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Abstract
It is common to evaluate a set of items by soliciting people
to rate them. For example, universities ask students to rate
the teaching quality of their instructors, and conference or-
ganizers ask authors of submissions to evaluate the quality
of the reviews. However, in these applications, students of-
ten give a higher rating to a course if they receive higher
grades in a course, and authors often give a higher rating to
the reviews if their papers are accepted to the conference. In
this work, we call these external factors the “outcome” ex-
perienced by people, and consider the problem of mitigating
these outcome-induced biases in the given ratings when some
information about the outcome is available. We formulate the
information about the outcome as a known partial ordering
on the bias. We propose a debiasing method by solving a reg-
ularized optimization problem under this ordering constraint,
and also provide a carefully designed cross-validation method
that adaptively chooses the appropriate amount of regulariza-
tion. We provide theoretical guarantees on the performance
of our algorithm, as well as experimental evaluations.

1 Introduction
It is common to aggregate information and evaluate items by
collecting ratings on these items from people. In this work,
we focus on the bias introduced by people’s observable out-
come or experience from the entity under evaluation, and
we call it the “outcome-induced bias”. We now describe this
notion of bias with the help of two common applications –
teaching evaluation and peer review.

Many universities use student ratings for teaching evalu-
ation. However, numerous studies have shown that student
ratings are affected by the grading policy of the instruc-
tor (Greenwald and Gillmore 1997; Johnson 2003; Boring,
Ottoboni, and Stark 2016). For instance, as noted in Johnson
(2003, Chapter 4):

“...the effects of grades on teacher-course evaluations
are both substantively and statistically important, and
suggest that instructors can often double their odds of re-
ceiving high evaluations from students simply by award-
ing A’s rather than B’s or C’s.”

As a consequence, the association between student ratings
and teaching effectiveness can become negative (Boring, Ot-
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toboni, and Stark 2016), and student ratings serve as a poor
predictor on the follow-on course achievement of the stu-
dents (Carrell and West 2008; Braga, Paccagnella, and Pel-
lizzari 2014):

“...teachers who are associated with better subsequent
performance receive worst evaluations from their stu-
dents.” (Braga, Paccagnella, and Pellizzari 2014)

The outcome we consider in teaching evaluation is the
grades that the students receive in the course under evalu-
ation1 and the goal is to correct for the bias in student eval-
uations induced by the grades given by the instructor.

An analogous issue arises in conference peer review,
where conference organizers survey authors to rate their re-
ceived reviews in order to understand the quality of the re-
view process. It is well understood that authors are more
likely to give higher ratings to a positive review than a
to negative review (Weber et al. 2002; Papagiannaki 2007;
Khosla, Hoiem, and Belongie 2013):

“Satisfaction had a strong, positive association with ac-
ceptance of the manuscript for publication... Quality of
the review of the manuscript was not associated with au-
thor satisfaction.” (Weber et al. 2002)

Due to this problem, an author feedback experiment (Papa-
giannaki 2007) conducted at the PAM 2007 conference con-
cluded that:

“...some of the TPC members from academia paralleled
the collected feedback to faculty evaluations within uni-
versities... while author feedback may be useful in pin-
pointing extreme cases, such as exceptional or problem-
atic reviewers, it is not quite clear how such feedback
could become an integral part of the process behind the
organization of a conference.”

With this motivation, for the application of peer review, the
outcome we consider is the review rating or paper decision
received by the author, and the goal is to correct for the bias
induced by it in the feedback provided by the author.

Although the existence of such bias is widely ac-
knowledged, student and author ratings are still widely

1We use the term “grades” broadly to include letter grades, nu-
merical scores, and rankings. We do not distinguish the difference
between evaluation of a course and evaluation of the instructor
teaching the course.
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used (Becker and Watts 1999), and such usage poses a num-
ber of issues. First, these biased ratings can be uninforma-
tive and unfair for instructors and reviewers who are not
lenient. Second, instructors, under the possible considera-
tion of improving their student-provided evaluation, may be
incentivized to “teach to the test”, raising concerns such
as inflating grades and reducing content (Carrell and West
2008). Furthermore, author-provided ratings can be a fac-
tor for selecting reviewer awards (Khosla, Hoiem, and Be-
longie 2013), and student-provided ratings can be a heavily-
weighted component for salary or promotion and tenure de-
cision of the faculty members (Becker and Watts 1999; Car-
rell and West 2008; Boring, Ottoboni, and Stark 2016). If
the ratings are highly unreliable and sometimes even fol-
low a trend that reverses the true underlying ordering, then
naı̈vely using these ratings or simply taking their mean or
median will not be sufficient. Therefore, interpreting and
correcting these ratings properly is an important and prac-
tical problem. The goal of this work is to mitigate such
outcome-induced bias in ratings. We also note that the gen-
eral problem we consider here is applicable to other settings
with outcomes that are not necessarily evaluations. For ex-
ample, in evaluating whether a two-player card game is fair
or not, the outcome can be whether the player wins or loses
the game (Molina, Bucca, and Macy 2019).

