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Abstract

The fast development of neuromorphic hardwares promotes
Spiking Neural Networks (SNNs) to a thrilling research av-
enue. Current SNNs, though much efficient, are less effective
compared with leading Artificial Neural Networks (ANNs)
especially in supervised learning tasks. Recent efforts further
demonstrate the potential of SNNs in supervised learning by
introducing approximated backpropagation (BP) methods. To
deal with the non-differentiable spike function in SNNs, these
BP methods utilize information from the spatio-temporal do-
main to adjust the model parameters. With the increasing of
time window and network size, the computational complexity
of spatio-temporal backpropagation augments dramatically.
In this paper, we propose a new backpropagation method for
SNNs based on the accumulated spiking flow (ASF), i.e. ASF-
BP. In the proposed ASF-BP method, updating parameters
does not rely on the spike train of spiking neurons but leverage
accumulated inputs and outputs of spiking neurons over the
time window, which reduces the BP complexity significantly.
We further present an adaptive linear estimation model to ap-
proach the dynamic characteristics of spiking neurons statisti-
cally. Experimental results demonstrate that with our proposed
ASF-BP method, light-weight convolutional SNNs achieve
superior performances compared with other spike-based BP
methods on both non-neuromorphic (MNIST, CIFAR10) and
neuromorphic (CIFAR10-DVS) datasets. The code is available
at https://github.com/neural-lab/ASF-BP.

Introduction
Artificial Neural Networks (ANNs) (LeCun, Bengio, and
Hinton 2015) have achieved a great success in diverse appli-
cations such as computer vision and natural language process-
ing. But the success of ANNs is also accompanied by some
serious concerns on their huge demand of computational re-
sources and power consumption. In contrast, biological brain
can provide excellent cognitive abilities with ultra-low natu-
ral power. The outstanding brain efficacy inspires researchers
to explore algorithms that mimic the brain’s operating mech-
anism at the neuron level.

Spiking Neural Networks (SNNs), as the third-generation
neural networks (Maass 1997), use biologically-realistic but
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simplified models of neurons to carry out computation. Un-
like ANNs that are activated using continuous values, SNNs
use sparse binary spikes in time and space dimensions in
an event-driven manner. The event-driven mechanism in
SNNs greatly reduce the occupation of computing resources
and avoids consuming excessive resources to a large extent.
Along with the development of SNN-specific hardwares,
such as Loihi (Davies et al. 2018) and TrueNorth (Merolla
et al. 2014), SNNs have received increasing attention in both
academia and industry.

Existing SNNs can be roughly divided into two categories,
converted SNNs (Cao, Chen, and Khosla 2015; Sengupta
et al. 2019) and directly trained SNNs. A converted SNN
model is transferred from certain pre-trained ANN model.
Its network architecture is usually consistent with the ANN
model and its model parameters are transformed from the pre-
trained ANN model by scale adjusting and other conversion
operations. Consequently, converted SNN models usually
lack biological interpret-ability.

For directly trained SNNs, supervised and unsupervised
learning are both attractive research topics. For unsupervised
learning, the mainstream learning method is the spike timing
dependent plasticity rule (STDP) (Caporale and Dan 2008;
Song, Miller, and Abbott 2000; Diehl and Cook 2015). STDP
uses synaptic plasticity and spike activity to learn features
of input data, which is biologically plausible. On the other
hand, the supervised SNNs can achieve much better perfor-
mance given a large number of labeled training data. How-
ever, training this kind of SNNs is quite difficult. Due to the
non-differentiable spike functions, the error backpropagation
(BP) (Rumelhart, Hinton, and Williams 1986) mechanism
commonly adopted in conventional ANNs cannot be directly
transferred to SNNs.

