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Abstract

In this paper, we propose a novel method, referred to as in-
complete multi-view tensor spectral clustering with missing-
view inferring (IMVTSC-MVI) to address the challenging
multi-view clustering problem with missing views. Different
from the existing methods which commonly focus on explor-
ing the certain information of the available views while ig-
noring both of the hidden information of the missing views
and the intra-view information of data, IMVTSC-MVI seeks
to recover the missing views and explore the full information
of such recovered views and available views for data clus-
tering. In particular, IMVTSC-MVI incorporates the feature
space based missing-view inferring and manifold space based
similarity graph learning into a unified framework. In such a
way, IMVTSC-MVI allows these two learning tasks to facil-
itate each other and can well explore the hidden information
of the missing views. Moreover, IMVTSC-MVI introduces
the low-rank tensor constraint to capture the high-order cor-
relations of multiple views. Experimental results on several
datasets demonstrate the effectiveness of IMVTSC-MVI for
incomplete multi-view clustering.

Introduction
Multi-view clustering (MVC) which attempts to group a set
of data points by adaptively exploring the information of
multiple views without the guidance of label information,
has witnessed great development in the past decades (Yang
and Wang 2018; Zhang et al. 2018; Gao et al. 2020; Tang
et al. 2020; Li et al. 2020b; Huang, Kang, and Xu 2020;
Zhan et al. 2018). Generally, conventional MVC performs
model learning and clustering based on the assumption that
all views are fully observed and strictly aligned. However, it
is common that some views are unavailable in many prac-
tical applications, which forms incomplete multi-view data
(Xu, Tao, and Xu 2015; Liu et al. 2018; Wen et al. 2021;
∗‘†’ indicates co-first authors; ‘∗’ indicates the corresponding

authors.
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Wang et al. 2019a; Zhang et al. 2020, 2019). For instance,
not all webpages are composed of links, images, and texts
in web document analysis. Clustering on such incomplete
multi-view data is called incomplete MVC (IMVC) (Hu and
Chen 2019a; Wen et al. 2020). The missing views not only
lead to information loss, but also increase the difficulties of
the excavation of complementary information. These factors
make IMVC a challenging problem.

For IMVC, Trivedi et al. proposed a two-step kernel learn-
ing based approach, which first recovers the incomplete ker-
nel and then performs the kernel canonical correlation anal-
ysis for clustering (Trivedi et al. 2010). Since this method
needs one complete view as a reference for the missing view
completion, it is inapplicable to practical applications. In
recent years, many more flexible multiple kernel learning
based methods have been proposed to address the above is-
sue (Liu et al. 2019c,b, 2020, 2019a; Wang et al. 2019b).
For instance, incomplete multiple kernel k-means with mu-
tual kernel completion (IMKKM-IK-MKC) designs a joint
framework for incomplete kernel completion and clustering
(Liu et al. 2019c). Besides of these methods, several graph
learning and matrix factorization (MF) based methods have
also been proposed for IMVC. Representatively, incomplete
multi-view spectral clustering with adaptive graph learning
(IMVSC AGL) explores the certain self-representation in-
formation learned from the available instances to obtain the
consensus representation (Wen, Xu, and Liu 2020). Differ-
ent from the graph learning based methods which transfer
the view missing problem from the feature space to graph
space, MF based methods focus on obtaining the consen-
sus representation shared by all views from the original fea-
ture space. Partial multi-view clustering (PMVC) is one of
the pioneer works, which jointly decomposes all available
views into one consensus representation whose uniformity
is guaranteed by the connections among paired views (Li,
Jiang, and Zhou 2014). Based on PMVC, incomplete multi-
modal grouping (IMG) (Zhao, Liu, and Fu 2016), partial
multi-view subspace clustering (Xu et al. 2018), and IMVC
via graph regularized matrix factorization (IMVC GRMF)
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(Wen et al. 2019b) seek to improve the clustering perfor-
mance by introducing the manifold structure based graph
constraint. Multiple incomplete multi-view clustering (MIC)
(Shao, He, and Philip 2015), online multi-view clustering
(OMVC) (Shao et al. 2016), doubly aligned incomplete
multi-view clustering (DAIMC) (Hu and Chen 2019a), and
one-pass incomplete multi-view clustering (OPIMC) (Hu
and Chen 2019b) designed more flexible weighted MF based
models for IMVC, which commonly fill the missing views
with the corresponding average instance or zero vector and
then impose the prior view-available information as the di-
agonal matrix on the joint matrix factorization. The core
idea of these weighted MF based methods is also to explore
the certain paired connections among those aligned views
to guarantee the semantic consistency of the common repre-
sentation across views.

Recently, some IMC methods attempted to solve the view
missing and view unaligned problems by recovering the
missing views. For instance, Wen et al. proposed a unified
embedding alignment framework (UEAF) based on the or-
thogonal MF (Wen et al. 2019a). Two generative adversarial
networks (GANs) based deep methods were also proposed
for missing view recovery and IMC (Xu et al. 2019; Wang
et al. 2018). However, these methods are inflexible and on-
ly applicable to the special incomplete data, where UEAF
requires that the feature dimensions of all views are larger
than the cluster number and the two deep methods are only
suitable to the case with sufficiently aligned samples whose
views are all fully observed.