The key insight we use in this work is that the out-
come (e.g., grades and paper decisions) is naturally avail-
able to those conduct the evaluation (e.g., universities and
conference organizers). These observed outcomes provide
directional information about the manner that evaluators are
likely to be biased. For example, it is known (Greenwald and
Gillmore 1997; Johnson 2003; Boring, Ottoboni, and Stark
2016) that students receiving higher grades are biased to-
wards being more likely to give higher ratings to the course
instructor than students receiving lower grades. To use this
structural information, we model it as a known partial or-
dering constraint on the biases given people’s different out-
comes. This partial ordering, for instance, is simply a rela-
tion on the students based on their grades or ranking, or on
the authors in terms of acceptance decisions of their papers.

1.1 Our Contributions
We identify and formulate a problem of mitigating biases
in evaluations that are biased by evaluations (Section 2).
Specifically, this bias is induced by observable outcomes,
and the outcomes are formulated as a known partial ordering
constraint. We then propose an estimator that solves an opti-
mization jointly in the true qualities and the bias, under the
given ordering constraint (Section 3). The estimator includes
a regularization term that balances the emphasis placed on
bias versus noise. To determine the appropriate amount of
regularization, we further propose a cross-validation algo-
rithm that chooses the amount of regularization in a data-
dependent manner by minimizing a carefully-designed vali-
dation error (Section 3.2).

We then provide a theoretical analysis of the performance
of our proposed algorithm (Section 4). First, we show that
our estimator, under the two extremal choices of the reg-
ularization hyperparameter (0 and ∞), converges to the

true value in probability under the only-bias (Section 4.2)
and only-noise (Section 4.3) settings respectively. Moreover,
our estimator reduces to the popular sample-mean estimator
when the hyperparameter is set to ∞, which is known to
be minimax-optimal in the only-noise case. We then show
(Section 4.4) that the cross-validation algorithm correctly
converges to the solutions corresponding to hyperparameter
values of 0 and ∞ in the two aforementioned settings, un-
der various conditions captured by our general formulation.
We finally conduct a semi-synthetic experiment that estab-
lish the effectiveness of our proposed approach (Section 5).

An extended version of this paper is available on
arXiv (Wang et al. 2020), including more extensive related
work, more intuition of our approach, and additional theo-
retical and experimental results.

1.2 Related Work
In terms of the models considered, one statistical problem
related to our work is the isotonic regression, where the goal
is to estimate a set of parameters under a total ordering con-
straint (see, e.g. Barlow et al. 1972; Zhang 2002; Mammen
and Yu 2007; Groeneboom and Jongbloed 2014). Specifi-
cally, our problem becomes isotonic regression, if in our ex-
act formulation (2) to be presented, we set λ = 0, x = 0 and
the partial ordering to a total ordering.

Another type of related models in statistics literature con-
cerns the semiparametric additive models (e.g., Hastie and
Tibshirani 1990; Cuzick 1992; Wood 2004; Yu, Mammen,
and Park 2011) with shape constraints (Chen and Samworth
2016). In particular, one class of semiparametric additive
models involves linear components and components with
ordering (isotonic) constraints (Huang 2002; Cheng 2009;
Meyer 2013; Rueda 2013). Our model differs from past
work where the design matrix of the linear component ex-
hibits a special 0/1 structure and is not random.

The idea of adopting cross-validation to select the right
amount of penalization is classical in statistics literature
(e.g., Stone 1974; Kohavi 1995; Hastie, Tibshirani, and
Friedman 2009). Yet, this generic scheme cannot be directly
applied to models where training samples are not exchange-
able. Therefore caution needs to be exercised when order re-
strictions, therefore non-exchangeability, are involved. The
cross-validation algorithm proposed in this work is partly
inspired by the cross-validation used in nearly-isotonic re-
gression (Tibshirani, Hoefling, and Tibshirani 2011).

2 Problem Formulation
For ease of exposition, throughout the paper we describe our
problem formulation using the running example of course
evaluation. Consider a set of d courses. Each course i ∈ [d]
has an unknown true quality value x∗i ∈ R to be estimated.
Each course is evaluated by n students. Denote yij ∈ R
as the rating given by the jth student in course i, for each
i ∈ [d] and j ∈ [n]. Note that we do not require the same
set of n students to take all d courses; students in different
courses are considered different individuals. We assume that
each rating yij is given by:

yij = x∗i + bij + zij , (1)
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where bij represents a bias term, and zij represents a noise
term. We now describe these terms in more detail.

The term zij captures the noise involved in the ratings,
assumed to be i.i.d. across i ∈ [d] and j ∈ [n]. The term
bij captures the bias that is induced by the observed “out-
come” of student j experienced in course i. In the exam-
ple of teaching evaluation, the outcome can be the grades of
the students that are known to the university, and the bias
captures the extent that student ratings are affected by their
received grades. Given these observed outcomes (grades),
we characterize the information provided by these outcomes
as a known partial ordering, represented by a collection of
ordering constraints O ⊆ ([d] × [n])2. Each ordering con-
straint is represented by two pairs of (i, j) indices. An or-
dering constraint ((i, j), (i′, j′)) ∈ O indicates that the bias
terms obey the relation bij ≤ bi′j′ . We say that this ordering
constraint is on the elements {(i, j)}i∈[d],j∈[n] and on the
bias {bij}i∈[d],j∈[n] interchangeably. We assume the terms
{bij}i∈[d],j∈[n] satisfy the partial ordering O. In teaching
evaluations, the partial orderingO can be constructed by, for
example, taking ((i, j), (i′, j′)) ∈ O if and only if student j′
in course i′ receives a strictly higher grade than student j in
course i.