There are some successful attempts that introduce BP into
SNN models, such as STBP (Wu et al. 2018), SLAYER
(Shrestha and Orchard 2018), BP-STDP (Tavanaei and Maida
2019; Luo et al. 2019), which achieve good performances
on some simple cognitive tasks. Existing spike-based BP
methods utilize the gradient descent method (Ruder 2016)
to adjust the model parameters. In this process, there are
two obstacles that hinder the development of BP in SNN.
First, the issue of non-differential activation function needs
to be addressed. Generally, there are two ways to address the
issue: (1) replacing the activation function with an estimated
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model which is differentiable, (2) directly approximating the
gradient. Second, the efficiency of the BP algorithms in SNN
needs to be improved. For example, if both temporal and
spatial information are counted in the BP process, the BP
algorithm has to deal with a huge amount of sparse spike
trains, which leads to a time-consuming training.

In this paper, we propose a novel and efficient BP algo-
rithm, called ASF-BP, to train SNN models. Unlike the pre-
vious direct training algorithms, our proposed BP algorithm
utilizes the accumulated spiking flow (ASF) of neurons to
construct an equivalent network. Then the calculation of the
gradients in the backward process is based on this equivalent
network. In this way, our backward process can be accom-
plished just in one loop, as easy as ANN’s backward process.
By establishing the relationship between accumulated out-
puts and accumulated inputs of neurons, ASF-BP avoids the
non-differentiable spiking issue. Meanwhile, ASF-BP also
simplifies the calculation process of BP and reduces the occu-
pation of computing and storage resources. Furthermore, we
propose an adaptive adjustment mechanism to compute the
scale factor of accumulated flows to reflect the real neuron dy-
namics. To validate the effectiveness of ASF-BP, we use the
ASF-BP method to train spiking convolutional networks on
the datasets MNIST, CIFAR10 and CIFAR10-DVS for the im-
age classification task. Experimental results demonstrate that
SNNs with ASF-BP achieve state-of-the-art performances on
the three test datesets.

Our key contributions are summarized as follows:
• We propose a novel BP method with accumulated spiking

flows to train SNN models, which could save a lot of
computing power. Mathematical derivation is provided for
validity.

• We develop an adaptive adjustment algorithm for comput-
ing scale factors of accumulated flows to reflect the real
neuron dynamics.

• Superior image classification performances are achieved
on both non-neuromorphic and neuromorphic datasets.

Background and Related Works
SNN Model
The Integrate-and-Fire (IF) neuron model (Burkitt 2006) is a
simplified model for neuron dynamics. The model, which is
illustrated in Figure 1(a), can be depicted as

I(t) = Cm
dVm(t)

dt
, (1)

where Cm is the membrane capacitance, Vm(t) denotes the
membrane potential and I denotes the membrane current.
In the IF model, each spike from the pre-synaptic neuron
is scaled by a synaptic weight before adding to the mem-
brane potential. When an input current is injected into the
neuron, the membrane potential will increase until it reaches
its threshold Vth, at which point a spike fires. After that, the
membrane potential is reset to the resting potential, which is
usually zero. The spike activation function can be described
as

f(u) =

{
0, u < Vth,

1, otherwise.
(2)
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Figure 1: (a) The illustration of the IF model dynamics. The
membrane potential of IF neuron increases with the accu-
mulation of weighted spikes. (b) A typical fully connected
neural network architecture for SNN. (c) A typical convolu-
tion neural network architecture for SNN.

It has been proved that the IF model can approxi-
mate ReLU activation function (Tavanaei and Maida 2019;
Agatonovic-Kustrin and Beresford 2000), which is very use-
ful in modern SNN architectures. In our work, we utilize
IF model as the basic model for network construction and
formula derivation. Besides, we extend the application scope
of ASF-BP to the LIF model.