Recovering the missing views based on the available
views is interesting and intuitive to address the IMC prob-
lem. It not only naturally addresses the incomplete prob-
lem, but also has the potential to utilize the hidden infor-
mation of the missing views to enhance the clustering per-
formance. To this end, we propose a novel missing-view re-
covery based IMC framework, called IMVTSC-MVI, to ad-
dress the challenging problem on MVC with missing views.
Specifically, IMVTSC-MVI designs a new low-rank repre-
sentation model to learn the similarity graphs of all views
and recover the missing instances simultaneously. Then, to
guarantee the semantic consistency of the multiple views, a
consensus constraint is imposed on the graphs. Moreover, a
tensor constraint is introduced to IMVTSC-MVI to explore
the high-order correlations of multiple views. By integrat-
ing the above constraints into a joint low-rank tensor learn-
ing framework, IMVTSC-MVI can sufficiently explore the
inter-view and intra-view information for missing-view re-
covery and similarity graph learning. The main contributions
of this paper are summarized as follows:

1) IMVTSC-MVI provides a very novel and effective
model for missing view recovery and incomplete multi-view
clustering.

2) Different from the existing methods that only explore
information across different views, IMVTSC-MVI suffi-
ciently explores the intra-view and inter-view information
by integrating the consensus graph constraint and tensor
rank constraint into the representation based graph learning
model.

Notations and Preliminaries
In this paper, the matrix and tensor matrix are denoted by
A ∈ Rn1×n2 and A ∈ Rn1×n2×n3 , respectively. The nucle-
ar norm of matrix A ∈ Rm×n is denoted as ‖A‖∗ =

∑
i σi,

where σi denotes the ith singular value of matrix A. The lF
norm of tensor A is defined as ‖A‖F =

√∑
i,j,k (Ai,j,k)

2,
where Ai,j,k is the (i, j, k)th element. I ∈ Rn×n denotes
the identity matrix. The identity tensor is denoted by I ∈
Rn×n×n3 whose superdiagnonal elements Ii,i,i = 1 (1 ≤
i ≤ min (n, n3)). The transpose tensor of A ∈ Rn1×n2×n3

is AT ∈ Rn2×n1×n3 , which is the transposing of all frontal
slices. 1 denotes a vector whose elements are all 1.

The tensor singular value decomposition operation (t-
SVD) and tensor nuclear norm are defined as follows (Wu,
Lin, and Zha 2019; Kilmer et al. 2013).

Definition 1 (t-SVD): The SVD of tensor A ∈
Rn1×n2×n3 is defined as: A = U ∗ S ∗ VT , where U ∈
Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensor, i.e.,
UT ∗ U = U ∗ UT = I and VT ∗ V = V ∗ VT = I.
S ∈ Rn1×n2×n3 is a f-diagonal tensor whose entire frontal
slices are diagonal matrices. ‘*’ denotes the ‘t-product’.

Definition 2 (t-SVD based tensor nuclear norm): For
a tensor A ∈ Rn1×n2×n3 , the t-SVD based tensor nu-

clear norm is defined as: ‖A‖~ =
n3∑
k=1

∥∥∥A(k)
f

∥∥∥
∗

=

min(n1,n2)∑
i=1

n3∑
k=1

∣∣∣S(k)f (i, i)
∣∣∣, where Af denotes the fast Fouri-

er transformation (FFT) of tensor A along the third dimen-
sion, i.e., Af = fft (A, [ ], 3).

∥∥∥A(k)
f

∥∥∥
∗

denotes the nuclear

norm of the kth frontal slice of tensor Af . S(k)f (i, i) is the

ith singular value of A(k)
f calculated by SVD on A(k)

f , i.e.,

A(k)
f = U (k)

f S
(k)
f V

(k)T
f .

The Proposed Method
Recovering the missing views is significant for addressing
the IMC problem. However, it is impossible to obtain rea-
sonable missing views by just borrowing the information
from the other views in the existing methods, especially
for the case with less aligned information among views. If
we can simultaneously explore the inter-view information
and intra-view information of different views, we may ob-
tain quite good results. To this end, a very new method, i.e.,
IMVTSC-MVI, is proposed to infer the missing views and
partition the incomplete multi-view data in this section. The
pipeline of IMVTSC-MVI is shown in Fig. 1.

Model of IMVTSC-MVI
In fields of clustering, graph learning based methods are
popular and have received lots of attention in recent years
(Nie et al. 2016; Wan and Meila 2016; Wang, Wu, and Kit-
tler 2020; Wang et al. 2020b; Xie et al. 2020). For a given
set of data points, it seeks to construct the intrinsic graph
whose every element represents a kind of similarity of the
corresponding two points for clustering. In this branch, low-
rank representation is widely considered for obtaining such
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Figure 1: The pipeline of IMVTSC-MVI.

a graph (Vidal and Favaro 2014; Feng et al. 2014; Liu et al.
2012; Chen, Wu, and Kittler 2020). For multi-view data, a
naive low-rank representation based graph learning model
can be formulated as follows (Zhang et al. 2015):

min
{Z(v),B(v)}l

v=1

l∑
v=1

∥∥∥Z(v)
∥∥∥
∗

+ λvψ
(
B(v)

)
s.t. X(v) = X(v)Z(v) +B(v)

(1)

where X(v) ∈ Rmv×n denotes the set of data points in the
vth view, mv denotes the feature dimension of the vth view,
n denotes the number of data points. Z(v) ∈ Rn×n is the
similarity graph of the vth view to learn. B(v) ∈ Rmv×n

denotes the reconstruction errors, ψ
(
B(v)

)
is a function to

simulate different kinds of noises. λv > 0 is a penalty pa-
rameter to balance the importance of the corresponding item.