For ease of notation, we denote Y ∈ Rd×n as the ma-
trix of observations whose (i, j)th entry equals yij for every
i ∈ [d] and j ∈ [n]. We define matrices B ∈ Rd×n and
Z ∈ Rd×n likewise. We denote x∗ ∈ Rd as the vector of
{x∗i }i∈[d].

Goal Our goal is to estimate the true quality values
x∗ ∈ Rd. For model identifiability, we assume E[zij ] = 0
and

∑
i∈[d],j∈[n] E[bij ] = 0. An estimator takes as input the

observations Y and the partial ordering O, and outputs an
estimate x̂ ∈ Rd. We measure the performance of any esti-
mator in terms of its squared `2 error 1

d‖x̂− x
∗‖22.

3 Proposed Estimator
Our estimator takes as input the observations Y and the
given partial ordering O. The estimator is associated with
a tuning parameter λ ≥ 0, given by:

x̂(λ) ∈ arg min
x∈Rd

min
B∈Rd×n
B satisfiesO

‖Y − x1T −B‖2F + λ‖B‖2F ,

(2)

where 1 denotes the all-one vector of dimension n. We
let B̂(λ) denote the value of B that attains the minimum
of the objective (2), so that the objective (2) is minimized
at (x̂(λ), B̂(λ)). Ties are broken by choosing the solution
(x,B) such that B has the minimal Frobenius norm ‖B‖2F .
The optimization (2) is a convex quadratic programming
(QP) in (x,B), and therefore can be solved in polynomial
time in terms of (d, n).

While the first term ‖Y − x1T −B‖2F of (2) captures the
squared difference between the bias-corrected observations
(Y − B) and the true qualities x1T , the second term ‖B‖2F
captures the magnitude of the bias. Since the observations
in (1) include both the bias B and the noise Z, there is fun-
damental ambiguity pertaining to the relative contributions
of the bias and noise to the observations. The penalization

parameter λ is introduced to balance the bias and the vari-
ance, and at the same time preventing overfitting to the noise.
More specifically, consider the case when the noise level is
relatively large and the partial ordering O is not sufficiently
restrictive — in which case, it is sensible to select a larger λ
to prevent B overly fitting the observations Y .

For the rest of this section, we first describe intuition
about the tuning parameter λ by considering two extreme
choices of λ which are by themselves of independent inter-
est. We then propose a carefully-designed cross-validation
algorithm to choose the value of λ.

3.1 Behavior of Our Estimator Under Some
Fixed Choices of λ

To facilitate understandings of the estimator (2), we discuss
its behavior for two important choices of λ — 0 and ∞ —
that may be of independent interest.
λ = 0: When λ = 0, intuitively the estimator (2) al-

lows the bias term B to be arbitrary in order to best fit the
data, as long as it satisfies the ordering constraint O. Con-
sequently with this choice, the estimator attempts to explain
the observations Y as much as possible in terms of the bias.
One may use this choice if domain knowledge suggests that
bias considerably dominates the noise. Indeed, as we show
subsequently in Section 4.2, our estimator with λ = 0 is
consistent in a noiseless setting (when only bias is present),
whereas common baselines are not.
λ = ∞: As λ→∞, intuitively the bias term in (2) con-

verges to zero. Therefore, it aims to explain the observations
in terms of the noise. Formally we define (x̂(∞), B̂(∞)) :=

limλ→∞(x̂(λ), B̂(λ)). In the subsequent result of Proposi-
tion 7, we show that this limit exists, where we indeed have
B̂(∞) = 0 and our estimator simply reduces to the sam-
ple mean of each course. We thus see that perhaps the most
commonly used estimator for such applications — the sam-
ple mean — also lies in our family of estimators specified
in (2). Given the well-known guarantees of the sample mean
in the absence of bias (under reasonable conditions of the
noise), one may use this choice if domain knowledge sug-
gests that noise is highly dominant as compared to the bias.
λ ∈ (0,∞): More generally, the estimator interpolates

between the behaviors at the two extremal values λ = 0 and
∞ when both bias and noise is present. As we increase λ
from 0, the magnitude of the estimated bias B̂(λ) gradually
decreases and eventually goes to 0 at λ =∞. The estimator
hence gradually explains the observations less in terms bias,
and more in terms of noise. Our goal is to choose an appro-
priate value for λ, such that the contribution of bias versus
noise determined by the estimator approximately matches
the true relative contribution that generates the observations.
The next subsection presents a principled method to choose
the value for λ.

3.2 A Cross-Validation Algorithm for Selecting λ
We now present a carefully designed cross-validation algo-
rithm to select the tuning parameter λ in a data-driven man-
ner. Our cross-validation algorithm determines an appropri-
ate value of λ from a finite-sized set of candidate values
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Algorithm 1: Cross-validation. Inputs: observations
Y , partial ordering O, and set Λ.
/* Step 1: Split the data */

1 Initialize the training and validation sets as Ωt ← {},
Ωv ← {}.

2 Sample a total ordering of π0 uniformly at random
from the set T of all total orderings (of the dn
elements) consistent with the partial ordering O.