As shown in Figure 1(b), a classic multi-layer SNN (Ta-
vanaei et al. 2019) can be separated into three parts: the input
layer, the hidden layers and the output layer. The input layer
generates spikes for the following layers. For every layer, it
mainly output spikes to the next layer. Convolution layers
(Krizhevsky, Sutskever, and Hinton 2012) and pooling lay-
ers (Boureau et al. 2010) can also be applied in multi-layer
SNNs. Figure 1(c) gives an example of SNN which consists
of two convolution layers, two pooling layers and two fully
connected layers. Mathematically, if a multi-layer SNN only
has fully connected layers, the forward process of the SNN
can be described as follow

xt+1,n
i =

l(n−1)∑
j=1

wn
ijo

t+1,n−1
j ,

ut+1,n
i = ut,ni (1− ot,ni ) + xt+1,n

i ,

ot+1,n
i = f(ut+1,n

i ),

(3)

where t is the time index, n and l(n) are the layer index
and the number of neurons in the nth layer respectively. wn

ij

is the synaptic weight from the jth neuron in the (n− 1)th

layer to the ith neuron in the nth layer. xt,ni , ut,ni are the input
current and membrane potential of the ith neuron in the nth

layer at time t respectively. ot,ni ∈ {0, 1} is the output spike
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generated by the activation function f(·). It should be noted
that in our model, biases are not introduced for calculation.

BP Methods
Most SNN related works attempt to solve two problems:
credit assignment and non-differentiability of spike function.
For the credit assignment problem in SNN, a spatio-temporal
training framework based on backpropagation through time
(BPTT) is proposed (Wu et al. 2018), which is employed in
many SNN works. By considering layer-by-layer spatial do-
main and timing-dependent temporal domain in the training
phase, as well as approximated derivative for spike func-
tion, gradient descent training is applied to SNN successfully.
Then an explicitly iterative LIF model and a neuron nor-
malization technique is developed in order to adjust neural
selectivity (Wu et al. 2019). In addition, Wu et al. give a
simple encoding method for SNN to narrow the time win-
dow. A probability density function of spike state change is
applied to solve the non-differentiability of spike function
properly (Shrestha and Orchard 2018). With this approximate
derivative, they introduce a BP mechanism for learning both
synaptic weights and axonal delays. By building a mathe-
matical model based on the IF model, Lee et al. propose a
novel algorithm to solve the non-differentiable problem of
LIF model (Lee et al. 2020) and achieve good results on
image classification tasks.

The loss function of these methods is usually defined as
mean squared error between the average output spikes of
output layer and the label of sample Y

L =
1

2
‖Y − 1

T

T∑
t=1

ot,N‖22 (4)

where ot,N is the output vector of the output layer N at time
step t. With this loss function, the gradient for the weight
matrix is given by

∂L

∂Wn
=

T∑
t=1

∂L

∂ut,n
ot,n−1T (5)

It can be observed that STBP has to accomplish the backward
process in two loops: temporal and spatial. Thus the compu-
tational complexity is large and augments with the increasing
of time window and network depth.

We recently notice that a tandem framework is proposed
for training SNN models (Wu et al. 2020), which is similar to
our work. Wu et al. construct a tandem learning framework,
which consists of an SNN and an ANN coupled through
weight sharing. The ANN in their framework facilitates the
error backpropagation for the training of SNN models. Al-
though our work shares some insights with the tandem frame-
work, there are still some differences. The membrane poten-
tial of neurons in the tandem framework follows a "reduce
by subtraction" way, which is not bio-plausible and different
from our setting. In contrast to tandem framework’s static
activation function, our work utilizes an adaptive adjustment
mechanism to rapidly change the neuron dynamics, which
is beneficial for the weights updating. Moreover, our input
coding scheme is distinct from the tandem framework. All
the differences are explained in the following sections.

(a)

IF + +

+ +
…
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∑

∑
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Figure 2: (a) The illustration of the process to calculate the
accumulated spiking flow. (b) The illustration of constructed
equivalent network. The equivalent network is built based on
weights of original spiking neural network and uses accumu-
lated spiking flow as its input and output. The backpropaga-
tion of original SNN is substituted by the backpropagation of
the equivalent network.

The ASF-BP Method
The Forward Process
The basic model we utilize in our network architecture is
similar to other convolutional spiking neural networks (Lee
et al. 2020; Shrestha and Orchard 2018; Wu et al. 2019). For
convolution layers, the weights of the kernels are based on
continuous value and biases are ignored in our settings. For
pooling layers, both the max pooling and average pooling are
compatible in our network.