This naive model requires all views to be complete. Be-
sides this, it ignores the complementary information among
different views. To address these issues, we propose the fol-
lowing tensor based incomplete multi-view low-rank repre-
sentation model, which seeks to recover the missing views
and obtains the intrinsic graphs of all views simultaneously:

min
{E(v),Z(v),B(v)}l

v=1

l∑
v=1

(
λ1

∥∥∥E(v)
∥∥∥2

F
+ λ2

∥∥∥B(v)
∥∥∥

1

)
+‖Z‖~

s.t. X(v) + E(v)W (v) =
(
X(v) + E(v)W (v)

)
Z(v) +B(v),

Z(v) > 0, diag
(
Z(v)

)
= 0, Z(v)1 = 1

(2)
where X(v) ∈ Rmv×n denotes the set of available instances
and missing instances of the vth view, in which the miss-
ing instances are filled as a zero vector. E(v) ∈ Rmv×nv

denotes the missing instances to recover, where nv is the
number of missing instances in the vth view. Error matrix
B(v) ∈ Rmv×n is used to compensate the sparse noises.
Nonnegative constraint Z(v) > 0 explicitly enforces the
representation coefficients to be the graph weights that de-
note the similarity degree of the corresponding two samples.
diag

(
Z(v)

)
= 0 is introduced to avoid the negative con-

tribution of samples in representing themselves. Z(v)1 = 1

is introduced to guarantee that all instances can be connect-
ed with at least one instance. Tensor ‖Z‖~ is constructed

by
{
Z(v)

}l
v=1

. Introducing the tensor low-rank constraints
‖Z‖~ is beneficial to capture the high-level correlations a-
mong different views (Wu, Lin, and Zha 2019; Xu et al.
2020). W (v) ∈ Rnv×n is a prior matrix defined as follows,
which indicates the view available and missing information
of the vth view:

W
(v)
i,j =

{
1, if the ithmissing instance is x

(v)
j

0, otherwise
(3)

where x(v)j denotes the jth instance of the vth view.
In fact, W (v) can be regarded as a mapping matrix to

transform the recovered missing views E(v) to their corre-
sponding locations in X(v). In this way, X(v) + E(v)W (v)

can be regarded as a complete view, with all views being
naturally aligned for multi-view learning.

Notably, different views not only contain complementary
information, but also share the semantic consistency, where
such consistency guarantees that all views have the same
cluster decision to those data points (Wen et al. 2021; Li
et al. 2020a). Therefore, it is important to preserve such
semantic consistency in multi-view clustering. To this end,
we introduce a semantic consistency based constraint on the
graphs. As a result, the final model is expressed as follows:

min
{E(v),Z(v),B(v)}l

v=1

l∑
v=1


λ1

∥∥∥E(v)
∥∥∥2

F
+ λ2

∥∥∥B(v)
∥∥∥

1

+λ3

∥∥∥∥∥Z(v) − 1

l

l∑
k=1

Z(k)

∥∥∥∥∥
2

F

+‖Z‖~

s.t. X(v) + E(v)W (v) =
(
X(v) + E(v)W (v)

)
Z(v) +B(v),

Z(v) > 0, diag
(
Z(v)

)
= 0, Z(v)1 = 1

(4)
where λ1, λ2, and λ3 are positive penalty parameters.

IMVTSC-MVI performs the spectral clustering (Elham-
ifar and Vidal 2013) on the average graph (i.e., Z∗ =

1
l

l∑
v=1

Z(v)) to obtain the final clustering results.
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Solution to IMTSC-MVI
Alternating direction method of multipliers (ADMM) is
adopted to optimize the non-convex problem (4) (Boyd et al.
2011). To make problem (4) separable, several auxiliary
variables

{
P (v)

}l
v=1

are introduced as follows:

min
Ψ

l∑
v=1


λ1

∥∥∥E(v)
∥∥∥2

F
+ λ2

∥∥∥B(v)
∥∥∥

1

+λ3

∥∥∥∥∥Z(v) − 1

l

l∑
k=1

Z(k)

∥∥∥∥∥
2

F

+‖P‖~

s.t. X(v) + E(v)W (v) =
(
X(v) + E(v)W (v)

)
Z(v) +B(v),

Z(v) = P (v), Z(v) > 0, diag
(
Z(v)

)
= 0, Z(v)1 = 1

(5)
where P ∈ Rn×n×l is a 3-order tensor collected by all{
P (v)

}l
v=1

. Ψ =
{
E(v), Z(v), B(v), P (v)

}l
v=1

.
The augmented Lagrangian function of problem (5) is:

L (Ψ) = ‖P‖~+

l∑
v=1



λ1

∥∥∥E(v)
∥∥∥2
F

+ λ2

∥∥∥B(v)
∥∥∥
1

+λ3

∥∥∥∥∥Z(v) − 1

l

l∑
k=1

Z(k)

∥∥∥∥∥
2

F

+
µ

2

∥∥∥∥Y (v) − Y (v)Z(v) −B(v) +
C(v)

µ

∥∥∥∥2
F

+
µ

2

∥∥∥∥Z(v) − P (v) +
A(v)

µ

∥∥∥∥2
F


(6)

where Y (v) = X(v) + E(v)W (v), Ψ denotes the set of al-
l variables to compute, µ > 0 is a penalty parameter,{
A(v)

}l
v=1

and
{
C(v)

}l
v=1

are Lagrange multiplier. Then,
all variables can be obtained by iteratively solving the cor-
responding sub-problems as follows (Fang et al. 2020; Chen
et al. 2020):

Step 1: Z(v) can be obtained by solving the following
sub-problem:

Z(v) = arg min
Z(v)1=1,Z(v)>0,diag(Z(v))=0

L
(
Z(v)

)
(7)

where

L
(
Z(v)

)
=
µ

2

∥∥∥∥Y (v) − Y (v)Z(v) −B(v) +
C(v)

µ

∥∥∥∥2

F

+λ3

∥∥∥∥∥Z(v) − 1

l

l∑
k=1

Z(k)

∥∥∥∥∥
2

F

+
µ

2

∥∥∥∥Z(v) − P (v) +
A(v)

µ

∥∥∥∥2

F

.