3 foreach i ∈ [d] do
4 Find the sub-ordering of the n elements in course

i according to π0, denoted in increasing order as
(i, j(1)), . . . , (i, j(n)).

5 for t = 1, . . . , n2 do
6 Assign (i, j(2t−1)), (i, j(2t)) to Ωt and Ωv,

one each uniformly at random. If n is odd,
assign the last element (i, j(n)) to the
validation set.

7 end
8 end
/* Step 2: Compute validation error */

9 foreach λ ∈ Λ do
10 Obtain (x̂(λ), B̂(λ)) as a solution to the following

optimization problem:

arg min
x∈Rd, B∈Rd×n,
B satisfiesO

‖Y − x1T −B‖2Ωt + λ‖B‖2Ωt ,

where ties are broken by minimizing ‖B̂(λ)‖F .
11 foreach (i, j) ∈ Ωv do
12 foreach π ∈ T do
13 Find the element (iπ, jπ) ∈ Ωt that is

closest to (i, j) with respect to π, and set
[̃b

(λ)
π ]ij = b̂

(λ)
iπjπ . There may be two

closest elements at equal distance to
(i, j), in which case call them (iπ1 , j

π
1 )

and (iπ2 , j
π
2 ) and set

[̃b
(λ)
π ]ij =

b̂
(λ)

iπ1 j
π
1

+b̂
(λ)

iπ2 j
π
2

2 .
14 end
15 Interpolate the bias as

B̃(λ) = 1
|T |
∑
π∈T B̃

(λ)
π .

16 end
17 Compute the CV error

e(λ) := 1
|Ωv|‖Y − x̂λ1

T − B̃(λ)‖2Ωv .
18 end
19 Output λcv ∈ arg minλ∈Λ e

(λ), where ties are broken
arbitrarily.

Λ ⊆ [0,∞] that is provided to the algorithm. For any matrix
A ∈ Rd×n, we define its squared norm restricted to a subset
of elements Ω ⊆ [d] × [n] as ‖A‖2Ω =

∑
(i,j)∈ΩA

2
ij . Let

T denote the set of all total orderings (of the dn elements)
that are consistent with the partial ordering O. The cross-
validation algorithm is presented in Algorithm 1. It consists

of two steps: a data-splitting step (Lines 1-8) and a valida-
tion step (Lines 9-19).

Data-splitting step In the data-splitting step, our algo-
rithm splits the observations {yij}i∈[d],j∈[n] into a training
set Ωt ⊆ [d] × [n] and a validation set Ωv ⊆ [d] × [n].
To obtain the split, our algorithm first samples uniformly
at random a total ordering π0 from T (Line 2). For ev-
ery course i ∈ [d], we find the sub-ordering of the n ele-
ments within this course (that is, the ordering of the elements
{(i, j)}j∈[n]) according to π0 (Line 4). For each consecutive
pair of elements in this sub-ordering, we assign one element
in this pair to the training set and the other element to the
validation set uniformly at random (Lines 5-7).

Validation step Given the training set and the valida-
tion set, our algorithm iterates over the choices of λ ∈ Λ as
follows. For each value of λ, the algorithm first computes
our estimator with penalization parameter λ on the training
set Ωt to obtain (x̂(λ), B̂(λ)). The optimization (Line 10) is
done by replacing the Frobenius norm on the two terms in
the original objective (2) by the Frobenius norm restricted
to Ωt. Note that this modified objective is independent from
the parameters {bij}(i,j)∈Ωv . Therefore, by the tie-breaking
rule of minimizing ‖B̂(λ)‖F , we have [B̂(λ)]ij = 0 for each
(i, j) ∈ Ωv.

Next, our algorithm evaluates these choices of λ by their
corresponding cross-validation (CV) errors. The high-level
idea is to evaluate the fitness of (x̂(λ), B̂(λ)) to the validation
set Ωv, by computing 1

|Ωv|‖Y −x̂
(λ)1T−B̂(λ)‖2Ωv . However,

recall that the estimate B̂(λ) only estimates the bias on the
training set meaningfully, and we have B̂(λ)

ij = 0 for each
element (i, j) in the validation set Ωv. Therefore, we “syn-
thesize” the estimated bias B̃(λ) on the validation from the
estimated bias B̂(λ) on the training set via an interpolation
procedure (Lines 11-16), as explained below.

Interpolation We now discuss how the algorithm inter-
polates the bias b̃(λ)

ij at each element (i, j) ∈ Ωv from B̂(λ).
We first explain how to perform interpolation with respect
to some given total ordering π (Line 13), and then com-
pute a mean of these interpolations by iterating over π ∈ T
(Line 15).

• Interpolating with respect to a total ordering
(Line 13): Given some total ordering π, we find the el-
ement in the training set that is the closest to (i, j) in the
total ordering π. We denote this closest element from the
training set as (iπ, jπ), and simply interpolate the bias at
(i, j) with respect to π (denoted [̃b

(λ)
π ]ij) using the value

of b̂iπjπ . That is, we set [̃b
(λ)
π ]ij = b̂

(λ)
iπjπ . If there are two

closest elements of equal distance to (i, j) (one ranked
higher than (i, j) and one lower than (i, j) in π), we use
the mean of the estimated bias B̂(λ) of these two elements.
This step is similar to the CV error computation in Tibshi-
rani, Hoefling, and Tibshirani (2011).