Follows the setting in (Lee et al. 2020), the output layer of
our network doesn’t fire any spikes, which is different from
the settings in (Wu et al. 2018). In other words, the output
neurons have an infinite threshold and always accumulate
input currents. The loss function is defined as

L =
1

2
‖Y − uT,N

TVth
‖22 (6)

where Vth is a virtual threshold, T is the length of the time
window, Y denotes the label vector of the sample, uT,N

denotes the membrane potential vector of the output layer.

The Backward Process
Construction of the Equivalent Network For conve-
nience, we assume that neurons in adjacent levels are fully
connected. Actually, if the neurons are convolutionally con-
nected, the basic derivation is very similar and will not alter
the conclusion. For the backpropagation method, the main
target is to find the gradient fast and accurately. Here we
introduce the concept of accumulated spiking flow, which
is the accumulated inputs and outputs for spiking neurons
over the whole time window. Technically, the accumulated
spiking flow values can be expressed using the following two
equations.

FIni =
T∑

t=1

xt,ni , FOn
i =

T∑
t=1

ot,ni . (7)
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Combining Equation (3) and (7), FIni can be rewritten as

FIni =
T∑

t=1

xt,ni =
T∑

t=1

l(n−1)∑
j=1

wn
ijo

t,n−1
j

=

l(n−1)∑
j=1

wn
ij

T∑
t=1

ot,n−1j =

l(n−1)∑
j=1

wn
ijFO

n−1
j .

(8)

Meanwhile, according to the activation principle, FIni and
FOn

i should be approximately proportional to the ratio Vth.
Figure 2(a) shows the process to calculate the accumulated
spiking flow.

To better describe the relationship between the accumu-
lated input and output flow, we define a scale factor Sni for
every neuron, which is the ratio of FOn

i to FIni . The above-
mentioned relationship can be depicted as a linear model
Sni =

FOn
i

FIni
.

It should be noted that all the FIni , FOn
i and Sni can be

calculated in the forward process. In addition, the output
of the final layer memT,N

i is equal to FINi . So after for-
ward process, it is possible to utilize FIni , FOn

i and Sni to
construct an equivalent network and then develop our back-
propagation algorithm.

Derivation of Gradients We use FOn
i as the intermediate

variable to derive the gradients for the weights. Since FINi
is the final output, there is no FON

i existing. So we calculate
the gradients from the (N − 1)th layer

∂L

∂FON−1
i

=

l(N)∑
j

∂L

∂memN,j

∂memN,j

∂FON−1
i

=
∑
j

(
memN,j

TVth
− Yj)

wN
ji

TVth
.

(9)

For n < N − 1, once again using the chain rule, we have

∂L

∂FOn
i

=

l(n+1)∑
j

∂L

∂FOn+1
j

∂FOn+1
j

∂FIn+1
j

∂FIn+1
j

∂FOn
i

=
∑
j

∂L

∂FOn+1
j

Sn+1
j wn+1

ji .

(10)

Furthermore, the weight updating rule is expressed as below

∂L

∂wn
ji

=
∂L

∂FOn
j

∂FOn
j

∂FInj
∂FInj
∂wn

ji

=
∂L

∂FOn
j

Snj FO
n−1
i ,

wn
ji = wn

ji − η
∂L

∂wn
ji

,

(11)
where η is the learning rate. Figure 2(b) illustrates the con-
structed equivalent network as well as the forward and back-
ward processes.

Adaptive Mechanism for Scale Factors In practice, the
scale factor Sni is not stable. For a neuron with sparse spike
input, the value of Sni might vary dramatically. Actually, the

Algorithm 1 Training process of ASF-BP

Require: Network input inputti , sample label Y, parame-
ters and states of network wn

ji, u
t,n
i , ot,ni , t = 1,2,...T, n

= 1,2,...N
Ensure: Update of network parameters

Initialization
1: uni ,FI

n
i ,FO

n
i ← 0, wn

ji ← N(µ, σ2)
Forward

2: for t = 1 to T do
3: ot,1i ←Poisson(inputti)
4: for n = 1 to N do
5: xt,ni ← w · ot,n−1

