0.4

Standard CE 62.82±0.27 49.10±0.37 31.11±0.36 63.43±0.20 54.37±0.30 44.89±0.40

GCE (2018) 69.43±0.20 64.44±0.14 55.96±0.47 68.96±0.20 64.68±0.22 50.67±0.44
SCE (2019) 61.60±0.31 46.21±0.40 30.05±0.73 62.18±0.21 53.67±0.30 44.29±0.39

APL (2020) 70.74±0.33 61.92±0.52 48.64±0.83 63.11±0.45 52.91±0.46 42.48±0.68

Ours (CE+MAE) 71.63±0.26 68.61±0.35 62.52±0.22 69.99±0.23 68.32±0.20 65.72±0.28
Ours (CE+APL) 71.26±0.36 68.50±0.28 62.30±0.23 69.54±0.17 67.71±0.23 65.39±0.52

M-correction (2019) 68.95±0.53 65.43±0.30 59.43±0.36 —— —— ——
DivideMix (2020) 74.80±0.28 72.92±0.20 69.38±0.26 74.90±0.41 72.14±0.45 50.79±0.62

Ours∗ (CE) 71.04±0.40 69.20±0.27 65.09±0.33 67.80±0.37 66.12±0.36 65.19±0.29

Ours∗ (CE+MAE) 77.61±0.22• 75.81±0.37• 72.17±0.30• 76.74±0.53• 75.32±0.39• 68.07±0.79
Ours∗ (CE+APL) 77.21±0.39 75.62±0.27 71.34±0.60 76.50±0.41 74.47±0.50 68.18±1.16•

Table 3: Classification accuracy (%) of each comparing algorithm on CIFAR-100 with different noise types and levels. The
results (mean±std) are reported over 3 random runs and we use the last 10 epochs of each run. The best results of first 6 rows
(without mixup) and last 5 rows (with mixup) are boldfaced respectively. In addition, • indicates the best results among all
methods.

CE GCE SCE M-corr. D-mix. Ours

Acc. 68.80 69.75 71.02 71.00 74.76 73.59

Table 4: Accuracy (%) of different models on real-world
noisy dataset Clothing1M. Results of other methods are
from original literatures.

class-conditional noise on CIFAR-10. This is consistent with
the empirical finding that although APL has been theoret-
ically proved robust to label noise, it leads to overfitting
under high noise rate settings in practice. In addition, the
hyperparameters of our method are the same across all cases,
while DivideMix needs to tune for different noise rates.

Generality of the Proposed Approach To demonstrate that
our approach is effective on datasets other than CIFAR data,
we report the comparison results on TinyImageNet in Table
2. The comparison results are similar to CIFAR-100: both
CE+MAE and CE+APL can significantly outperform self-
ensembling and other losses. Note that we use the same
network, hyperparameters (except γ1 = 0.6) and learning
rate policy as with CIFAR. Furthermore, we conduct another
experiment on real-world noisy dataset Clothing1M, with
comparison results reported in Table 4. In this case, we
use ResNet-50 with ImageNet pre-trained weights. Our
method falls short of the state-of-the-art 74.76. We think
this limitation is because the Clothing1M dataset contains
instance-dependent noisy labels, and MAE and APL are not
robust to this type of noise.

Conclusion
In this paper, we propose a simple yet powerful method,
complementary loss, for learning from noisy labels. It
is based on the observation that the theoretically proved

robust loss functions suffer from an underfitting problem
and CE is non-robust while shows high performance in
network optimization. Our method learns DNN with a noise-
tolerant loss (like MAE or APL) from the original noisy
supervision as well as CE from the pseudo supervision
generated by the model itself respectively. In our framework,
CE and robust loss play complementary roles in a joint
learning objective by exploiting their learning sufficiency
and robustness properties. The experiments on CIFAR-10,
CIFAR-100 and TinyImageNet show the strengths of our
approach. By adopting mixup, our method pushes the state-
of-the-art on instance-independent noise-label learning one
step forward. The experiment on Clothing1M shows some
limitations under instance-dependent noise which will be
further investigated in future research.
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P. 2019. Addressing failure prediction by learning model
confidence. In Wallach, H. M.; Larochelle, H.; Beygelzimer,
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