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Abstract

Adversarial attacks by generating examples which are almost
indistinguishable from natural examples, pose a serious threat
to learning models. Defending against adversarial attacks is a
critical element for a reliable learning system. Support vector
machine (SVM) is a classical yet still important learning algo-
rithm even in the current deep learning era. Although a wide
range of researches have been done in recent years to im-
prove the adversarial robustness of learning models, but most
of them are limited to deep neural networks (DNNs) and the
work for kernel SVM is still vacant. In this paper, we aim at
kernel SVM and propose adv-SVM to improve its adversarial
robustness via adversarial training, which has been demon-
strated to be the most promising defense techniques. To the
best of our knowledge, this is the first work that devotes to the
fast and scalable adversarial training of kernel SVM. Specif-
ically, we first build connection of perturbations of samples
between original and kernel spaces, and then give a reduced
and equivalent formulation of adversarial training of kernel
SVM based on the connection. Next, doubly stochastic gra-
dients (DSG) based on two unbiased stochastic approxima-
tions (i.e., one is on training points and another is on random
features) are applied to update the solution of our objective
function. Finally, we prove that our algorithm optimized by
DSG converges to the optimal solution at the rate of O(1/t)
under the constant and diminishing stepsizes. Comprehensive
experimental results show that our adversarial training algo-
rithm enjoys robustness against various attacks and mean-
while has the similar efficiency and scalability with classical
DSG algorithm.

Introduction
Machine learning models have long been proved to be vul-
nerable to adversarial attacks which generate subtle pertur-
bations to the inputs that lead to incorrect outputs. The per-
turbed inputs are defined as adversarial examples where the
perturbations that lead to misclassification are often imper-
ceptible. This serious threat has recently led to a large in-
flux of contributions in adversarial attacks especially for
deep neural networks (DNNs). These methods of adversar-
ial attacks include FGSM (Goodfellow, Shlens, and Szegedy

∗Corresponding Authors
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2014), PGD (Madry et al. 2017), C&W (Carlini and Wagner
2017), ZOO (Chen et al. 2017) and so on. We give a brief
review of them in the section of related work.

The topic of adversarial attacks has also attracted much
attention in the field of SVM. In 2004, Dalvi et al. (2004)
and later Lowd and Meek (2005a; 2005b) studied the task
of spam filtering, showing that linear SVM could be eas-
ily tricked by few carefully crafted changes in the content
of spam emails, without affecting their readability. Some
other attacks such as label flipping attack (Biggio et al. 2011;
Xiao, Xiao, and Eckert 2012), poison attack (Biggio, Nel-
son, and Laskov 2012; Xiao et al. 2015) and evasion attack
(Biggio et al. 2013) have also proved the vulnerability of
SVM to adversarial examples.

Due to the serious threat of these attacks, there is no doubt
that defense techniques that can improve adversarial robust-
ness of learning models are crucial for secure machine learn-
ing. Most defensive strategies nowadays focus on DNNs,
such as defensive distillation (Papernot et al. 2016), gradient
regularization (Ross and Doshivelez 2018) and adversarial
training (Madry et al. 2017), among which adversarial train-
ing has been demonstrated to be the most effective (Atha-
lye, Carlini, and Wagner 2018). This method focuses on a
min-max problem, where the inner maximization is to find
the most aggressive adversarial examples and the outer min-
imization is to find model parameters that minimize the loss
on the adversarial examples. Up till now, there have been
many forms of adversarial training on DNNs which further
improve their robustness and training efficiency compared
with standard adversarial training (Shafahi et al. 2019; Car-
mon et al. 2019; Miyato et al. 2019; Wang et al. 2020).

Since SVM is a classical and important learning model
in machine learning, the improvement of its security and ro-
bustness is also critical. However, to the best of our knowl-
edge, the only work of adversarial training for SVM is lim-
ited to linear SVMs. Specifically, Zhou et al. (2012) formu-
lated a convex adversarial training formula for linear SVMs,
in which the constraint is defined over the sample space
based on two kinds of attack models. As we know, datasets
with complex structures can be hardly classified by linear
SVMs, but can be easily handled by kernel SVMs. We give
a brief review of adversarial training strategies of DNNs and
SVMs in Table 1. From this table, it is easy to find that how
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Algorithm Reference Applicable model Inner maximization problem Layers of objective function

DNN

Standard (Madry et al. 2017) nonlinear K-PGD attack 2
MART (Wang et al. 2020) nonlinear K-PGD attack 2

VAT (Miyato et al. 2019) nonlinear K-PGD attack 2
FAT (Shafahi et al. 2019) nonlinear single-step FGSM attack 2

SVM adv-linear-SVM (Zhou et al. 2012) linear closed-form solution 1
adv-SVM Ours nonlinear closed-form solution 1

Table 1: Comparisons of different adversarial training algorithms on DNN and SVM.

to improve the robustness of kernel SVMs against adversar-
ial examples is still an unstudied problem.