6: (ut,ni , ot,ni )← Update(xt,ni , ut−1,ni ) . Eq(3)
7: FIni ← FI

n
i + xt,ni ,

8: FOn
i ← FO

n
i + ot,ni

9: end for
10: end for

CalculateScale
11: for n = 1 to N do
12: Snu =

∑
i FO

n
i /
∑

i FI
n
i . Eq(13)

13: end for
Loss

14: L← CalculateLoss(Y,FIN ) . Eq(6)
Backward

15: Gradient initialization: ∂L
∂wn

ji
← 0

16: Calculate ∂L
∂FON−1

j

and ∂L
∂wN−1

ji

. Eq(10)(12)

17: for n = N-2,..,1 do
18: ∂L

∂FOn
i
←
∑

j
∂L

∂FOn+1
j

Sn+1
u wn+1

ji ,

19: ∂L
∂wn

ji
← ∂L

∂FOn
j
SnuFO

n−1
i . Eq(11)(12)

20: end for
21: Update Weights

deployment of scale factors for the neurons assumes there is
a linear model for the spiking activation. We deem neurons
in the same layer should have similar distributions of input
strength which determine the value of scale factor. Given this
observation, we apply a uniform scale factor Snu for all the
neurons in the same layer. Thus Equation (9) is updated and
expressed as

Sn
u =

∑l(n)
i FOn

i∑l(n)
i FIni

. (12)

To keep the stabilization, we update the scale factors every
a few epochs. In-depth analysis of adaptive mechanism’s
benefits is given in the experiment section. The utilization
of adaptive mechanism is a key difference from (Wu et al.
2020), while Wu et al. only exploit a static activation function
to construct the ANN.

Finally, we show the details of the ASF-BP with the
pseudo-code in Algorithm 1. It should be noted that although
our proposed method is initially based on the IF model, we
can still apply the algorithm to the LIF model with minor
changes.
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Experiments
Datasets
Two kinds of image datasets are utilized to test the ASF-
BP method for image classification tasks. They are non-
neuromorphic datasets MNIST (LeCun et al. 1998), CI-
FAR10 (Alex Krizhevsky 2009) and neuromorphic dataset
CIFAR10-DVS (Li et al. 2017).

MNIST is a handwritten digital dataset, which is a stan-
dard benchmark used to evaluate the performance of pattern
recognition and machine learning algorithms. The dataset
contains 70,000 grayscale images in 10 classes, of which
60,000 images are used for training and 10,000 images are
for testing. The resolution of the images is 28× 28. Poisson
sampling is used to generate spikes. There is no data augmen-
tation utilized for MNIST dataset. In the output layer, the
neuron with the highest membrane potential is treated as the
target neuron.

CIFAR10 dataset is widely used in machine learning re-
search for object classification. It contains 60,000 color im-
ages in 10 classes, of which 50,000 images are for training
and 10,000 images are for testing. The resolution of CIFAR10
images is 32×32. For CIFAR10 images, we utilize a standard
data augmentation strategy, which consists of random crop,
random horizontal flip and normalization. Poisson sampling
is also applied to generate spike trains.

Here it should be emphasized that (Wu et al. 2019, 2020)
don’t use spikes as the network input. They directly feed the
network with the real values from the image, which is not
bio-plausible. That might explain why they can achieve good
results in a short time window.

CIFAR10-DVS is a neuromorphic dataset based on CI-
FAR10 dataset, which consists of 10000 event streams in
10 classes. The event stream is recorded by the event-based
camera when the images are moving slowly. The event-based
camera used in the dataset is with the resolution 128× 128.
There are two kinds of events for the spikes: ON events and
OFF events. To reduce calculating complexity, we downsam-
ple the event stream to the resolution 42× 42. Thus for every
time step, the dimension of the input data is 42× 42× 2. We
randomly select 90% of the images as the training images
and the rest images are the testing images for every class.
Actually, event-based cameras are very sensitive to object
motions and generate the spikes in micro-second level tem-
poral resolution. In practice, we use a time span of 12 ms to
accumulate the original spikes.

