
Harmonized Dense Knowledge Distillation Training
for Multi-Exit Architectures

Xinglu Wang, Yingming Li ∗

College of Information Science & Electronic Engineering, Zhejiang University, China
{xingluwang,yingming}@zju.edu.cn

Abstract

Multi-exit architectures, in which a sequence of intermedi-
ate classifiers are introduced at different depths of the fea-
ture layers, perform adaptive computation by early exiting
“easy” samples to speed up the inference. In this paper, a
novel Harmonized Dense Knowledge Distillation (HDKD)
training method for multi-exit architecture is designed to en-
courage each exit to flexibly learn from all its later exits. In
particular, a general dense knowledge distillation training ob-
jective is proposed to incorporate all possible beneficial su-
pervision information for multi-exit learning, where a harmo-
nized weighting scheme is designed for the multi-objective
optimization problem consisting of multi-exit classification
loss and dense distillation loss. A bilevel optimization al-
gorithm is introduced for alternatively updating the weights
of multiple objectives and the multi-exit network parame-
ters. Specifically, the loss weighting parameters are optimized
with respect to its performance on validation set by gradient
descent. Experiments on CIFAR100 and ImageNet show that
the HDKD strategy harmoniously improves the performance
of the state-of-the-art multi-exit neural networks. Moreover,
this method does not require within architecture modifica-
tions and can be effectively combined with other previously-
proposed training techniques and further boosts the perfor-
mance.

Introduction
Deep learning methods, especially convolutional neural net-
works (CNNs) have achieved remarkable success on a va-
riety of computer vision tasks, such as image classification
and object detection. However, these extraordinary achieve-
ments usually rely on very deep models accompanied by
high computational demands, which prevents them from be-
ing deployed in resource-constrained platforms like mobile
devices.

Recently, there has been a rising interest in accelerating
CNNs at inference time. Common methods include direct
network pruning (Han et al. 2015; Zhu and Gupta 2017),
knowledge distillation (Hinton, Vinyals, and Dean 2015;
Romero et al. 2014), weight quantization (Courbariaux and
Bengio 2016; Rastegari et al. 2016), novel architecture de-
signs (Howard et al. 2017), and adaptive inference (Liu and

∗Corresponding author
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Dense knowledge distillation training for multi-
exit architecture. Given an input, the prediction of differ-
ent exits will be sequentially generated. Classification loss
at exit i is denoted as LCEi . Dense distillation loss from exit
i to exit j, denoted as LKDij , allows each exit to learn from
all its later exits.

Deng 2017; Wu et al. 2018). Among them, the adaptive in-
ference has attracted much attention as it does not modify
network structure and can be applied in tandem with other
approaches to further reduce the inference time (Lin et al.
2017; Wang et al. 2018a). Given the fact that natural data
is usually composed of easy samples and difficult samples,
adaptive inference aims at achieving efficient resource allo-
cation without loss of accuracy, by positing that during the
inference stage easy samples do not require the full power
of a massive deep neural network.

Multi-exit architecture has emerged as a representative
approach for adaptive inference (Bolukbasi et al. 2017; Li
et al. 2019). It implements adaptive computation by early ex-
iting “easy” samples to speed up the inference. In this archi-
tecture, early exits are introduced at different depths of the
feature layers. At these early exits, a sequence of intermedi-
ate classifiers of increasing complexity are incorporated. As
shown in the Fig. 1, the representations and computations of
the earlier layers are reused by the later layers. The predic-
tion for an input image is progressively updated throughout

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

10218



the network.

Multi-exit architecture learning is inherently a multi-
objective problem. Different objectives from different classi-
fiers may interfere, for example when the intermediate clas-
sifier loss facilitates the early features to be optimized for the
short-term and not for the final exits. Multi-scale dense net-
work (MSDNet) alleviates the negative effect of early clas-
sifiers via dense connections (Huang et al. 2017a). Building
upon MSDNet, recent studies incorporate distillation loss to
improve the training procedure by encouraging early exits to
mimic the output distributions of the last exit. The motiva-
tion is that the last exit has the maximum network capacity
and should be more accurate than the ones from the earlier
exits.

Though the distillation-based multi-exit learning methods
achieve better performance, there are still some limitations.
On the one hand, they employ a naive weighted sum of
losses and the loss weights are uniform or manually tuned,
where the tradeoff between the multi-exit classification loss
and distillation loss is not well considered. Since different
objectives in a joint optimization might be competing or
even conflicting (Yu et al. 2020), such a simple weighting
scheme would affect the joint learning of multi-exit classi-
fication and knowledge distillation. On the other hand, the
existing methods mainly employ the last exit as a teacher
model and distill knowledge into earlier exits. However, to
fully release the potential of knowledge distillation, it is nec-
essary to adaptively learn from all later exits for each exit.

To further improve the generalization performance of
multi-exit architecture learning, in this paper we investi-
gate the multi-exit learning problem with a new perspective
of considering dense knowledge distillation and the harmo-
nized weighting scheme simultaneously. A new framework
for training multi-exit architectures with Harmonized Dense
Knowledge Distillation (HDKD) is introduced to fully ex-
ploit the beneficial supervision information. As shown in
the Fig. 1, each exit learns from all its later exits through
dense knowledge distillation to improve the classification
accuracy. Further, a harmonized weight learning method is
employed to obtain the best trade-off between the multiple
objectives of multi-exit classification and dense distillation.
Instead of searching over a discrete set of candidate weights,
HDKD learns to adaptively assign weights to the different
objectives of different exits based on their gradient direc-
tions. In particular, similar to meta-learning, it adopts a gra-
dient descent step on the current loss weights with respect
to its performance on the validation set. Validation is per-
formed at every training iteration to dynamically update the
loss weights of the current batch. The overall updating of the
multiple objective weights and the model parameters in the
network are solved with a bilevel optimization procedure.