To fill the vacancy, in this paper, we focus on kernel SVMs
and propose adv-SVM to improve their adversarial robust-
ness via adversarial training. To the best of our knowledge,
this is the first work that devotes to fast and scalable adver-
sarial training of kernel SVMs. Specifically, we first build
connections of perturbations between the original and ker-
nel spaces, i.e., φ(x + δ) and φ(x) + δφ, where δ is the
perturbation added to the normal example in the original
space, δφ is the perturbation in the kernel space and φ(·) is
the corresponding feature mapping. Then we construct the
closed-form solution of the inner maximization and trans-
form the min-max objective function into a convex mini-
mization problem based on the connection of the perturba-
tions. However, directly optimizing this minimization prob-
lem is still difficult since the kernel function, which is nec-
essary for the optimization, needs O(n2d) operations to be
computed, where n is the number of training examples and
d is the dimension. Huge requirement of computation com-
plexity hinders its application on large scale datasets.

To further improve its scalability, we apply the doubly
stochastic gradient (DSG) algorithm (Dai et al. 2014) to
solve our objective. Specifically, in each iteration, we ran-
domly select one training example and one random feature
parameter for approximating the value of a kernel function
instead of computing it directly. The DSG algorithm effec-
tively reduces the computation complexity of solving kernel
methods from O(n2d) to O(td), where t is the number of
iterations (Gu and Huo 2018).

The main contributions of this paper are summarized as
follows:
• We develop an adversarial training strategy, adv-SVM, for

kernel SVM based on the relationship of perturbations be-
tween the original and kernel spaces and transform it into
an equivalent convex optimization problem, then apply
the DSG algorithm to solve it in an efficient way.

• We provide comprehensive theoretical analysis to prove
that our proposed adv-SVM can converge to the optimal
solution at the rate of O(1/t) with either a constant step-
size or a diminishing stepsize even though it is based on
the approximation principle.

• We investigate the performance of adv-SVM under typ-
ical white-box and black-box attacks. The empirical re-
sults suggest our proposed algorithm can complete the
training process in a relatively short time and stay robust
in face of various attack strategies at the same time.

Related Work
During the development of adversarial machine learning, a
wide range of attacking methods have been proposed for the
crafting of adversarial examples. Here we mention some fre-
quently used ones which are useful for generating adversar-
ial examples in our experiments.

• Fast Gradient Sign Method (FGSM). FGSM, which be-
longs to white-box attacks, perturbs normal examples for
one step by the amount ε along the gradient (Goodfellow,
Shlens, and Szegedy 2014).

• Projected Gradient Descent (PGD). PGD, which is also
a white-box attack method, perturbs normal examples for
a number of stepsK with a smaller step size and keeps the
adversarial examples in the ε-ball where ε is the maximum
allowable perturbation (Madry et al. 2017).

• C&W. C&W is also a white-box attack method, which
aims to find the minimally-distorted adversarial examples.
This method is acknowledged to be one of the strongest
attacks up to date (Carlini and Wagner 2017).

• Zeroth Order Optimization (ZOO). ZOO is a black-box
attack based on coordinate descent. It assumes that the at-
tackers only have access to the prediction confidence from
the victim classifier’s outputs. This method is proved to be
as effective as C&W attack (Chen et al. 2017).

It should be noted that although these methods are pro-
posed for DNN models, they are also applicable to other
learning models. We can apply them to generate adversar-
ial examples for SVM models.

Background
In this section, we give a brief review of adversarial train-
ing on linear SVM and the random feature approximation
algorithm.

Adversarial Training on Linear SVM
We assume that SVM has been trained on a 2-class dataset
P = {(xi, yi)}ni=1 with xi ∈ R as a normal example in the
d-dimensional input space and yi ∈ {+1, −1} as its label.