• Taking the mean over all total orderings in T
(Line 15): After we find the interpolated bias B̃(λ)

π on
the validation set with respect to each π, the final interpo-
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lated bias b̃(λ) is computed as the mean of the interpolated
bias over all total orderings π ∈ T . The reason for taking
the mean over π ∈ T is to reduce the variance of the CV
error.

After interpolating the bias B̃(λ) on the validation set,
the CV error is computed as 1

|Ωv|‖Y − x̂
(λ)1T − B̃(λ))‖Ωv

(Line 17). Finally, the value of λcv ∈ Λ is chosen by mini-
mizing the CV error (with ties broken arbitrarily).

4 Theoretical Guarantees
We now present theoretical guarantees for our proposed es-
timator (2) along with our cross-validation algorithm (Algo-
rithm 1). In Section 4.2 and 4.3, we establish properties of
our estimator at the two extremal choices of λ (λ = 0 and
λ =∞) for no noise and no bias settings respectively. Then
in Section 4.4, we analyze the cross-validation algorithm.
The proofs of all results are in Appendix C of the extended
version (Wang et al. 2020).

4.1 Preliminaries
Model assumptions: To introduce our theoretical guaran-
tees, we start with several model assumptions that are used
throughout the theoretical result of this paper. Specifically,
we make the following assumptions on the model (1):

(A1) Noise: The noise terms {zij}i∈[d],j∈[n] are i.i.d.N (0, η2)
for some constant η ≥ 0.

(A2) Bias: The bias terms {bij}i∈[d],j∈[n] are marginally dis-
tributed as N (0, σ2) for some constant σ ≥ 0 unless
specified otherwise, and obey one of the total orderings
(selected uniformly at random from the set of total order-
ings) consistent with the partial ordering O. That is, we
first sample dn values i.i.d. fromN (0, σ2), and then sam-
ple one total ordering uniformly at random from all total
orderings consistent with the partial ordering O. Then we
assign these dn values to {bij} according to the sampled
total ordering.

(A3) Number of courses: The number of courses d is assumed
to be a fixed constant.

All theoretical results hold for any arbitrary x∗ ∈ Rd. It
is important to note that the estimator (2) and the cross-
validation algorithm (Algorithm 1) requires no knowledge
of these distributions or standard deviation parameters σ and
η. Throughout the theoretical results, we consider the solu-
tion x̂(λcv) as solution at λ = λcv on the training set.

Our theoretical analysis focuses on a general subclass of
partial orderings, termed “group orderings”, where each rat-
ing belongs to a group, and the groups are totally ordered.

Definition 1 (Group ordering) A partial ordering O is
called a group ordering with r groups if there is a parti-
tion G1, . . . , Gr ⊆ [d] × [n] of the dn ratings such that
((i, j), (i′, j′)) ∈ O if and only if (i, j) ∈ Gk and (i′, j′) ∈
Gk′ for some 1 ≤ k < k′ ≤ r.

Note that in Definition 1, if two samples are in the same
group, we do not impose any relation restriction between
these two samples.

Group orderings arise in many practical settings. For ex-
ample, in course evaluation, the groups can be letter grades
(e.g., {A,B,C,D, F} or {Pass, Fail}), or numeric scores
(e.g., in the range of [0, 100]) of the students. Intuitively a
group ordering assumes that a student receiving a strictly
higher grade is more positively biased in rating than a stu-
dent receiving a lower grade, irrespective of their course
membership. A total ordering is also group ordering, with
the number of groups equal to the number of samples. We
assume that the number of groups is r ≥ 2 since otherwise
groups are vacuous.

Denote `ik as the number of students of group k ∈ [r] in
course i ∈ [d]. We further introduce some regularity condi-
tions used in the theoretical results. The first set of regularity
conditions is motivated from the case where students receive
a discrete set of letter grades.
Definition 2 (Single constant-fraction assumption) A
group ordering is said to satisfy the single c-fraction
assumption for some constants c ∈ (0, 1) if there exists
some group k ∈ [r] such that `ik > cn ∀ i ∈ [r].
Definition 3 (All constant-fraction assumption) A group
ordering of r groups is said to satisfy the all c-fraction as-
sumption for some constant c ∈ (0, 1

r ), if `ik ≥ cn ∀ i ∈
[d], k ∈ [r].
Note that group orderings with all c-fractions is a subset of
group orderings with single c-fraction. The final regularity
condition below is motivated from the scenario where stu-
dent performances are totally ranked in the course.
Definition 4 (Constant-fraction interleaving assumption)
Let O be a total ordering (of the dn elements
{(i, j)}i∈[d],j∈[n]). We define an interleaving point as
any number t ∈ [dn − 1], such that the tth and the (t + 1)th

highest-ranked elements according to the total ordering
O belong to different courses. A total ordering O is said
to satisfy the c-fraction interleaving assumption for some
constant c ∈ (0, 1), if there are at least cn interleaving
points in O.

With these preliminaries in place, we now present our
main theoretical results.