Extensive evaluations are conducted to investigate the per-
formances of training multi-exit architectures with harmo-
nized dense knowledge distillation. The experimental results
on two public image datasets show that HDKD consistently
improves the performance of the state-of-the-art multi-exit
neural network.

Related Work
As an important technique for accelerating CNNs at in-
ference time, adaptive inference strategically allocates less
computation on “easy” samples and more resource to the
“hard” samples (Wang et al. 2018b). Various adaptive in-
ference schemes are explored: (Bolukbasi et al. 2017) learn
an adaptive decision function by reinforcement learning to
determine the stage examples exit at. Gating functions are
designed upon ResNet architectures to dynamically choose
layers for efficient inference (He et al. 2016; Veit and Be-
longie 2018; Wang et al. 2018a). An RNN architecture is
proposed by (McIntosh et al. 2018) for dynamically deter-
mining the number of steps according to the time budget.

MSDNet leverages multi-scale mechanism and has at-
tracted much attention for its simplicity and performance
(Huang et al. 2017a; Ke et al. 2018; You et al. 2018). Based
on MSDNet, follow-up methods improve from different per-
spectives: (Li et al. 2019) introduces a gradient equilibrium
mechanism that keeps a fast learning rate for each classi-
fier while reducing variance of the shared parameter gradi-
ents. (Wang and Li 2020) propose a gradient deconfliction
training algorithm to mitigate the interference between exits.
(Zhang, Ren, and Urtasun 2018) design a Graph HyperNet-
work to automatically find the best task-specific topology for
multi-exit networks.

Among the existing methods, the closest work is (Phuong
and Lampert 2019). It focuses on training with distillation
loss by encouraging early exits to imitate the last exit. Our
method is distinct in dense knowledge distillation that allows
each exit to learn from all the later exits and adaptive weight
learning that resolves the conflicts among multi-exit clas-
sification losses and dense distillation losses. Meanwhile,
our method is architecture agnostic and can be directly ap-
plied to existing multi-exit architectures (Teerapittayanon,
McDanel, and Kung 2016; Luan et al. 2019a). As an alterna-
tive way resolving conflicts, (Passalis et al. 2020) simultane-
ously trains all the exit layers with the base network frozen.

On the other hand, our method leverages an adaptively
weighted loss rather than a fixed average loss and can be
considered as an instantiation of meta-learning. In the sense
of taking validation loss as a meta-objective and applying
one-step update in each iteration, our work acts like the
optimization-based meta-learning, e.g., MAML and its vari-
ants (Finn, Abbeel, and Levine 2017; Nichol, Achiam, and
Schulman 2018; Sun et al. 2019; Rajeswaran et al. 2019).
However, MAML aims at learning a transferable weight ini-
tialization for fast adaptation on few-shot learning task (Ravi
and Larochelle 2016; Lorraine and Duvenaud 2018). The
common goal is to adapt with only a few data points. In
contrast, the proposed HDKD aims at facilitating multi-exit
learning with dense knowledge distillation during regular
training and is generally applicable to any large-scale classi-
fication task with thousands of classes.

Methodology
In this section, we first analyze the necessary background
for multi-exit network learning. Then dense knowledge dis-
tillation is introduced into the training process of multi-

10219



exit learning. Further, we propose a harmonized weighting
scheme for the multiple objective optimization problem of
training with dense distillation loss. In particular, the loss
weights and the multi-exit network parameters are alterna-
tively updated within a bilevel optimization framework.

Multi-Exit Network
By attaching early exits at different depths, multi-exit archi-
tecture can be viewed as a dynamic version of the conven-
tional neural network. As shown in Fig. 1, given an input
image x and its label y, then a multi-exit architecture with
K exits can be represented by a multi-prediction function:

f(x; θ) = [f1(x; θ1), . . . ,fK(x; θK)], (1)

where fi indicates the sub-network function learned by the
i-th classifier with θi, i = 1, . . . ,K as its accompanied pa-
rameters. The overall parameters of the network are encap-
sulated as θ.

During the training stage, all the subnetworks are jointly
optimized with a cumulative loss function. Following
(Huang et al. 2017a), the weights for all loss functions are
simply set to 1 and cross-entropy (CE) loss is employed for
all loss functions. Denote the loss function of the i-th exit.
classifier LCEi (θi) as Li(y, fi(x; θi)), the optimal parameter
is optimized via θ∗ = argminθ

∑K
i=1 L

CE
i (θi)

At the inference stage, the multi-exit architecture would
be beneficial in the two following settings with compu-
tational constraints: budgeted batch classification mode,
where a set of examples share a fixed computational bud-
get and the budget can be allocated unevenly across “easy”
and “hard” samples; and anytime prediction mode, where
the system can output a prediction at any given exit at any-
time time. We follow the setup proposed by (Huang et al.
2017a). In experiments, for the batched budget classifica-
tion, the confidence threshold for each exit classifier is first
determined according to the computational cost of each cor-
responding stage on a hold-out subset. Then, the input ex-
amples would traverse the network and exit after the clas-
sifier fi when its prediction confidence surpasses the pre-
determined threshold ti. For anytime classification, the in-
put propagates through the network until the budget is ex-
hausted or users interrupt the computation. The latest pre-
diction would be output.