By setting the partial derivative ∂L
(
Z(v)

)/
∂Z(v) = 0,

we can obtain that:

Z̃(v) =

(
2λ3(l − 1)2

l2
I + µI + µY (v)TY (v)

)−1

2
l − 1

l2
λ3

l∑
k=1,k 6=v

Z(k) + µP (v) −A(v) +H(v)

 (8)

where H(v) = Y (v)T
(
µ
(
Y (v) −B(v)

)
+ C(v)

)
. Then, we

can solve the following problem to obtain the optimal Z(v):

Z(v) = arg min
Z(v)1=1,Z(v)>0,diag(Z(v))=0

∥∥∥Z(v) − Z̃(v)
∥∥∥2
F

(9)

The optimal solution to problem (9) is (Nie et al. 2016):

Z
(v)
i,j =

{
0, i = j(

Z̃
(v)
i,j + η

)
+
, i 6= j (10)

where (a)+ is a function to transform the negative elements
in vector a into 0 and preserve the non-negative elements. η
is calculated as:

η =
1

n− 1
− 1

n− 1

n∑
j=1,j 6=i

Z̃
(v)
i,j (11)

Step 2:
{
P (v)

}l
v=1

is obtained by solving the following
sub-problem:{

P (v)
}l
v=1

= arg min
{P (v)}l

v=1

‖P‖~ +
l∑

v=1

µ

2

∥∥∥∥Z(v) − P (v) +
A(v)

µ

∥∥∥∥2
F

⇔P = arg min
P

‖P‖~ +
µ

2

∥∥∥∥Z − P +
A
µ

∥∥∥∥2
F

(12)

where A ∈ Rn×n×l is a tensor collected by all
{
A(v)

}l
v=1

.
Problem (12) is a typical t-SVD based tensor nuclear nor-
m minimization problem and has the following closed-form
solution (Coates, Ng, and Lee 2011; Hu et al. 2016):

P = U ∗ ϕµ̃ (S) ∗ VT (13)

where µ̃ = nµ, Z + A/µ = U ∗ S ∗ VT is obtained by t-
SVD operation (Coates, Ng, and Lee 2011).ϕµ̃ (S) = S∗J ,
where J ∈ Rn×l×n is a diagonal tensor whose diagonal el-
ements in the Fourier domain are expressed as Jf (i, i, j) =

max
(

1− µ̃
/
S(j)f (i, i), 0

)
.

Step 3: E(v) can be obtained by optimizing the following
problem:

E(v) = arg min
E(v)

L
(
E(v)

)
(14)

where L
(
E(v)

)
= µ

2

∥∥∥Y (v) − Y (v)Z(v) −B(v) + C(v)

µ

∥∥∥2

F
+

λ1

∥∥∥E(v)
∥∥∥2

F
. By setting the partial derivative

∂L
(
E(v)

)/
∂E(v) = 0, we can obtain the following

closed-form solution to E(v):

E(v) = µQ(v)R(v)T
(
µR(v)R(v)T + 2λ1I

)−1
(15)

where Q(v) = X(v)Z(v) −X(v) + B(v) − C(v)
/
µ, R(v) =

W (v) −W (v)Z(v).
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Step 4: B(v) is updated by solving the problem:

minλ2

∥∥∥B(v)
∥∥∥

1
+
µ

2

∥∥∥∥Y (v) − Y (v)Z(v) −B(v) +
C(v)

µ

∥∥∥∥2

F
(16)

Problem (16) has the following closed-form solution:

B(v) = ϑλ2/µ

(
Y (v) − Y (v)Z(v) + C(v)

/
µ
)

(17)

where ϑ is the shrinkage operator.
Step 5: Update multipliers

{
A(v)

}l
v=1

,
{
C(v)

}l
v=1

and
parameter µ as follows:

A(v) = A(v) + µ
(
Z(v) − P (v)

)
(18)

C(v) = C(v) + µ
(
Y (v) − Y (v)Z(v) −B(v)

)
(19)

µ = min (µρ, µ0) (20)

where ρ and µ0 are constants.
In Algorithm 1, we summarize the above computation

procedures of objective problem (4).

Computational Complexity Analysis
In the first step w.r.t. Z(v), the major computational cost is
the inverse operation in (8), which takes O(n3) for an n
by n matrix. Thus, the computational complexity in Step 1
is about O(ln3). In Step 2, the major computational cost-
s are the FFT, inverse FFT, and t-SVD operations. For an
n× l × n tensor matrix, the total computational complexity
of FFT and inverse FFT is about O(ln2log(n)), and that of
the t-SVD is about O(l2n2) (Wu, Lin, and Zha 2019). As a
result, the total computational complexity of Step 2 is about
O(ln2log(n) + l2n2). Considering that the other steps only
have some basic matrix operations, we ignore their compu-
tational costs. In summary, the computational complexity of
Algorithm 1 is about O(τ(ln3 + ln2log(n) + l2n2)), where
τ denotes the iteration number.