The adversarial training process aims to train a robust
learning model using adversarial examples. As illustrated in
(Zhou et al. 2012), it is formulated as solving a min-max
problem. The inner maximization problem simulates the be-
havior of an attacker which constructs adversarial examples
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leading to the maximum output distortion:

max
x′
i

[
1− yi

(
wTx′i + b

)]
+

(1)

s.t. ‖x′i − xi‖
2
2 ≤ ε

2

where x′i is the adversarial example of xi, ε denotes the lim-
ited range of perturbations, w and b are the parameters of
SVM. The loss function here is the commonly used hinge
loss and we express it as [·]+.

The outer minimization problem targets to find parame-
ters that minimize the loss caused by inner maximization.

min
w,b

1

2
‖w‖22 +

C

n

n∑
i=1

max
x′

[
1− yi

(
wTx′i + b

)]
+

s.t.
∥∥x′i − xi∥∥22 ≤ ε2 (2)

Due to the limited application of linear SVMs, we aim to
extend the adversarial training strategy to kernel SVMs.

Random Feature Approximation
Random feature approximation is a powerful technique used
in DSG to make kernel methods scalable. This method ap-
proximates the kernel function by mapping the decision
function to a lower dimensional random feature space. Its
theoretic foundation relies on the intriguing duality between
kernels and random processes (Geng et al. 2019).

Specifically, the Bochner theorem (Rudin 1962) provides
a relationship between the kernel function and a random pro-
cess ω with measure p: for any stationary and continuous
kernel k(x, x′) = k(x − x′), there exits a probability mea-
sure p, such that k(x, x′) =

∫
Rd e

iωT (x−x′)p(ω)dω. In this
way, the value of the kernel function can be approximated
by explicitly computing random features φωi(x), i.e.,

k(x, x′) ≈ 1

m

m∑
i=1

φωi(x)φTωi(x
′) = φω(x)φTω (x′) (3)

where m is the number of random features, φωi(x)
denotes [cos(ωTi x), sin(ωTi x)]T and φω(x) denotes

1√
m

[φω1(x), φω2(x), · · · , φωm(x)]. For the detailed deriva-
tion process, please refer to (Ton et al. 2018).

It is clearly that feature mappings are Rd → R2m, where
m� d. To further alleviate computational costs, φωi(x) can
be expressed as

√
2 cos(ωTi x + b), where ωi is drawn from

p(ω) and b is drawn uniformly from [0, 2π].
It is known that most kernel methods can be expressed as

convex optimization problems in reproducing kernel Hilbert
space (RKHS) (Dai et al. 2014). A RKHS H has the repro-
ducing property, i.e., ∀x ∈ X , k(x, ·) ∈ H and ∀f ∈ H,
〈f(·), k(x, ·)〉H = f(x). Thus we have ∇f(x) = k(x, ·)
and ∇‖f‖2H = 2f (Dang et al. 2020).

Adversarial Training on Kernel SVM
In this section, we extend the objective function (2) of linear
SVM to kernel SVM, where the difficulty lies in the uncon-
trollable of the perturbations mapped in the kernel space.

Figure 1: Conceptual illustration of perturbations in the orig-
inal and kernel spaces.

Kernelization
Firstly, we discuss the kernelization of the perturbations.
When constructing an adversarial example, we first add per-
turbations to the normal example x in the original space con-
strained by ‖δ‖22 ≤ ε2 as shown in Figure 1(a) and 1(b).
But once the adversarial example is mapped into the kernel
space, it will become unpredictable like Figure 1(c). Then
the irregular perturbations greatly increase the difficulty of
computation and the obtainment of the closed-form solution.

Fortunately, the following theorem provides a tight con-
nection between perturbations in the original space and the
kernel space.
Theorem 1. (Xu, Caramanis, and Mannor 2009) Sup-
posing that the kernel function has the form k(x, x′) =
f(‖x− x′‖), with f : R+ → R, a decreasing function,
which is denoted by H the RKHS space of k(·, ·) and φ(·)
the corresponding feature mapping, then we have for any
x ∈ Rn, w ∈ H and c>0,

sup
‖δ‖≤c

〈w, φ(x+ δ)〉 ≤ sup
‖δφ‖H≤

√
2f(0)−2f(c)

〈w, φ(x) + δφ〉.