Training with Harmonized Dense Knowledge
Distillation
Knowledge distillation (KD) is a representative compres-
sion technique, which aims to transfer the knowledge of a
large teacher network to a lightweight student network with
fewer layers. For multi-exit learning, since the later exits
have more network capacity and should be more accurate
than the early exits, KD is a natural way to boost the perfor-
mance of shallow exits by encouraging them to imitate the
deep ones. As the student model, the early-exit is required
to learn the soft-labels provided by the teacher model, the
corresponding later exits. Selecting exit-k2 as teacher and
exit-k1 as student (k2 > k1), the distance loss between the

teacher’s prediction and the student’s prediction is defined
as:

LKDk2→k1 = −T 2 CE(sk1 , sk2) = −T 2
∑
i

sik1 log s
i
k2 (2)

where sik denotes i-th scalar of soft labels vector in the k-
th exit, which is obtained by scaling the logits predicted by
the exit with a temperature T and further normalizing with
softmax function, and T 2 is multiplied to compensate the
magnitudes of the gradients scaled by the soft targets (Hin-
ton, Vinyals, and Dean 2015).

By employing the last exit as a teacher model distilling
knowledge into earlier exits, the objective of the existing
distillation based multi-exit learning (Phuong and Lampert
2019; Zhang et al. 2019; Luan et al. 2019b) is as follows:

θ∗ = argmin
θ

K∑
i=1

LCEi (θi) + λ
K−1∑
j=1

LKDK→j(θj), (3)

where λ is a manually tuned hyper-parameter for the bal-
ance of classification and distillation loss. Though this way
improves the training procedure and achieves better perfor-
mance, it fails to exploit all potentially beneficial collabo-
ration between exits. To fully release the potential abilities
of knowledge distillation, we propose to train the multi-exit
architecture with dense knowledge distillation. In particular,
each exit learns from all its later exits and dense distillation
is incorporated to improve the classification accuracy. The
overall objective is to minimize the following integrated loss
on the training set:

θ∗ = argmin
θ

K∑
i=1

LCEi (θi) + λ
K∑
i=2

i−1∑
j=1

LKDi→j(θj), (4)

where dense distillation loss is considered to fully exploit
the beneficial supervision information.

However, the above setup in Eq. 4 does not fully consider
the tradeoff between the multiple objectives. On the one
hand, each distillation loss for any exit is weighted equally
and thus the importance of knowledge from different exits
are not reflected. On the other hand, different loss objec-
tives are usually competing or even conflicting (Yu et al.
2020), which also influence the overall performance. To
overcome these limitations, Harmonized Dense Knowledge
Distillation (HDKD) training for multi-exit architecture is
introduced to learn an appropriate weighting scheme for
the multi-objective optimization. Instead of searching over
a discrete set of candidate weights, HDKD learns to adap-
tively assign weights to the different objectives of different
exits based on their gradient directions, where we minimize
a weighted loss:

θ∗(γ) = argmin
θ

K∑
i=1

γiL
CE
i (θi) +

K∑
i=2

i−1∑
j=1

γijL
KD
i→j(θj),

(5)

where γi controls the strength of cross-entropy loss at exit-
i, γij denotes the weight of distillation loss from exit-i to

10220



exit-j, and γ encapsulates all γi and γij . Note that γ can
be understood as a set of learnable training hyper-parameter,
and the optimal value for γ is based on its validation perfor-
mance:

γ∗ = argmin
γ
Lval (θ

∗(γ)) (6)

Bilevel-Optimization With Ltrain and Lval denoting the
training and validation loss respectively, they are determined
not only by the loss weights γ, but also the model parame-
ters θ in the network. The goal for training with harmonized
dense distillation is to find γ∗ that minimizes the validation
loss Lval(θ∗(γ)), where the parameters associated with the
multi-exit architecture are obtained by minimizing the train-
ing loss θ∗ = argminθ Ltrain(θ, γ

∗).
Consequently, a bilevel optimization problem is formed

with γ as the upper-level variable and θ as the lower-level
variable:

minγ Lval (θ
∗(γ))

s.t. θ∗(γ) = argminθ Ltrain(θ, γ)
(7)

where the Lval is optimized to find the optimal configuration
γ in the upper-level and the Ltrain is minimized to obtain the
best model parameters θ∗(γ) given a certain γ in the lower-
level.

Directly solving the optimization in Eq. 7 is prohibitive,
as evaluating the gradient of γ exactly involves another ex-
pensive inner optimization problem. We therefore adopt a
one-step update approximation as follows:

∇γLval (θ
∗(γ))

≈∇γLval (θ − ξ∇θLtrain(θ, γ)) ,
(8)

where θ denotes the current weights maintained by the algo-
rithm, and ξ is the learning rate for the inner one-step opti-
mization. The idea is to approximate θ∗(γ) by adapting θ us-
ing only one single training step, without training the model
given γ until convergence and completely solving the inner
optimization in Eq. 7.

As shown in Alg. 1, the bilevel optimization is performed
with an iterative procedure. In particular, the calculating of
gradient∇γLval(θt− ξ∇θtLtrain(θt, γ)) in the upper level
involves a second-order gradient. It can be implemented by
the modern automatic differentiation framework, which is
capable of computing the Jacobian-vector products in a for-
ward mode, so as to compute the Hessian-vector products,
i.e., the gradient of the loss weights, in later backward mode.
It is also worthy to note that the model parameters do not di-
rectly touch validation data and would not over-fit on it.