Experiments
Experimental Settings
Compared Methods. Several state-of-the-art IMC
methods, including PMVC, IMG, IMVC GRMF, MIC,
OMVC, DAIMC, OPIMC, UEAF, IMKKM-IK-MKC,
IMVSC AGL, and PMVC via consistent GAN (P-
MVC CGAN) (Wang et al. 2018), are compared with the
proposed method to validate its effectiveness. Besides this,
two baseline methods, BSV (Best Single View) and Concat
are also evaluated, where BSV reports the best Kmeans
clustering results on all single views. Concat stacks features
of all views into one view and then implements Kmeans on
it to obtain the clustering results (Zhao, Liu, and Fu 2016).

Datasets. Five multi-view datasets listed in Table 1 are
selected. Specifically, 1) Handwritten contains 10 class-
es (i.e., digits ‘0-9’) and five kinds of features, i.e., Fouri-
er coefficients, profile correlations, Karhunen-Love coeffi-
cient, pixel averages, and Zernike moments (Asuncion et al.
2003). 2) Caltech7 is a subset of the popular Caltech101

Algorithm 1 : IMVTSC-MVI (solving (4))

Input: Incomplete multi-view data
{
X(v)

}l
v=1

(X(v) ∈
Rmv×n), index matrix

{
W (v)

}l
v=1

(W (v) ∈ Rnv×n),
parameters λ1, λ2, λ3, penalty parameter µ = 0.01,
µ0 = 108, ρ = 1.2.
Initialization: E(v) = 0, B(v) = 0, A(v) = 0, C(v) = 0.
Z(v) is initialized as the binary KNN-graph constructed
from X(v), where the elements associated with the miss-
ing views are set as 0.
while not converged do

1. Update variables
{
Z(v)

}l
v=1

using (10);

2. Update variables
{
P (v)

}l
v=1

using (13);

3. Update variables
{
E(v)

}l
v=1

using (15);

4. Update variables
{
B(v)

}l
v=1

using (17);

5. Update variables
{
A(v)

}l
v=1

,
{
C(v)

}l
v=1

, and µ us-
ing (18), (19), and (20).

end while
Output:

{
Z(v)

}l
v=1

object dataset (Fei-Fei, Fergus, and Perona 2004). It is com-
posed of 7 objects, 1474 samples, and six kinds of features,
i.e., Gabor, wavelet moments, CENTRIST, HOG, GIST, and
LBP (Li et al. 2015). 3) MNIST dataset exploited in our
work is composed of 4000 samples and two kinds of fea-
tures, i.e., pixel feature and edge feature, following (Wang
et al. 2018). 4) NUSWIDE is a popular large-scale object
recognition dataset (Chua et al. 2009). In our work, we ran-
domly construct a subset which consists of 31 classes and
70 samples per class for evaluation, where five kinds of fea-
tures, i.e., color Histogram, color moments, color correla-
tion, edge distribution, and wavelet texture, are extracted as
the five views. 5) Notting-Hill face dataset (NH face) is col-
lected from the movie ‘Notting-Hill’, which is composed of
4660 faces from 5 persons (Wu et al. 2013). Three kinds of
features, i.e., LBP, gray pixels features, and Gabor are ex-
tracted as three views (Cao et al. 2015).

Incomplete Data Construction. On MNIST dataset, we
randomly select p% (p = {10, 30, 50, 70}) samples as
paired samples that have full views, and then divide the re-
maining samples into two groups, followed by removing the
first view from one group and removing the second view
from the other group. On the other four datsets, we random-
ly remove p% instances from every view under the condition
that all samples have at least one view.

Evaluation Metrics. Clustering accuracy (ACC), normal-
ized mutual information (NMI), and purity are adopted as
the evaluation metrics following (Shao et al. 2016).

Experimental Results and Analysis
Tables 2-3 list the experimental results of different IMC
methods on the five datasets. From the experimental results,
following points can be observed:

10277



Dataset # Class # View # Samples # Features

Handwritten 10 5 2000 76,216,64,240,47
Caltech7 7 6 1474 48,40,254,1984,512,928
MNIST 10 2 4000 784,784

NUSWIDE 31 5 2170 65,226,145,74,129
NH face 5 3 4660 6750,2000,3304

Table 1: Description of the datasets.

(1) Our method achieves the best performance on
these datasets. Compared with the second best method
(IMVSC AGL) on the Caltech7 and Handwritten datasets
with a missing-view rate of 30%, our method achieves about
11% and 8% improvement in terms of NMI, respectively.

(2) With the increasing of the missing-view rate, the clus-
tering results of all methods decrease. For instance, when
missing-view rate changes from 10% to 70% on the Hand-
written dataset, the ACC of BSV and Concat decrease by
about 41% and 47%, respectively.

(3) On the NH face dataset with a missing-view rate of
50%, the ACC of our method is about 14% higher than
that of IMVSC AGL. This demonstrates that compared with
IMVSC AGL, the proposed method can obtain higher qual-
ity graphs that capture the intrinsic structures of all views.

(4) Our method performs better than two view-recovery
based methods, i.e., UEAF and PMVC CGAN. This demon-
strates that our method is superior to the two methods on
missing-view recovery and hidden information excavation.
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1e-1
1e0

1e11e-31e-21e-11e01e1
0

50

100

AC
C

 (%
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Figure 2: ACC (%) of our method w.r.t (a) λ2 and λ3 with
λ1 = 1e− 5 and (b) λ1 with λ2 = 5e− 3 and λ3 = 5e− 3
on the Caltech7 dataset with a missing-view rate of 30%.