Implementation Details
We implement two convolutional spiking neural networks
LeNet (LeCun et al. 1998) and VGG7 (Simonyan and Zis-
serman 2014) for these datasets. LeNet has two convolution
layers, two pooling layers and two fully connected layers,
while VGG7 has five convolution layers, two pooling layers
and two fully connected layers. For both networks, we em-
ploy two neural models: IF model and LIF model. For the LIF
model, we utilize 0.99 as the decay coefficient. The simula-
tion code is written with the Pytorch framework (Paszke et al.
2017) , which provides easy interfaces for GPU acceleration

Model Accuracy

(Lee et al. 2016) 99.31%
(Wu et al. 2018) 99.42%

(Jin, Zhang, and Li 2018) 99.49%
(Zhang and Li 2019) 99.62%

(Lee et al. 2020) 99.59%

This work (IF) 99.65%
This work (LIF) 99.60%

Table 1: Comparison of different models on MNIST.

and auto differentiation. All the models are trained using one
NVIDIA TitanXP Graphics card.

The weights of the convolution layer and the fully con-
nected layer of our networks are initialized according to the
normal distribution (He et al. 2015). The threshold of neurons
is tuned according to different types of networks and datasets,
which is typically set between 0.5 and 2. We adopt the Adam
optimizer (Kingma and Ba 2014) to adjust the learning rate
with initial lr = 8.5× 10−4 or 5× 10−4 for different datasets.
After dozens of epochs, we will decrease the learning rate
manually. The batch size is set to 60, 100, 40 for the MNIST,
CIFAR10 and CIFAR10-DVS datasets respectively. The scale
factor used in backward process is updated every 5 epochs.

Performance
MNIST Dataset The LeNet network is used to evaluate
the performance of our ASF-BP algorithm on the MNIST
dataset. Table 1 compares the performance of ASF-BP with
other leading methods on the MNIST dataset. It can be ob-
served that our proposed method achieves the state-of-the-art
performance. It is necessary to point out that the time win-
dows of (Zhang and Li 2019) and (Jin, Zhang, and Li 2018) in
the experiment are 400. In addition, we compare the training
time of our ASF-BP method and the spatio-temporal based
BP method (Lee et al. 2020) on the MNIST dataset in the
following section.

CIFAR10 Dataset For CIFAR10 dataset, the VGG7 net-
work is applied to evaluate the performance. Figure 4(b)
shows the accuracy variation using different lengths of time
window for our ASF-BP method on the CIFAR10 dataset.
It can be seen that the accuracy of our framework grows
as the length of time window increases. Table 2 compares
the performance of other leading algorithms on CIFAR10. It
can be seen that ASF-BP achieves 91.35% accuracy which
outperforms the performance of other methods when time
window is set to 400. We also compare the training time of
our ASF-BP with the method used in (Lee et al. 2020) on the
CIFAR10 dataset in the following section.

It is necessary to point out that the time windows of (Panda
and Roy 2016) and (Lee et al. 2020) in the experiment are
250 and 100 respectively. The network used in (Rueckauer
et al. 2017) is a converted SNN. To be fair, we also use the
ASF-BP with the time window 100 and the best accuracy we
can achieve is 89.83%. Though the accuracy is slightly lower
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Model Accuracy

(Panda and Roy 2016) 70.16%
(Wu et al. 2019) 90.53%
(Rueckauer et al. 2017) 90.80%
(Lee et al. 2020) 90.95%
(Wu et al. 2020) 90.98%

This work (IF) 91.35%
This work (LIF) 90.11%

Table 2: Comparison of different models on CIFAR10

Model Method Accuracy

(Orchard et al. 2015) Random Forest 31.0%
(Lagorce et al. 2017) HOTS 27.1%
(Sironi et al. 2018) HAT 52.4%
(Sironi et al. 2018) Gabor-SNN 24.5%
(Wu et al. 2019) Spiking CNN (STBP) 60.5%
(Wu et al. 2020) Tandem Learning 58.65%

This work (IF) Spiking CNN (ASF-BP) 62.5%
This work (LIF) Spiking CNN (ASF-BP) 58.2%

Table 3: Comparison of different models on CIFAR10-DVS

than the result listed in Table 2, it should be noted that the
VGG7 network is much simpler than ResNet11 (Lee et al.
2020) and CifarNet (Wu et al. 2019). In addition, (Wu et al.
2019, 2020) use continuous-valued data as input instead of
spikes, which is different from our setting.