Balanced Validation Module It is a simple and direct
option to measure the performance of the current network
on a validation set adopting the sum of cross-entropy loss,∑
k L

CE
k (θ∗(γ)). However, the losses of early exits tend

to be larger than the later ones and might be overempha-
sized, thereby influencing the optimization of later exits. In
other words, adopting the absolute cross-entropy loss is not
enough for a balanced optimization.

To mitigate this influence, the relative change of exit-wise
loss is also considered. In specific, we propose a ratio con-
straint, i.e., the ratio of the current cross-entropy loss and

Algorithm 1 Harmonized Dense Knowledge Distillation
Training Procedure for Multi-exit Learning

Require: Normal update steps T , learning rate ξ for θ and
learning rate ε for γ.
while not converge do

for t = 0 · · ·T do
Sample Xtrain and Xval, calculate the validation
loss

Lval = Lval(θ
t − ξ∇θtLtrain(θt, γt))

Calculate∇γLval and update the loss weights:

γt+1 = γt − ε∇γtLval

end for
for t = 0 · · ·T do

Sample Xtrain, calculate Ltrain(θt, γt)
Calculate ∇θtLtrain(θt, γt) and update the model
parameters:

θt+1 = θt − ξ∇θtLtrain(θt, γt)

end for
end while
return The converged model.

its estimation of expected loss LCEk (θ∗(γ))/E(LCEk ) should
smaller than 1, since the current cross-entropy loss of each
exit is usually expected to be less than its estimation and a
proper penalty should be imposed when this assumption is
violated. The ratio constraint term would be integrated to
validation loss as a regularization term, and for simplicity,
we call it as ratio regularizer.

The estimation of expected exit-k loss E(LCEk ) is com-
puted with a exponential moving average in the following
way:

E(LCEk )← mE(LCEk ) + (1−m)LCEk (9)

It is a common practice to approximate expectation by fixing
momentum as m = 0.9 (Ioffe and Szegedy 2015; Li, Liu,
and Wang 2019).

Further, we combine the absolute cross-entropy loss with
the ratio regularizer to construct a more balanced validation
loss for meta gradient updating. The joint loss function is
written as follows:

Lval(θ
∗(γ)) = α

K∑
k=1

LCEk (θ∗(γ))

+(1− α)
K∑
k=1

f

(
LCEk (θ∗(γ))

E(LCEk )
− 1

)
,

(10)

where α is a balancing parameter, the softplus function
f(x) = ln(1 + exp(x)) is the soft version of hinge loss.
The second term in Eq. 10 is the ratio regularizer pursuing
balanced relative change of cross-entropy loss. Even when
the ratio constraint is not violated, the f would encourage a
further decrease of the corresponding exit loss.

10221



flops ImageNet(100) ImageNet(300)
(G) MSD

Impr DBT
Naive HMSD

HDBT HDKD
MSD

Impr DBT
Naive HMSD

HDBT HDKDNet DKD Net Net DKD Net
Exit-1 0.34 59.07 59.74 65.8 67.17 60.12 66.97 68.3 72.45 73.27 76.01 77.49 72.62 78.9 78.72
Exit-2 0.69 67.16 68.27 70.82 71.35 68.39 71.24 72.24 79.95 81.28 81.84 82.21 80.54 83 82.58
Exit-3 1.01 70.25 71.12 71.89 72.23 70.59 73.94 74.02 83.12 84.33 83.41 83.69 83.31 84.61 85.13
Exit-4 1.25 70.9 72.06 71.55 72.04 71.72 74.06 74.09 83.61 85.94 83.63 83.87 84.92 84.58 85.87
Exit-5 1.36 71.51 72.87 71.57 71.96 72.11 74.5 74.85 84.66 85.96 84.01 84.33 85.08 85.06 86.37

flops ImageNet(500) ImageNet(full)
(G) MSD

Impr DBT
Naive HMSD

HDBT HDKD
MSD

Impr DBT
Naive HMSD

HDBT HDKDNet DKD Net Net DKD Net
Exit-1 0.34 74.89 75.74 78.16 78.16 75.16 81.17 80.70 79.25 80.15 80.80 82.33 78.95 83.06 82.44
Exit-2 0.69 82.76 84.13 83.87 84.03 83.49 85.07 84.48 86.46 87.89 86.92 87.39 87.43 87.12 87.91
Exit-3 1.01 85.47 85.74 85.72 85.12 86.83 86.81 86.47 89.15 90.52 88.82 88.85 89.49 90.85 91.47
Exit-4 1.25 85.92 86.31 86.3 85.35 87.25 87.26 87.42 89.83 91.33 89.15 89.17 91.22 91.9 91.79
Exit-5 1.36 86.92 87.25 86.85 85.81 88.56 87.85 87.96 90.75 91.74 89.73 89.67 92.43 92.04 92.69

Table 1: Top-5 classification accuracy for each individual classifier in 5-exits 23-layers MSDNet. We compare the models
trained by the exit-wise loss v.s. distillation-based training methods v.s. the proposed Harmonized weighting versions on Ima-
geNet with 100, 300, 500, and all images per class. Bold values indicate statistically significant performance.

Experiments
To demonstrate the effectiveness of the proposed training ap-
proach, we conduct extensive experiments on two represen-
tative image classification datasets, CIFAR100 (Krizhevsky,
Nair, and Hinton 2009) and ILSVRC 2012 ImageNet (Rus-
sakovsky et al. 2015). All of the experiments are built upon
the MSDNet (Huang et al. 2017a). A fair comparison is per-
formed by implementing the state-of-the-art methods with
the same hyper-parameter setup in Tensorflow (Abadi et al.
2016) framework.