Parameter Analysis
From the experimental results shown in Fig.2, we can ob-
serve that the proposed method is sensitive to parameter
λ2 to some extent, where the best performance is obtained
when λ2 = 0.005. This indicates that selecting a suitable
λ2 for the sparse error item is important in our method. Be-
sides this, one can see that the proposed method is insensi-
tive to parameters λ1 and λ3 to some extent, where select-
ing the two parameters from the range of [10−5, 10−2] and
[10−3, 10−2] can guarantee a good performance.

View Inferring and Graph Recovery
View Inferring. Fig. 3 shows the missing instances of the
two datasets and the corresponding recovered instances ob-
tained by our method. We can observe that our method can

(a) Missing instances (b) Recovered instances

Figure 3: The performance of missing-view recovery, where
images of the first two columns and last two columns in (a)
are the missing instances of the first view from the Handwrit-
ten dataset and the second view from the NH face dataset,
respectively. Images in (b) are the corresponding recovered
instances obtained by our method. Notably, 1) Images in (a)
are not used in the model learning phase. 2) We have re-
shaped the original vector based features into images and
then re-normalized them for better presentation.

(a) (b) (c)

Figure 4: Graphs of the (a) first, (b) third, and (c) fifth views
obtained by our method on the Handwritten dataset with a
missing-view rate of 30%.

(a) (b)

Figure 5: Objective function loss v.s. iteration of the pro-
posed method on the (a) NH face and (b) Caltech7 datasets
with a missing-view rate of 30%.

well recover the missing-views with the same contour, pos-
ture, and expression as the original data. This demonstrates
the effectiveness of our method on missing-view inferring.

Graph Recovery. Fig.4 shows three affinity graphs ob-
tained by our method on the Handwritten dataset. One can
observe that: 1) all graphs have a clear block diagonal struc-
ture, where the number the blocks is equal to the clus-
ter number. 2) The connected weights corresponding to
the missing views are all well completed. The above phe-
nomenons demonstrate that our method can discover the in-
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ACC NMI Purity
Data Method 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

H
andw

ritten

BSV 68.27±5.66 51.49±2.29 38.24±2.25 27.15±1.31 62.82±3.24 47.01±1.71 32.21±1.00 19.48±0.69 70.72±4.67 53.69±1.54 39.54±2.04 27.76±1.09
Concat 75.06±3.86 55.48±1.57 42.19±0.99 28.31±0.75 73.08±2.05 51.66±0.99 38.24±1.59 23.50±0.95 77.86±2.79 57.32±1.15 44.21±0.98 30.45±0.80
MIC 77.59±2.41 73.29±3.41 61.27±3.16 41.34±2.69 70.84±2.08 65.39±2.08 52.95±1.33 34.71±2.11 78.72±2.14 74.31±3.15 62.89±3.08 43.25±2.86
OMVC 65.04±6.50 55.00±5.06 36.40±4.93 29.80±4.63 56.72±5.05 44.99±4.56 35.16±4.62 25.83±8.37 65.80±6.48 55.89±4.72 38.51±4.87 31.95±5.22
DAIMC 88.86±0.63 86.73±0.79 81.92±0.88 60.44±6.87 79.78±0.71 76.65±1.07 68.77±0.99 47.10±4.79 88.86±0.63 86.73±0.79 81.92±0.88 61.24±0.42
OPIMC 80.20±5.40 76.45±5.15 69.50±6.54 56.66±10.06 77.26±3.11 73.74±3.42 66.57±4.18 51.86±7.97 81.19±4.60 78.96±3.37 72.00±6.39 58.16±10.35
UEAF 85.80±5.62 76.11±7.74 65.39±5.09 61.11±1.41 77.74±3.83 69.37±3.31 55.09±2.05 50.56±1.11 86.07±5.02 76.51±7.17 66.49±4.18 61.60±1.09
IMKKM-IK-MKC 71.78±1.74 69.07±0.73 66.08±3.25 55.55±1.39 69.43±1.28 65.42±0.61 59.04±2.69 47.36±1.78 75.53±1.10 73.12±0.61 66.58±3.26 56.26±1.07
IMVSC AGL 97.15±0.43 95.50±0.48 93.19±0.72 84.08±5.16 93.68±0.53 90.55±0.76 86.39±1.27 75.44±2.68 97.15±0.43 95.50±0.48 93.19±0.72 84.74±3.74
Ours 99.89±0.07 99.31±0.13 99.56±0.15 98.84±0.19 99.71±0.19 98.21±0.35 98.84±0.40 97.08±0.45 99.89±0.07 99.31±0.13 99.56±0.15 98.84±0.19