4.2 λ = 0 Is Consistent When There Is No Noise
We first consider the extremal case where there is only bias
but no noise involved. The following theorem states that our
estimator with λ = 0 is consistent in estimating the under-
lying quantity x∗, that is x̂(0) → x∗ in probability.
Theorem 5 Suppose the assumptions (A1), (A2) and (A3)
hold. Suppose there is no noise, or equivalently suppose
η = 0 in (A1). Consider any x∗ ∈ Rd. Suppose the par-
tial ordering is either:

(a) any group ordering of r groups satisfying the all c-
fraction assumption, where c ∈ (0, 1

r ] is a constant, or
(b) any total ordering.

Then for any ε > 0 and δ > 0, there exists an integer n0

(dependent on ε, δ, c, d, η), such that for every n ≥ n0 and
every partial ordering satisfying condition (a) or (b):

P
(
‖x̂(0) − x∗‖2 < ε

)
≥ 1− δ.
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The convergence of the estimator to the true qualities x∗ im-
plies the following corollary on ranking the true qualities x∗.
In words, our estimator x̂(0) is consistent in comparing the
true qualities x∗i and x∗i′ of any pair of courses i, i′ ∈ [d]
with i 6= i′.

Corollary 6 Suppose the assumptions (A1), (A2) and (A3)
hold. Consider any x∗ ∈ Rd. Assume there is no noise, or
equivalently assume η = 0 in (A1). Then for any δ > 0,
there exists an integer n0 (dependent on x∗, δ, c, d, η), such
that for all n ≥ n0 and every partial ordering satisfying
condition (a) or (b) in Theorem 5:

P
(

sign(x̂i − x̂i′) = sign(x∗i − x∗i′)
)
≥ 1− δ,

for all i, i′ ∈ [d] such that i 6= i′ and x∗i 6= x∗i′ .

In Appendix A.1 of the extended version (Wang et al.
2020), we also evaluate the mean estimator. We show that
under the conditions of Theorem 5, the mean estimator is
provably not consistent. This is because the mean estimator
does not account for the biases and only tries to correct for
the noise.

4.3 λ =∞ Is Minimax-Optimal When There Is
No Bias

We now move to the other extremity of λ = ∞, and con-
sider the other extremal case when there is only noise but
no bias. Recall that we define the estimator at λ = ∞ as
x̂(∞) = limλ→∞ x̂(λ). The following proposition states that
this limit is well-defined, and our estimator reduces to taking
the sample mean at this limit.

Proposition 7 The limit of limλ→∞(x̂(λ), B̂(λ)) exists,
given by

x̂
(∞)
i =

1

n

n∑
j=1

yij , for each i ∈ [d], and

B̂(∞) = 0.

(3)

With no bias, estimating the true quality x∗ reduces to esti-
mating the mean of a multivariate normal distribution with
the covariance matrix η2Id, where Id denotes the identity
matrix of size d × d. Standard results in the statistics litera-
ture imply that taking the sample mean is minimax-optimal
in this setting if d is a fixed dimension.

4.4 Cross-Validation Effectively Selects λ
This section provides the theoretical guarantees for our pro-
posed cross-validation algorithm. Specifically, we show that
in the two extremal cases, cross-validation outputs a solu-
tion that converges in probability to the solutions at λ = 0
and λ = ∞, respectively. Note that the cross-validation al-
gorithm is agnostic to the values of σ and η, or any specific
shape of the bias or the noise. The first result considers the
case when there is only bias and no noise, and we show that
cross-validation obtains a solution that is close to the solu-
tion using a fixed choice of λ = 0.

Theorem 8 Suppose the assumptions (A1), (A2) and (A3)
hold. Consider any x∗ ∈ Rd. Suppose there is no noise, or
equivalently suppose η = 0 in (A1). Suppose c ∈ (0, 1) is a
constant. Suppose the partial ordering is either:

(a) any group ordering satisfying the all c-fraction assump-
tion, or

(b) any total ordering with d = 2.

Let 0 ∈ Λ. Then for any δ > 0 and ε > 0, there exists
some integer n0 (dependent on ε, δ, c, d, σ), such that for ev-
ery n ≥ n0 and every partial ordering satisfying (a) or (b):

P
(
‖x̂(λcv) − x∗‖2 < ε

)
≥ 1− δ.

From Theorem 5 we have that the estimator x̂(0) (at λ =
0) is also consistent under the only-bias setting. Thus, we
also have x̂(λcv) converges to x̂(0) in probability. The next
result considers the case when there is only noise and no
bias, and we show that cross-validation obtains a solution
that is close to the solution using a fixed choice of λ = ∞
(sample mean).

Theorem 9 Suppose the assumptions (A1), (A2) and (A3)
hold. Consider any x∗ ∈ Rd. Suppose there is no bias, or
equivalently assume σ = 0 in (A2). Suppose c1, c2 ∈ (0, 1)
are constants. Suppose the partial ordering is either:

(a) any group ordering satisfying the single c1-fraction as-
sumption, or

(b) any total ordering satisfying the c2-fraction interleaving
assumption with d = 2.

Let∞ ∈ Λ. Then for any δ > 0 and ε > 0, there exists some
integer n0 (dependent on ε, δ, c1, c2, d, η), such that for every
n ≥ n0 and every partial ordering satisfying (a) or (b):

P
(
‖x̂(λcv) − x∗‖2 < ε

)
≥ 1− δ.