Since the perturbation range of φ(x) + δφ tightly covers
that of φ(x+δ), which is also intuitively illustrated in Figure
1(d), then we apply φ(x) + δφ to deal with the following
computation, making the problem a linear problem in the
kernel space. Thus, the inner maximization problem (1) in
the kernel space can be expressed as

max
x′

[
1− yi

(
wTΦ(x′i) + b

)]
+

(4)

s.t. ‖Φ(x′i)− φ(xi)‖
2
2 ≤ ε

′2

where Φ(x′i) denotes φ(xi) + δφ and ε′ is
√

2f(0)− 2f(ε).

Construction of the Closed-form Solution
In this part, we aim to get the closed-form solution of Eq. (4),
then the min-max optimization problem in the kernel space
can be transformed into a minimization problem following
the strategy of Appendix B in (Lanckriet et al. 2003).
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Firstly, we construct the Lagrangian function of Eq. (4):

L(Φ(x′i), λi) = 1− yi(wTΦ(x′i) + b)

+ λi
(
(Φ(x′i)− φ(xi))

T (Φ(x′i)− φ(xi))− ε′2
)

(5)

where λi ≥ 0. Then let the partial differences of
L(Φ(x′i), λi) to Φ(x′i) and λi equal to 0, we can get

Φ(x′i) = φ(xi) +
1

2λi
yiw, (6)

λi =

√
wTw

2ε′
. (7)

It should be noted that when the hinge loss of (4) equals
to 0, its closed-form solution is 0 as well. Then substituting
Eq. (6) and (7) into (4), we have

max
‖Φ(x′

i)−φ(xi)‖2
2
≤ε′2

[
1− yi

(
wTΦ(x′i) + b

)]
+

=
[
1− yiwTφ(xi)− ε′ ‖w‖2 − yib

]
+

(8)

In this way, the original min-max optimization problem can
be rewritten as the following minimization problem:

min
w∈H,b

1

2
‖w‖22+

C

n

n∑
i=1

[
1−yiwTφ(xi)−ε′ ‖w‖2−yib

]
+

(9)

Learning Strategy of adv-SVM
In this section, we extend the DSG algorithm to solve the
objective minimization problem (9), since DSG has been
proved to be a powerful technique for scalable kernel learn-
ing (Dai et al. 2014).

For easy expression, we substitute f(·) for wTφ(·) in Eq.
(9), as ‖f‖22 = wTφ(·)φ(·)Tw = ‖w‖22, which is accessible
to kernels which satisfy φ(·)φ(·)T = 1, such as RBF and
Laplacian kernels (Hajiaboli, Ahmad, and Wang 2011), then
the objective function can be expressed as follows:

min
f∈H

R(f) (10)

= min
f∈H

1

2
‖f‖22 +

C

n

n∑
i=1

[1− yif(xi)− ε′ ‖f‖2 − yib]+

Doubly Stochastic Gradients
In this part, we use the DSG algorithm to update the solution
of Eq. (10). For convenience, here we only discuss the case
when the hinge loss is greater than 0.

Stochastic Gradient Descent. To iteratively update f in
a stochastic manner, we need to sample a data point (x, y)
each iteration from the data distribution. The stochastic
functional gradient for R(f) is

∇R(f) = f(·) + C

[
−yk(x, ·)− ε′ f(·)

‖f‖2

]
(11)

It is noted that ∇R(f) is the derivative wrt. f . Since it still
costs too much if we compute the kernel functions directly,
next, we apply the random feature approximation algorithm
introduced earlier to approximate the value of the kernels.

Random Feature Approximation. According to Eq. (3),
when sampling random process ω from its probability dis-
tribution p(ω), we can further approximate Eq. (11) as

∇R̂(f) = f(·) + C

[
−yφω(x)φω(·)− ε′ f(·)

‖f‖2

]
(12)

Update Rules. According to the principle of SGD method,
the update rule for f in the t-th iteration is

ft+1(·) = ft(·)− γt∇R̂(f) =
t∑
i=1

aitζi(·) (13)

where γt is the stepsize of the t-th iteration, ζi(·)
denotes −Cyiφωi(xi)φωi(·) and the initial value
f1(·) = 0. The value of ait can be easily inferred as
−γi

∏t
j=i+1

(
1− γj

(
1− ε′C

‖fj‖2

))
1.

Note that if we compute the value of kernels explicitly
instead of using random features, the update rule for f is

ht+1(·) = ht(·)− γt∇R(f) =
t∑
i=1

aitξi(·). (14)

where ξi(·) = −Cyik(xi, ·). Our algorithm apply the up-
date rule (13) instead, which can reduce the cost of kernel
computation.