Experimental Setup
Datasets CIFAR100 dataset contains RGB images of size
32 × 32, with 50,000 images of 100 classes for training
and 10, 000 images for testing. Following (Huang et al.
2017b), we hold out 5,000 training images as a valida-
tion set for searching the confidence threshold in budgeted
batch classification and supporting the loss weights updating
for the HDKD method. This validation set could be safely
reused since the model trained by HDKD does not touch the
ground-truth label of the validation set and will not over-
fit on it. Further, standard data augmentation schemes (He
et al. 2016) are used for training.

ImageNet dataset contains 1,000 classes, with 1.2 million
training images and 50,000 for testing. 50,000 images in the
training set are held out and serve as the validation set. For
data augmentation, we also follow the practice in (He et al.
2016; Huang et al. 2017b).

Following the setup of (Phuong and Lampert 2019), we
conduct experiments from low-data (using only subsets of
the available data) to the full-dataset setting. By CIFAR(X),
we denote a dataset with X randomly selected examples
from each CIFAR100 class. And ImageNet(X) denotes a
dataset constructed analogously. The difference between Im-
ageNet and CIFAR100 is that the number of images in a
class is not strictly equal, varying from 700 to 1.25k images
per class. Thus we denote the full-dataset setting as Ima-

geNet(full), instead of ImageNet(1200).

Compared Models To verify the superiority of the pro-
posed HDKD method, we compare it with the following
state-of-the-art methods:
(1). MSDNet (Huang et al. 2017a): As our proposed method
and other comparison methods are all based on MSDNet, it
serves as a direct baseline in our experiments.
(2). DBT (Phuong and Lampert 2019): Distillation Based
Training (DBT) is a self-distillation training strategy for
MSDNet, encouraging the early exits to imitate the last exit.
(3). Impr (Li et al. 2019): It employs both gradient equilib-
rium and knowledge distillation techniques to improve the
training for MSDNet.
(4). NaiveDKD: Naive Dense Knowledge Distillation intro-
duces the dense knowledge distillation into multi-exit train-
ing with a simple uniform weighting scheme shown in Eq. 4.
(5). HMSDNet: Harmonized weighting scheme is only con-
ducted for the multi-exit cross-entropy loss of MSDNet, i.e.,
Eq. 5 with all γij = 0.
(6). HDBT: We also conduct the experiment for learning
harmonized weights for the multiple objectives of DBT, op-
timizing Eq. 5 with all γij = 0 for i < K.
(7). HDKD: Harmonized Dense Knowledge Distillation
(HDKD) is our proposed training strategy.

Model Architecture We adopt the MSDNet (Huang et al.
2017a) as the basic architecture. For anytime prediction set-
ting, the CIFAR MSDNet has 36 layers and 8 exits. The Im-
ageNet MSDNet is of 23 layers and 5 exits. For the bud-
geted batch classification setting, three models with 5 exits
and depth of {23, 33, 38} are chosen for ImageNet classifi-
cation. On CIFAR100, 4 models with {4, 5, 6, 8} exits are
leveraged, with the corresponding depth of {10, 15, 21, 36}.

Optimization and Hyper-parameters We train all mod-
els from the random initialization performed by SGD with
a momentum of 0.9, and a weight decay of 10−4. For CI-
FAR100, the model is trained with a batch size of 128 for

10222



flops CIFAR(150) CIFAR(250)
(M) MSD

Impr DBT
Naive HMSD

HDBT HDKD
MSD

Impr DBT
Naive HMSD

HDBT HDKDNet DKD Net Net DKD Net
Exit-1 6.85 74.44 74.54 80.92 82.20 74.94 80.09 81.38 81.99 82.05 87.08 87.57 82.50 85.15 85.82
Exit-2 14.4 78.97 79.67 84.20 84.72 79.07 82.91 83.87 84.39 84.76 88.54 88.49 84.89 86.35 86.72
Exit-3 27.3 81.27 82.18 84.95 84.87 81.54 84.03 84.65 86.00 86.47 89.55 89.63 86.50 88.29 88.73
Exit-4 48.4 82.72 83.69 85.67 86.10 83.14 85.69 86.33 87.60 88.12 90.25 89.78 88.11 89.37 89.69
Exit-5 81.6 84.12 85.11 86.24 86.46 84.56 86.32 86.76 88.70 89.21 90.74 90.86 89.20 90.53 90.86
Exit-6 113 85.10 86.80 86.59 86.90 85.39 86.84 87.20 89.08 89.96 90.51 90.72 89.57 90.66 90.94
Exit-7 153 85.30 87.21 86.36 86.70 85.73 86.86 87.14 89.14 90.16 90.36 90.17 89.62 90.70 90.97
Exit-8 193 84.85 86.82 85.70 85.99 84.96 86.94 87.43 90.15 91.18 90.24 89.89 90.61 91.39 91.59

flops CIFAR(300) CIFAR(500)
(M) MSD

Impr DBT
Naive HMSD

HDBT HDKD
MSD

Impr DBT
Naive HMSD

HDBT HDKDNet DKD Net Net DKD Net
Exit-1 6.85 83.33 83.38 86.56 87.66 83.85 86.55 87.22 86.44 86.47 88.91 88.52 86.98 87.50 87.64
Exit-2 14.4 85.75 86.12 88.28 88.92 86.26 88.04 88.48 88.91 89.11 91.09 90.74 89.44 90.48 90.74
Exit-3 27.3 87.38 87.88 89.14 89.29 87.90 88.92 89.18 90.61 90.86 92.30 92.48 91.14 92.58 92.94
Exit-4 48.4 88.91 89.43 90.38 90.71 89.42 90.55 90.83 91.96 92.03 93.26 92.94 92.49 93.22 93.40
Exit-5 81.6 89.86 90.39 90.87 90.92 90.37 91.11 91.29 92.57 92.85 93.37 93.36 93.10 93.68 93.83
Exit-6 113 90.23 91.14 90.96 91.19 90.73 91.23 91.35 92.91 93.38 93.41 93.36 93.42 93.85 93.96
Exit-7 153 90.24 91.23 90.74 91.19 90.73 91.12 91.22 92.80 93.30 93.00 93.07 93.30 93.85 93.98
Exit-8 193 90.99 92.04 91.02 91.61 91.45 92.19 92.37 92.93 93.46 92.90 92.80 93.40 93.89 94.02