By the consistency of x̂(∞) implied from Section 4.3 un-
der the only-noise setting, we also have x̂(λcv) converges to
x̂(∞) in probability. Recall that the sample mean estimator
is commonly used and minimax-optimal in the absence of
bias. This theorem suggests that our cross-validation algo-
rithm, by adapting the amount of regularization in a data-
dependent manner, recovers the sample mean estimator un-
der the setting when sample mean is suitable (under only
noise and no bias).

These two theorems, in conjunction to the properties
of the estimator at λ = 0 and λ = ∞ given in Sec-
tions 4.2 and 4.3 respectively, indicate that our proposed
cross-validation algorithm achieves our desired goal in the
two extremal cases. The main intuition underlying these two
results is that if the magnitude of the estimated bias from
the training set aligns with the true amount of bias, the in-
terpolated bias from the validation set also aligns with the
true amount of bias and hence gives a small CV error. Ex-
tending this intuition to the general case where there is both
bias and noise, one may expect cross-validation to still able
to identify an appropriate value of λ.
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5 Experiments
We now conduct a semi-synthetic experiment using real
grading statistics to evaluate our estimator and our cross-
validation algorithm. Additional experimental results are in
Section 5 of the extended version (Wang et al. 2020). We
consider the metric of the squared `2 error. To estimate the
qualities using our cross-validation algorithm, we first use
Algorithm 1 to obtain a value of the hyperparameter λcv;
we then compute the estimate x̂(λcv) as the solution to (2) at
λ = λcv (that is, we solve (2) on the entire data combining
the training set and the validation set).2 Throughout the ex-
periments, we use Λ = {2i : −9 ≤ i ≤ 5, i ∈ Z} ∪ {0,∞}.
Implementation details for the cross-validation algorithm
(Algorithm 1) are provided in Appendix B.1 of the extended
version (Wang et al. 2020).

We use the grading data from the course “Business Statis-
tics” in Spring 2020 from Indiana University Bloomington
(2020). This course consists of 10 sessions taught by mul-
tiple instructors. The average number of students per ses-
sion is 50. The possible grades that students receive are A+
through D-, and F. We consider three ways to construct the
group orderings:
• Fine grades: The 13 groups correspond to the grades of

A+ through D-, and F.
• Coarse grades: The fine grades are merged to 5 groups

of A, B, C, D and F, where grades in {A+,A,A-} are all
considered A, etc.

• Binary grades: The grades are further merged to 2
groups of P and F (meaning pass and fail), where all
grades except F are considered P.
We use the number of students and the grade distribution

from this course, and synthesize the observations using our
model (1) under the Gaussian assumptions (A2) and (A1).
The bias is generated according to the group ordering in-
duced by the fine grades, with a marginal distribution of
N (0, σ2), and the noise is generated i.i.d. from N (0, η2).
We set η = 1− σ, and vary the choices of σ. The true qual-
ity is set as x∗ = 0 (the results are independent from the
value of x∗). The estimators are given one of the three group
orderings listed above.

We compare our cross-validation algorithm with the
mean, median, and also the reweighted mean estimator . The
mean and median baselines are defined as taking the mean
and median of each course respectively. The reweighted
mean estimator is introduced in Appendix A.2 and B.3 of the
extended version (Wang et al. 2020). Each point is computed
as the empirical mean over 250 runs. Error bars represent the
standard error of the mean.

The results are shown in Fig 1. The mean and median
baselines do not perform well when there is considerable
bias (corresponding to a large value of σ). As the number
of groups increases from the binary grades to coarse grades
and then to the fine grades, the performance of both our esti-
mator and the reweighted mean estimator improves, because
the finer orderings provide more information about the bias.

2Note that this is different from the theoretical results in Sec-
tion 4.4, where we solve (2) at λ = λcv only on the training set.
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Figure 1: The performance of our estimator (with cross-
validation) on semi-synthetic grading data, compared to the
mean, median and reweighted mean estimators.

Our estimator performs slightly better than the reweighted
mean estimator for the fine grades, and slightly better on a
subset of values of σ for the coarse grades. For the binary
grades, the error of both our estimator and the reweighted
mean estimator increases as the relative amount of bias in-
creases. This increase is likely due to the model mismatch
as the data is generated from fine grades. In this case our es-
timator performs better than the reweighted mean estimator
for large values of σ.

6 Discussion

Evaluations given by participants in various applications are
often spuriously biased by the evaluations received by the
participant. We formulate the problem of correcting such
outcome-induced bias, and propose an estimator and a cross-
validation algorithm. The cross-validation algorithm adapts
to data without prior knowledge of the relative extents of
bias and noise. Access to any such prior knowledge can be
challenging in practice, and hence not requiring such prior
knowledge provides our approach more flexibility.

Open problems There are a number of open questions
of interest resulting out of this work. An interesting and im-
portant set of open questions pertains to extending our the-
oretical analysis of our estimator and cross-validation algo-
rithm to more general settings: in the regime where there is
both bias and noise, in a non-asymptotic regime, in a high-
dimensional regime with d � n, under other types of par-
tial orderings, and under a model mismatch where the pro-
vided partial orderingO is inaccurate. In addition, while our
work aims to correct biases that already exist in the data, it is
also helpful to mitigate such biases during data elicitation it-
self. This may be done from a mechanism design perspective
where we align the users with proper incentives to report un-
biased data, or from a user-experience perspective where we
design multitude of questions that jointly reveal the nature
of any bias.
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sumptions; however, formal guarantees under more general
models remain open. Our algorithm consequently may be
appropriate for use as an assistive tool along with other ex-
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information or deliberation before drawing a conclusion.