Detailed Algorithm. Based on Eq. (13) above, we pro-
pose the training and prediction algorithms for the adversar-
ial training of kernel SVM in Algorithm 1 and 2 respectively.

Algorithm 1 {αi}ti=1 = Train(P(x, y))

Input: P(x, y), p(ω), C.
1: for i = 1, · · · , t do
2: Sample (xi, yi) ∼ P(x, y).
3: Sample ωi ∼ p(ω) with seed i;
4: f(xi) = Predict(xi, {αj}i−1

j=1).

5: Define γi = η (constant) or γi = θ
i (diminishing).

6: αi = γiCyiφωi(xi).

7: αj = (1− γi(1− ε′C
‖fj‖2

))αj for j = 1, · · · , i− 1

8: end for

Algorithm 2 f(x) = Predict(x, {αi}ti=1)

Input: p(ω), φω(x).
1: Set f(x) = 0.
2: for i = 1, · · · , t do
3: Sample ωi ∼ p(ω) with seed i;
4: f(x) = f(x) + αiφωi(x).
5: end for

A crucial step of DSG in Algorithm 1 and 2 is sampling
ωi with seed i. As the seeds are aligned for the training and

1The value of ait is gotten by expanding the middle term of Eq.
(13) iteratively with the definition of∇R̂(f).
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prediction processes in the same iteration (Shi et al. 2019),
we only need to save the seeds instead of the whole random
features, which is memory friendly.

Different to the diminishing stepsize used in the original
version of DSG (Dai et al. 2014), our algorithm here sup-
ports both diminishing and constant stepsize strategies (line
5 of Algorithm 1). The process of gradient descent is com-
posed of a transient phase followed by a stationary phase.
In the diminishing stepsize case, the transient phase is rel-
atively long and can be impractical if the stepsize is mis-
specified (Toulis, Airoldi et al. 2017), but once entering the
stationary phase, it will converge to the optimal solution
f∗ gently. While in the constant stepsize case, the transient
phase is much shorter and less sensitive to the stepsize (Chee
and Toulis 2018), but it may oscillate in the region of f∗ dur-
ing the stationary phase.

Convergence Analysis
In this section, we aim to prove that adv-SVM can converge
to the optimal solution at the rate of O(1/t) based on the
framework of (Dai et al. 2014), where t is the number of
iterations. We first provide some assumptions.

Assumption 1. (Bound of kernel function) There exists
κ>0, such that k(x, x′) ≤ κ.

Assumption 2. (Bound of random feature norm) There exits
φ>0, such that |φω(x)φω(x′)| ≤ φ.

Assumption 3. The spectral radius ρ(f) of a function
f(·) has a lower bound that ρ(f) ≥ ε′C ≥ 0, where
a spectral radius is the maximum modulus of eigenval-
ues(Gurvits, Shorten, and Mason 2007), i.e., ρ(f) =
max1≤i≤∞

{∣∣√λi∣∣}.

For Assumption 3, it is known that we can find n eigen-
values {λi}ni=1 for a matrix A in Rn space and the spec-
tral radius ρ(A) of matrix A is defined as the maximum
modulus of the eigenvalues of A (Gurvits, Shorten, and Ma-
son 2007), i.e., ρ(A) = max1≤i≤n {|λi|}. Similar to matrix
case, in RKHS space, a function f(·) can be viewed as an
infinite matrix, then infinite eigenvalues

{√
λi
}∞
i=1

and in-
finite eigenfunctions {ψi}∞i=1 can be found (Iii 2004). Treat{√

λiψi
}∞
i=1

as a set of orthogonal basis, then f(·) can be
represented as the linear combination of the basis, i.e., f =∑∞
i=1 fi

√
λiψi. Similar to the definition of spectral radius

in matrix, for function f(·), ρ(f) = max1≤i≤∞
{∣∣√λi∣∣}.

We update the solution f through random features and
random data points according to (13). As a result, ft+1 may
be outside of RKHS H, making it hard to directly evaluate
the error between ft+1(·) and the optimal solution f∗. In this
case, we utilize ht+1(·) as an intermediate value to decom-
pose the difference between ft+1 and f∗ (Shi et al. 2020):

|ft+1(x)− f∗|2 (15)

≤2 |ft+1(x)−ht+1(x)|2︸ ︷︷ ︸
error due to random features

+2κ ‖ht+1−f∗‖22 .︸ ︷︷ ︸
error due to random data

We introduce our main lemmas and theorems as below.
All the detailed proofs are provided in our appendix.