M
N

IST

BSV 33.25±1.79 37.37±0.69 42.76±1.30 47.95±1.36 27.20±0.89 31.39±1.28 37.45±1.42 42.49±1.47 36.28±1.69 40.75±0.96 47.00±1.37 52.62±1.30
Concat 36.88±1.96 39.24±1.47 43.79±1.71 47.37±1.08 34.48±1.09 33.38±0.54 37.42±1.38 43.17±0.69 41.96±1.30 43.15±0.93 47.72±1.41 52.44±1.04
PMVC 41.36±2.29 43.42±2.99 44.68±1.23 45.84±1.59 35.46±0.25 38.51±1.63 39.43±1.37 39.83±1.71 46.42±2.06 48.31±2.78 49.07±0.81 49.93±2.09
IMG 46.34±3.36 47.13±2.24 46.88±1.51 48.31±1.22 39.74±2.42 40.71±2.56 39.87±1.05 44.16±1.09 51.61±3.47 52.12±2.01 51.55±1.75 53.43±1.06
IMVC GRMF 49.12±2.46 50.59±2.59 52.37±1.67 52.46±1.59 47.36±0.97 48.18±1.57 50.73±0.98 51.57±1.03 54.59±1.74 56.36±1.81 57.96±1.18 58.24±1.19
MIC 43.96±2.38 44.42±2.28 44.17±1.37 45.38±2.82 38.77±1.35 40.81±1.28 40.53±0.67 41.61±1.50 48.68±2.06 49.18±1.37 49.05±1.34 50.52±2.18
OMVC 40.44±2.95 42.23±2.17 40.36±2.20 41.44±3.39 36.21±1.47 36.68±2.16 35.64±1.89 32.25±2.95 45.95±2.31 47.49±2.52 45.02±3.14 45.51±2.93
DAIMC 45.33±4.12 48.19±1.38 49.25±1.67 49.36±1.87 37.46±3.04 41.09±1.58 43.47±0.82 44.15±0.75 48.70±4.04 52.70±1.76 54.41±1.69 55.13±1.18
OPIMC 41.40±2.51 48.02±2.63 47.77±3.39 48.71±2.44 34.29±2.33 43.98±1.98 44.63±1.47 45.65±1.15 43.91±2.08 52.95±2.33 53.07±2.86 54.38±2.21
UEAF 34.75±1.19 49.87±0.91 50.56±1.63 51.07±0.86 32.66±0.74 44.25±1.28 44.31±1.32 45.50±0.99 41.06±0.75 54.86±0.70 55.41±1.48 56.04±0.87
IMKKM-IK-MKC 47.56±2.18 51.02±0.66 51.72±0.58 52.45±0.41 40.39±1.17 42.76±0.70 43.88±0.54 45.10±0.39 53.08±1.53 56.02±0.72 56.73±0.50 57.42±0.47
IMVSC AGL 54.77±2.95 55.44±1.63 55.23±2.61 57.71±1.34 54.10±1.90 55.85±1.17 55.92±2.52 58.68±1.04 60.96±2.29 60.39±1.10 61.17±1.63 63.25±0.50
PMVC CGAN 45.17±0.86 48.36±0.71 52.80±0.78 52.02±0.70 39.33±- - 43.22±- - 49.61±- - 48.22±- - 49.09±- - 51.81±- - 58.5±- - 55.45±- -
Ours 56.64±2.46 56.60±0.84 55.64±0.12 62.65±0.85 56.24±0.83 57.73±0.58 57.18±2.15 59.37±1.10 62.74±0.28 63.39±1.11 62.91±0.94 65.74±0.97

N
U

SW
ID

E

BSV 13.16±0.23 11.50±0.18 9.66±0.35 7.72±0.20 15.86±0.23 13.51±0.23 11.09±0.26 8.45±0.24 14.36±0.28 11.49±0.18 10.39±0.23 8.23±0.26
Concat 16.24±0.28 13.92±0.31 11.35±0.44 10.39±0.34 19.45±0.17 17.29±0.39 13.93±0.52 12.14±0.37 17.83±0.18 15.14±0.29 12.28±0.57 11.12±0.46
MIC 14.24±0.29 12.21±0.64 10.69±0.54 9.88±0.25 16.44±0.56 14.29±0.40 12.20±0.54 10.89±0.51 15.52±0.26 13.34±0.45 11.57±0.59 10.59±0.34
OMVC 13.48±0.45 11.98±0.37 11.98±0.37 9.88±0.41 15.86±0.43 14.16±0.32 12.15±0.42 10.75±0.55 14.74±0.36 13.34±0.45 11.57±0.59 10.59±0.34
DAIMC 14.21±0.46 14.36±0.47 12.26±0.42 10.46±0.56 17.20±0.36 16.48±0.45 13.97±0.51 11.29±1.01 15.65±0.40 14.68±0.35 13.44±0.55 11.39±0.67
OPIMC 14.98±0.31 14.36±0.47 12.62±1.06 10.55±0.59 16.80±0.61 16.03±0.29 14.15±0.75 11.05±0.29 15.85±0.28 14.97±0.37 13.54±1.14 10.99±0.55
UEAF 16.19±0.38 15.21±0.35 12.82±0.46 10.71±0.27 19.17±0.30 18.27±0.12 15.65±0.58 12.68±0.11 18.07±0.66 16.44±0.29 14.04±0.49 11.48±0.28
IMKKM-IK-MKC 13.73±0.19 12.71±0.58 11.49±0.46 10.73±0.21 15.38±0.22 14.63±0.67 13.81±0.43 12.83±0.26 14.76±0.17 13.68±0.63 12.49±0.59 11.51±0.27
IMVSC AGL 15.63±0.43 14.42±0.15 13.39±0.67 11.57±0.71 18.25±0.32 16.85±0.37 16.12±0.65 13.18±0.72 16.89±0.42 15.43±0.17 14.45±0.52 12.49±0.73
Ours 16.82±0.35 16.21±0.58 14.21±0.71 11.35±0.29 20.23±0.57 19.19±0.41 16.86±0.49 13.80±0.14 18.46±0.44 17.57±0.32 15.28±0.72 12.18±0.35

Table 2: Experimental results of different methods on the Handwritten, MNIST, and NUSWIDE datasets. Notably, the clustering
results of PMVC CGAN are from the original paper (Wang et al. 2018, 2020a) and ‘- -’ denotes the unreported numbers.