References
Barlow, R.; Bartholomew, D.; Bremner, J.; and Brunk, H.
1972. Statistical Inference Under Order Restrictions: The
Theory and Application of Isotonic Regression. Wiley.

Becker, W. E.; and Watts, M. 1999. How Departments of
Economics Evaluate Teaching. The American Economic Re-
view 89(2): 344–349.

Boring, A.; Ottoboni, K.; and Stark, P. B. 2016. Student
evaluations of teaching (mostly) do not measure teaching ef-
fectiveness. ScienceOpen Research .

Braga, M.; Paccagnella, M.; and Pellizzari, M. 2014. Evalu-
ating students’ evaluations of professors. Economics of Ed-
ucation Review 41: 71 – 88.

Carrell, S. E.; and West, J. E. 2008. Does Professor Quality
Matter? Evidence from Random Assignment of Students to
Professors. Working Paper 14081, National Bureau of Eco-
nomic Research.

Chen, Y.; and Samworth, R. J. 2016. Generalized additive
and index models with shape constraints. Journal of the
Royal Statistical Society. Series B: Statistical Methodology .

Cheng, G. 2009. Semiparametric additive isotonic regres-
sion. Journal of Statistical Planning and Inference 139(6):
1980–1991.

Cuzick, J. 1992. Semiparametric additive regression. Jour-
nal of the Royal Statistical Society: Series B (Methodologi-
cal) 54(3): 831–843.
Greenwald, A. G.; and Gillmore, G. M. 1997. Grading le-
niency is a removable contaminant of student ratings. The
American psychologist 52(11): 1209–1217.
Groeneboom, P.; and Jongbloed, G. 2014. Nonparametric
estimation under shape constraints, volume 38. Cambridge
University Press.
Hastie, T.; Tibshirani, R.; and Friedman, J. 2009. The el-
ements of statistical learning: data mining, inference, and
prediction. Springer Science & Business Media.
Hastie, T. J.; and Tibshirani, R. J. 1990. Generalized additive
models, volume 43. CRC press.
Huang, J. 2002. A note on estimating a partly linear model
under monotonicity constraints. Journal of Statistical Plan-
ning and Inference 107(1): 343 – 351.
Indiana University Bloomington. 2020. Grade Distribu-
tion Database. https://gradedistribution.registrar.indiana.
edu/index.php [Online; accessed 30-Sep-2020].
Johnson, V. E. 2003. Grade Inflation: A Crisis in College
Education. Springer New York, 1 edition.
Khosla, A.; Hoiem, D.; and Belongie, S. 2013. Analysis of
Reviews for CVPR 2012 .
Kohavi, R. 1995. A study of cross-validation and bootstrap
for accuracy estimation and model selection. In IJCAI, vol-
ume 14, 1137–1145. Montreal, Canada.
Mammen, E.; and Yu, K. 2007. Additive isotone regression.
In Asymptotics: particles, processes and inverse problems,
179–195. Institute of Mathematical Statistics.
Meyer, M. C. 2013. Semi-parametric additive constrained
regression. Journal of nonparametric statistics 25(3): 715–
730.
Molina, M. D.; Bucca, M.; and Macy, M. W. 2019. It’s not
just how the game is played, it’s whether you win or lose.
Science Advances 5(7).
Papagiannaki, K. 2007. Author Feedback Experiment at
PAM 2007. SIGCOMM Comput. Commun. Rev. 37(3):
73–78.
Rueda, C. 2013. Degrees of freedom and model selection
in semiparametric additive monotone regression. Journal of
Multivariate Analysis 117: 88–99.
Stone, M. 1974. Cross-validatory choice and assessment of
statistical predictions. Journal of the Royal Statistical Soci-
ety: Series B (Methodological) 36(2): 111–133.
Tibshirani, R. J.; Hoefling, H.; and Tibshirani, R. 2011.
Nearly-Isotonic Regression. Technometrics 53(1): 54–61.
Wang, J.; Stelmakh, I.; Wei, Y.; and Shah, N. B. 2020. De-
biasing Evaluations That are Biased by Evaluations. arXiv
preprint arXiv:2012.00714 .
Weber, E. J.; Katz, P. P.; Waeckerle, J. F.; and Callaham,
M. L. 2002. Author perception of peer review: impact of re-
view quality and acceptance on satisfaction. JAMA 287(21):
2790–2793.

10127



Wood, S. N. 2004. Stable and efficient multiple smoothing
parameter estimation for generalized additive models. Jour-
nal of the American Statistical Association 99(467): 673–
686.
Yu, K.; Mammen, E.; and Park, B. U. 2011. Semi-parametric
regression: Efficiency gains from modeling the nonparamet-
ric part. Bernoulli 17(2): 736–748.
Zhang, C.-H. 2002. Risk bounds in isotonic regression. The
Annals of Statistics 30(2): 528–555.

10128