Table 2: Top-5 classification accuracy for each individual classifier in 8-exits MSDNet on CIFAR100. We compare the mod-
els trained by the exit-wise loss v.s. distillation-based training methods v.s. the proposed Harmonized weighting versions on
CIFAR100 with 150, 250, 350, 500 images per class. Bold values indicate statistically significant performance.

300 epochs. The learning rate is initialized as 0.1, divided by
10 after epochs 150 and 225. For ImageNet, we use a larger
batch size of 1024 by default instead of 256, following the
common setting suggested by (Goyal et al. 2017).

Anytime Prediction
In this setting, the model progressively updates its predicted
results and can be forced to output its most recent predic-
tion at any time. The classification accuracies of individual
classifiers are reported for each method.

ImageNet Results In Table 1, we summarize the top-5 ac-
curacy of each exit classifier on ImageNet for different com-
pared models. DBT and Impr neglects the rich beneficial su-
pervision information of dense distillation and the balance
of the joint classification and distillation loss. Through in-
corporating dense distillation into the multi-exit learning,
NaiveDKD achieves much better performance for the early
exits, but the performance of late exits stagnates due to
the conflicting between losses. Via employing the harmo-
nized weighting scheme to balance the competing multi-
objectives during the optimization, HDBT outstrips DBT,
however, each exit still can not fully exploit the useful in-
formation from all later exits. For the late exis, HDKD and
HDBT outstrip MSDNet, while DBT and NaiveDKD be-
have similarly to MSDNet. It demonstrates that the appropri-
ate choice of loss weights also benefits the teacher exits and
helps the overall performance of multi-exit learning. Conse-
quently, from Table 1, we observe that HDKD out-performs
all other compared models, and the accuracy scores achieved
by HDKD are much higher than those achieved by the com-
peting models in most cases. For example, compared with

Impr and DBT, HDKD achieves 8.56% and 2.5% gains re-
spectively in the exit-1 classifier on ImageNet(100).

CIFAR100 Results We observe analogous results on CI-
FAR100 in Table 2. By allowing each exit to learn from
the last exit, DBT greatly improves the early exits, how-
ever, the performance of late exits keeps roughly the same
with the MSDNet baseline. With dense knowledge distilla-
tion, NaiveDS further improves the early exits but the perfor-
mance late exits still keep stagnating. H-MSDT and HDBT
achieve better performance than MSDT and DBT in most
cases, which demonstrates the effectiveness of the harmo-
nized loss weights learning.

Compared with DBT, HDKD leverages dense knowledge
distillation with a harmonized loss weighting scheme and
achieves better performance in most cases, especially for the
late exits. For example, HDKD improves the performance
of exit-8 over DBT by 1.73%, 1.35%, 1.35%, and 1.12% re-
spectively on CIFAR(150/250/350/500). This demonstrates
that the dynamically changed configuration γ guides the
model converge to a better local optimum, where the early
exit benefits the late exit.

Admittedly, for some early exits, HDKD performs
slightly worse than NaiveDKD, which might illustrate that
some early exits require uniform supervision from the later
exits. Since the harmonized weighting scheme considers the
overall performance of all exits, it may be not optimal for
some early exits. However, HDKD still consistently per-
forms better than the competing models in most cases. Fu-
ture work should continue to explore how to further resolve
the conflicts and improve the early and late exits more har-
moniously.

10223



MSDNet
HDKD with Different γ Initializaiton Fixed γ α of HDKD
DBT-like DS-like Rand Fixed-1 Fixed-2 0 0.1 0.5 0.9 1

Exit-1 72.45 79.02 78.72 79.22 78.47 78.49 77.51 76.64 78.72 77.07 79.55
Exit-2 79.95 81.78 82.58 82.30 82.61 82.21 81.99 83.26 82.58 82.98 81.84
Exit-3 83.12 83.67 85.13 85.51 84.23 83.69 85.65 85.34 85.13 84.83 84.94
Exit-4 83.61 84.49 85.87 85.95 84.85 83.87 86.17 86.26 85.87 85.92 85.54
Exit-5 84.66 85.65 87.37 87.70 85.91 83.33 87.94 87.54 87.37 87.31 86.11

Table 3: Ablation study on ImageNet(300) to verify the effect of γ initialization, fixed configuration γ, and α in HDKD.

Figure 2: Accuracy (top-5) v.s. flops per image in budgeted
batch classification on the ImageNet(Full) and CIFAR(500).

Budgeted Batch Classification
In this setting, the model receives a batch of instances and a
computational budget. Constrained by the budget, “easy” ex-
amples could exit at early classifiers while “hard” examples
propagate throughout the network. For each method, several
corresponding models with different depths are trained, each
of which covers a different range of computational budgets.
At the inference stage, the best model is selected for each
budget based on its accuracy on the validation set, and the
corresponding accuracy is plotted.