ACC NMI Purity
Data Method 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

C
altech7

BSV 43.89±1.37 39.06±1.26 38.31±1.68 39.66±2.23 31.63±1.51 26.81±1.38 84.08±1.23 75.25±0.71 68.97±0.49
Concat 41.25±1.67 40.55±1.89 38.06±0.88 43.48±0.92 37.99±2.17 30.28±0.66 84.91±0.50 82.54±1.12 77.56±0.98
MIC 44.07±4.97 38.01±2.12 35.80±2.34 33.71±2.66 27.35±1.69 20.44±0.98 78.12±1.76 73.31±0.72 68.26±1.40
OMVC 40.88±1.54 36.82±1.65 33.28±4.40 28.13±2.54 25.32±1.03 18.76±4.22 79.21±1.77 77.73±1.35 74.05±4.74
DAIMC 48.29±6.76 47.46±3.42 44.89±4.88 44.61±3.88 38.45±2.88 36.28±2.34 83.32±1.31 76.83±3.23 75.50±1.17
OPIMC 49.24±2.89 48.34±4.36 44.12±5.85 42.98±1.02 41.54±2.38 35.98±2.77 84.89±0.69 83.70±1.80 80.64±2.06
UEAF 50.82±4.05 42.71±0.84 36.32±4.22 39.44±2.07 31.07±1.99 24.02±1.37 81.49±1.78 78.26±2.12 76.29±1.93
IMKKM-IK-MKC 36.54±0.51 34.87±1.53 36.05±0.45 24.09±0.98 23.45±0.52 22.91±0.67 72.98±0.80 73.82±0.53 72.52±1.55
IMVSC AGL 54.72±1.01 54.61±2.04 51.78±3.03 44.05±0.97 42.61±1.92 37.35±0.32 84.27±0.81 83.98±0.93 82.31±0.30
Ours 64.18±0.49 63.19±2.41 54.17±2.04 55.97±0.71 53.84±2.72 51.37±1.40 89.09±0.52 88.69±1.06 88.19±1.82

N
H

f ace

BSV 69.09±4.76 56.82±2.28 46.54±1.90 56.26±4.07 39.29±2.63 26.20±1.09 73.59±2.96 60.13±1.52 50.15±1.28
Concat 85.87±2.64 63.14±2.78 52.99±1.84 81.46±1.70 59.12±1.14 47.42±1.29 87.39±1.57 87.39±1.57 62.21±1.04
MIC 78.83±4.07 77.22±0.76 75.77±4.05 73.04±2.78 66.82±0.80 62.84±3.20 82.54±1.66 78.83±0.64 77.40±3.48
OMVC 75.35±2.11 72.85±3.17 70.61±2.77 68.45±3.22 65.44±2.89 63.34±4.36 80.89±3.05 77.96±2.33 74.52±3.55
DAIMC 87.42±4.15 85.35±3.44 84.57±3.49 78.37±3.42 74.71±2.91 70.09±5.08 87.03±2.74 85.66±2.91 84.66±3.41
OPIMC 79.82±8.32 74.57±3.81 71.25±6.27 69.92±6.36 66.87±1.86 64.65±6.94 81.56±5.12 79.02±1.27 78.21±4.01
UEAF 80.36±0.10 71.22±0.68 64.37±1.13 67.11±0.52 55.52±2.55 47.97±1.50 81.67±0.13 73.32±0.70 68.49±1.21
IMKKM-IK-MKC 74.34±0.34 75.92±0.93 71.22±1.19 65.21±0.32 66.83±1.24 65.27±1.66 78.96±0.07 79.18±0.16 79.94±1.03
IMVSC AGL 87.04±1.84 84.33±2.02 81.21±8.96 78.26±1.73 77.59±0.75 73.34±3.59 87.33±1.22 85.55±1.35 85.38±3.24
Ours 95.66±2.84 95.79±1.98 95.21±2.34 91.99±4.87 91.68±4.62 90.35±3.97 95.66±2.84 95.79±1.98 95.21±2.34

Table 3: Experimental results of different methods on the Caltech7 and NH face datasets.

trinsic view-consistent graphs from the incomplete data.

Convergence Analysis
As presented in the previous section, the complex objective
function is divided into four convex sub-problems. Optimiz-
ing every minimization subproblem will decrease the objec-
tive value. This indicates that the loss of objective problem
(5) is monotonically decreasing during the updating process
of these variables alternately. In Fig.5, we plot the objective
function loss v.s. the iteration number on the Caltech7 and
NH face datasets with a missing-view rate of 30%. From the
figures, we can also observe that the objective loss is mono-
tonically decreasing and fast converges to a stable point,
which demonstrate the good convergence property of the

proposed optimization algorithm.

Conclusion

We proposed IMVTSC-MVI for missing-view inferring and
incomplete multi-view clustering. To obtain more reason-
able missing-views, IMVTSC-MVI jointly introduced the
tensor low-rank representation constraint and semantic con-
sistency based graph constraint, which not only enable the
model to explore the inter-view and intra-view information,
but also bridges the gap between the feature space and man-
ifold space. Experimental results show that IMVTSC-MVI
can well recover the missing views and greatly enhance the
clustering performance.
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