CIFAR10-DVS Dataset We use the VGG7 network for
classification on CIFAR10-DVS, whose structure is similar
to what we used in the experiment on the CIFAR10 dataset.
The only difference is that the channel numbers of the con-
volution layers are added. Because the event streams are
sparse, to make full use of the data, we repeatedly inject the
input data for three times. Table 3 compares the performance
of our ASF-BP algorithm and other existing algorithms on
CIFAR10-DVS. It can be seen that ASF-BP achieves the
comparable performance with other works on the CIFAR10-
DVS dataset. It is necessary to mention that (Wu et al. 2019)
reduces the temporal resolution by similarly accumulating
the spike train within every 5 ms.

Experiment Analysis
Training Time Our proposed ASF-BP method is able to
accomplish the BP process in just one loop. Compared with
other spatio-temporal methods (Lee et al. 2020; Wu et al.
2018), the calculating complexity is greatly reduced. To ex-
plicitly show the acceleration effects of ASF-BP in train-
ing SNN, we compare the training time of ASF-BP and the
method proposed by Lee et al. in Figure 3. The figure shows
that ASF-BP has a 3.0x acceleration on MNIST and CIFAR10
when time window is not very large. Besides, ASF-BP has a
larger acceleration ratio (up to 6) as time window goes larger.

To be fair, both methods utilize the same time window,
batch size, neuron model and the network architecture during

Lenet(T=100) VGG7(T=100) VGG7(T=200) VGG7(T=300)
Model
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Figure 3: The illustration of the training time comparison
between ASF-BP and (Lee et al. 2020) on four experiments.
The first experiment is based on MNIST dataset and the
remaining experiments are based on CIFAR10 dataset. The
bar figure illustrates the training time (in minutes) consumed
in an epoch. The acceleration line shows the acceleration
ratio to corresponding model.

the comparison. It should be noted that, when training the
model with Lee et al.’s method, if the batch size is 50, the
GPU memory of single GPU card cannot afford the VGG7
model with 200 and 300 time window. Thus four graphics
cards are used to facilitate the training. Since there are over-
heads for the communication among different GPU cards,
the training time increases a lot. From Figure 3, it is easy to
observe that ASF-BP is able to accelerate training effectively.

Effect of Scale Factor The neural dynamics of the IF
model can be roughly summarized as accumulating input
current and firing spikes if the membrane potential surpasses
the threshold. In contrast, LIF model has extra leaky mech-
anism. For both IF and LIF models, the output spike count
should be approximately proportional to the total input cur-
rent during the whole time window. Many SNN training
schemes assume that the ratio of spike count to the total input
current for a neuron is 1/Vth. However, the membrane at
firing time is always larger than the firing threshold. The ratio
should be definitely less than 1/Vth. In our paper, we call
this ratio scale factor. It is difficult to give a precise value or
distribution for the scale factor because it changes a lot with
the variance of the input current.

We design an experiment to prove that the scale factor
changes as the input current varies. In the experiment, there
is one neuron following the IF model. We set the time window
to 100. For convenience, we set positive values for weights so
that we can get a correct scale factor. During the whole time
window, we keep the weight of synapse unchanged and the
intensity of input is directly proportional to the continuous-
valued pixel. The firing threshold is set to 1. Based on the
spiking flow in the experiment, we compute scale factors for
input current with different distributions respectively.