The performance of budgeted batch classification on Im-
ageNet(Full) and CIFAR(500) are shown in Fig. 2. On Im-
ageNet(Full), HDKD improves the top-5 accuracy by 3.5%
compared to DBT at high-flops region around 2.5G and by
1.5% at low-flops region around 0.5G, which shows the ad-
vantage of the dense distillation and harmonized weighting
scheme. On CIFAR(500), with an average budget of 25M,
the improvement of HDKD over the baseline MSDNet is
slightly better than DBT, i.e., 0.83% versus 0.71%, and at
the high-flops region of 125M, HDKD exceeds the DBT
with a significant margin of 1.66%.

Ablation Study
In this section, we examine the sensitivity of parameter set-
tings for the proposed HDKD training method.

Sensitivity Analysis of γ Initialization As a benefit of the
HDKD, the exhausted tuning of γ is avoided, and the initial-
ization of γ should not severely affect performance. To test
the sensitivity, we initialize γ with the following configura-
tions: 1). DBT-like: the last exit teaches all the others exits;
2). DS-like: each exit equally learns from all later exits; 3).
Rand: γ is sampled randomly from a uniform distribution.

The comparison among different γ initializations is

shown in Table 3. We observe that the impact of different
initializations is wiped out in the learning process and the
performance is not sensitive to the γ initialization.

The Importance of Evolving γ One may argue that the
advantage of HDKD is simply hyper-parameter searching,
i.e., seeking for a final fixed best γ configuration. How-
ever, we observe that the function of harmonized weighting
scheme is guiding the model to a better local optimum and
the final searched configuration γ is not necessarily benefi-
cial to the whole training process.

To understand this, we conduct experiments by extracting
the final γ in a converged model trained by HDKD, using
it as fixed γ parameters to train new models from scratch.
The performance is shown in Column Fixed-1 and Fixed-2
in Table 3. We see that both Fixed-1 and Fixed-2 perform
worse than Rand, which demonstrates that prematurely ap-
plying the final γ causes severe performance degradation.
Thus, we conclude that HDKD is not merely searching for a
final best γ. The highly dynamic training process expects a
continuously evolving γ and HDKD is responsible for that.

Sensitivity Analysis of α The validation module of
HDKD in Eq. 10 is composed of cross-entropy loss term
(weighted by α) and ratio regularizer term (weighted by
1 − α). As observed in Table 3, When α = 1, only the
cross-entropy loss term on the validation data is leveraged,
and the early exit performs better with the overall perfor-
mance decreasing. It is because that the early exit loss is
usually larger than the later ones, and the bilevel optimizer
may over-focus on decreasing the early ones and hurts the
later ones. Therefore, the ratio regularizer that involves the
current cross-entropy loss and the estimation of expectation
loss is an important design for alleviating this influence. The
performance is not sensitive to the choice of α in a wide
range, and by default, we set α = 0.5 without tuning.

Conclusion
In this paper, we introduce a harmonized dense knowledge
distillation training technique for multi-exit architectures,
where a harmonized weighting scheme is designed for the
multi-objective optimization problem consisting of multi-
exit classification loss and dense distillation loss. A bilevel
optimization algorithm is introduced for alternatively updat-
ing the weights of multiple objectives and the multi-exit
network parameters. Extensive experiments show that the
HDKD strategy consistently improves the performance of
the state-of-the-art multi-exit neural networks.

10224



Acknowledgments
This work is supported in part by National Key R&D
Program of China (No. 2018YFB1403600), NSFC (No.
U20A201548, 61702448), Artificial Intelligence Research
Foundation of Baidu Inc., Horizon Robotics, and Cloud
TPUs from Google’s TensorFlow Research Cloud (TFRC).

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.
2016. Tensorflow: A system for large-scale machine learn-
ing. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation, 265–283.

Bolukbasi, T.; Wang, J.; Dekel, O.; and Saligrama, V. 2017.
Adaptive neural networks for efficient inference. In Pro-
ceedings of the 34th International Conference on Machine
Learning-Volume 70, 527–536.

Courbariaux, M.; and Bengio, Y. 2016. BinaryNet: Training
Deep Neural Networks with Weights and Activations Con-
strained to +1 or -1. CoRR abs/1602.02830.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. arXiv
preprint arXiv:1703.03400 .

Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.;
Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; and He,
K. 2017. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677 .

Han, S.; Pool, J.; Tran, J.; and Dally, W. J. 2015. Learn-
ing both Weights and Connections for Efficient Neural Net-
work. In Advances in Neural Information Processing Sys-
tems, 1135–1143.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 .

Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 .

Huang, G.; Chen, D.; Li, T.; Wu, F.; van der Maaten, L.;
and Weinberger, K. Q. 2017a. Multi-scale dense networks
for resource efficient image classification. arXiv preprint
arXiv:1703.09844 .

Huang, G.; Liu, Z.; Maaten, L. v. d.; and Weinberger, K. Q.
2017b. Densely Connected Convolutional Networks. 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) .

Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167 .

Ke, L.; Chang, M.-C.; Qi, H.; and Lyu, S. 2018. Multi-scale
structure-aware network for human pose estimation. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 713–728.

Krizhevsky, A.; Nair, V.; and Hinton, G. 2009. Cifar-
10 and cifar-100 datasets. URl: https://www. cs. toronto.
edu/kriz/cifar. html 6.

Li, B.; Liu, Y.; and Wang, X. 2019. Gradient Harmonized
Single-Stage Detector. Proceedings of the AAAI Conference
on Artificial Intelligence 33: 8577–8584.