Table 4 lists the scale factors under input currents with
different distributions. It should be noted that we control the
strength of the input by adjusting the intensity of the pixels
and keeping weights unchanged here. From the table we
can see that the scale factor decreases with the increasing
of input current. Therefore, it is easy to conclude that we
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Distribution U(0,0.5) U(0.1,0.6) U(0.2,0.7)
Scale Factor 0.641 0.478 0.385

Distribution U(0.3,0.8) U(0.4,0.9) U(0.5,1)
Scale Factor 0.335 0.286 0.249

Table 4: Scale factor variation as input current with different
distributions. U(a,b) denotes the uniform distribution between
a and b.

need to update the scale factor from time to time to make our
equivalent network reflect the real neural dynamics of the
original network. It should be mentioned that the updating
strategy of scale factor in ASF-BP is different from settings in
this experiment. In our ASF-BP, we update the scale factors
layer-wisely, not neuron by neuron. We utilize this strategy
because there are some extreme values for scale factor, which
have negative impacts on network performances. Layer-wise
updating in ASF-BP, though not accurate for every neuron,
guarantees that the scale factor of most neurons will not
deviate the true ratio too much.

Effect of Time Window A single spike could not encode
the full input information. In SNN, we usually utilize rate-
coded schemes to encode the source information, which con-
verts continuous-valued data to spike trains in a time window.
Thus, the length of the time window is directly related to
the performance of SNNs. To investigate the relationship be-
tween the length of time window and network performance,
we design a series of experiments with different time win-
dows on MNIST and CIFAR10 datasets. Figure 4 (a, b) shows
the image classification performance variation of our LeNet
and VGG7 models with time window from 100 to 500, as
the training epochs increase. Figure 4(c) illustrates the im-
age classification performance variation as the time window
increases on both MNIST and CIFAR10 datasets.

From all the sub-figures in Figure 4, we can observe that
generally the performance of our model gets higher as the
time window increases. However, when time window is over
300, the performance will not increase but even decrease
to an extent. The possible reason is that the input image
pixel value needs a big enough time window to represent the
source information. But more time steps are redundant and
may mislead the training direction.

Conclusion and Discussion
We have proposed a novel backpropagation method ASF-BP
for training SNNs. The fundamental network of ASF-BP is
convolutional SNNs based on the IF neuron model. We also
extend to LIF model by adding leaky factor to the IF model.
When training SNNs, ASF-BP first constructs an equivalent
network based on the accumulated spiking flow. Without
changing the forward process, the BP algorithm just uses
the equivalent network and accomplishes weight updating in
single loop. The typical non-differentiable issue of SNNs is
avoided due to the employment of accumulated spiking flow
and the scale factor. In addition, ASF-BP also takes an adap-
tive mechanism for the calculation of the scale factor to make
the linear estimation closer to the dynamic characteristics of
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Figure 4: (a) The performance of LeNet network on the
MNIST dataset. (b) The performance of VGG7 network on
the CIFAR10 dataset. (c) The performance improvement as
the time window increases on MNIST and CIFAR10.

spiking neurons statistically. ASF-BP proves its effectiveness
by achieving superior performance on both neuromorphic
and non-neuromorphic datasets.

ASF-BP is an effective way to train the SNN model,
but it still has some limitations. Firstly, ASF-BP updates
the weights over the entire time window by capturing spik-
ing flows and ignores the temporal information. For non-
neuromorphic datasets, the spike train encodes the intensity
values in a rate-coded manner, thus the temporal information
is not significant. But for neuromorphic datasets, the spike
train embeds more information, such as spike order and spike
count, which partially explains why the ASF-BP doesn’t
achieve satisfactory results (although relatively better) on the
neuromorphic dataset. Secondly, ASF-BP could provide a
decent mathematically derivation for IF neural models. How-
ever, for the LIF neural model, which is more bio-plausible,
some of the mathematical expression cannot be well estab-
lished. In our experiments, we can see that the results for the
LIF model is not much worse than the IF model for LeNet
and VGG7. But what if the SNN is deeper? In the future, we
will continue to investigate how to close the gap between IF
and LIF models using ASF-BP.
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