Li, H.; Zhang, H.; Qi, X.; Ruigang, Y.; and Huang, G.
2019. Improved Techniques for Training Adaptive Deep
Networks. IEEE International Conference on Computer Vi-
sion (ICCV) .

Lin, J.; Rao, Y.; Lu, J.; and Zhou, J. 2017. Runtime neu-
ral pruning. In Advances in Neural Information Processing
Systems, 2181–2191.

Liu, L.; and Deng, J. 2017. Dynamic deep neural networks:
Optimizing accuracy-efficiency trade-offs by selective exe-
cution. arXiv preprint arXiv:1701.00299 .

Lorraine, J.; and Duvenaud, D. 2018. Stochastic hyperpa-
rameter optimization through hypernetworks. arXiv preprint
arXiv:1802.09419 .

Luan, Y.; Zhao, H.; Yang, Z.; and Dai, Y. 2019a. MSD:
Multi-Self-Distillation Learning via Multi-classifiers within
Deep Neural Networks. arXiv preprint arXiv:1911.09418 .

Luan, Y.; Zhao, H.; Yang, Z.; and Dai, Y. 2019b. MSD:
Multi-Self-Distillation Learning via Multi-classifiers within
Deep Neural Networks. arXiv preprint arXiv:1911.09418 .

McIntosh, L.; Maheswaranathan, N.; Sussillo, D.; and
Shlens, J. 2018. Recurrent Segmentation for Variable Com-
putational Budgets. IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW) .

Nichol, A.; Achiam, J.; and Schulman, J. 2018. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999 .

Passalis, N.; Raitoharju, J.; Tefas, A.; and Gabbouj, M. 2020.
Efficient adaptive inference for deep convolutional neural
networks using hierarchical early exits. Pattern Recognition
105: 107346.

Phuong, M.; and Lampert, C. H. 2019. Distillation-Based
Training for Multi-Exit Architectures. In Proceedings of the
IEEE International Conference on Computer Vision, 1355–
1364.

Rajeswaran, A.; Finn, C.; Kakade, S. M.; and Levine, S.
2019. Meta-learning with implicit gradients. In Advances
in Neural Information Processing Systems, 113–124.

Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A.
2016. XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks. In Leibe, B.; Matas, J.;
Sebe, N.; and Welling, M., eds., ECCV, volume 9908, 525–
542.

10225



Ravi, S.; and Larochelle, H. 2016. Optimization as a
model for few-shot learning. In International Conference
on Learning Representations.
Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta,
C.; and Bengio, Y. 2014. Fitnets: Hints for thin deep nets.
arXiv preprint arXiv:1412.6550 .
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
et al. 2015. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision 115(3): 211–
252.
Sun, Q.; Liu, Y.; Chua, T.-S.; and Schiele, B. 2019. Meta-
Transfer Learning for Few-Shot Learning. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) .
Teerapittayanon, S.; McDanel, B.; and Kung, H. T. 2016.
BranchyNet: Fast inference via early exiting from deep neu-
ral networks. In 23rd International Conference on Pattern
Recognition, ICPR 2016, Cancún, Mexico, December 4-8,
2016, 2464–2469. IEEE.
Veit, A.; and Belongie, S. 2018. Convolutional networks
with adaptive inference graphs. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 3–18.
Wang, X.; and Li, Y. 2020. Gradient Deconfliction-Based
Training For Multi-Exit Architectures. In IEEE Interna-
tional Conference on Image Processing, ICIP 2020, Abu
Dhabi, United Arab Emirates, October 25-28, 2020, 1866–
1870. IEEE.
Wang, X.; Yu, F.; Dou, Z.-Y.; Darrell, T.; and Gonzalez, J. E.
2018a. Skipnet: Learning dynamic routing in convolutional
networks. In Proceedings of the European Conference on
Computer Vision (ECCV), 409–424.
Wang, Y.; Wang, L.; You, Y.; Zou, X.; Chen, V.; Li, S.;
Huang, G.; Hariharan, B.; and Weinberger, K. Q. 2018b. Re-
source Aware Person Re-identification Across Multiple Res-
olutions. IEEE Conference on Computer Vision and Pattern
Recognition .
Wu, Z.; Nagarajan, T.; Kumar, A.; Rennie, S.; Davis, L. S.;
Grauman, K.; and Feris, R. 2018. Blockdrop: Dynamic in-
ference paths in residual networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 8817–8826.
You, C.; Yang, Q.; Gjesteby, L.; Li, G.; Ju, S.; Zhang, Z.;
Zhao, Z.; Zhang, Y.; Cong, W.; Wang, G.; et al. 2018.
Structurally-sensitive multi-scale deep neural network for
low-dose CT denoising. IEEE Access 6: 41839–41855.
Yu, T.; Kumar, S.; Gupta, A.; Levine, S.; Hausman, K.; and
Finn, C. 2020. Gradient Surgery for Multi-Task Learning.
arXiv preprint arXiv:2001.06782 .
Zhang, C.; Ren, M.; and Urtasun, R. 2018. Graph hy-
pernetworks for neural architecture search. arXiv preprint
arXiv:1810.05749 .
Zhang, L.; Song, J.; Gao, A.; Chen, J.; Bao, C.; and Ma, K.
2019. Be Your Own Teacher: Improve the Performance of
Convolutional Neural Networks via Self Distillation. IEEE
International Conference on Computer Vision (ICCV) .

Zhu, M.; and Gupta, S. 2017. To prune, or not to prune: ex-
ploring the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878 .

10226