Convergence Analysis on Diminishing Stepsize
We first prove that the convergence rate of our algorithm
with diminishing stepsize is O(1/t).
Lemma 1. (Error due to random features) For any x ∈ X ,

EDt, ωt
[
|ft+1(x)− ht+1(x)|2

]
≤ 1

t2
C2θ2(k + φ)2

Lemma 2. (Error due to random data) Let f∗ be the op-
timal solution to our target problem, we set γt = θ

t with θ
such that θ> 1

2 , then we have

EDt,ωt [‖ht+1 − f∗‖22] ≤ Q2
1

t
(16)

where Q1 = max

{
‖f∗‖2 ,

β0+
√
β2
0+4(2θ−1)β

2(2θ−1)

}
, β =

C2θ2
[
(κ+ ε′) + κ1/2θ

]2
, β0 is a constant value and β0>0.

Theorem 2. (Convergence in expectation) When γt = θ
t

with θ> 1
2 , ∀x ∈ X ,

EDt,ωt
[
|ft+1(x)− f∗|2

]
≤ 2Q2

0

t
+

2κQ2
1

t
(17)

where Q0 = Cθ(κ+ φ).
Remark 1. According to Eq. (15), the error caused by dou-
bly stochastic approximation can be computed via the com-
bination of Lemma 1 and 2 and we prove in Theorem 2 that
it converges at the rate of O(1/t).

Convergence Analysis on Constant Stepsize
In this part, we provide a novel theoretical analysis to prove
that adv-SVM with constant stepsize converges to the opti-
mal solution at a rate near O(1/t).

Notice that the diminishing stepsize θ/t provides 1/t to
the convergence rate, while in the case of constant stepsize,
the stepsize η makes the analysis more challenging.
Lemma 3. (Error due to random features) For any x ∈ X ,

EDt,ωt
[
|ft+1(x)− ht+1(x)|2

]
≤ C2 η

c
(κ+ φ)2

Lemma 4. (Error due to random data) Let f∗ be the
optimal solution to our target problem, set t ∈ [T ] and
η ∈ (0, 1), with η = εϑ

2B for ϑ ∈ (0, 1], we will reach
EDt,ωt,ω′t [‖ht+1 − f∗‖22] ≤ ε after

T ≥ B log(2e1/ε)

ϑε
(18)

iterations, where B = 1
2C
[
(κ+ ε′) + κ1/2 1

c

]2
and e1 =

ED1,ω1 [‖h1 − f∗‖22].

Theorem 3. (Convergence in expectation) Set t ∈ [T ],
T>0 and ε>0, 0<η<1, with η = εϑ

8κB where ϑ ∈ (0, 1],

we will reach EDt,ωt
[
|ft+1(x)− f∗|2

]
≤ ε after

T ≥ 4κB log(8κe1/ε)

ϑε
(19)

iterations, where B and e1 are defined in Lemma 4.
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Figure 2: Accuracy of different models when applying different steps PGD attack (Fig. 2a, 2b) and different max perturbation
ε (Fig. 2c, 2d) to generate adversarial examples.
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(d) ZOO
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Figure 3: Test error vs. iterations of different models on four attack methods on CIFAR10 automobile vs. truck (Fig. 3a- 3d)
and MNIST8m 0v4 (Fig. 3e-3h). (Since adv-linear-SVM cannot run iteratively like adv-SVM, we do not include it here.)

Remark 2. Based on Theorem 3, ft+1(x) will converge to
the optimal solution f∗ at a rate near O(1/t) if eliminat-
ing the log(1/ε) factor. This rate is nearly the same as the
one of diminishing stepsize, even though the stepsize of our
algorithm keeps constant.

Experiments
In this section, we will accomplish comprehensive experi-
ments to show the effectiveness and efficiency of adv-SVM.

Experimental Setup
Models compared in experiments include Natural: normal
DSG algorithm (Dai et al. 2014); adv-linear-SVM: adver-
sarial training of linear SVM proposed by Zhou et al. (2012);
adv-SVM(C): our proposed adversarial training algorithm
with constant stepsize; adv-SVM(D): our proposed adver-
sarial training algorithm with diminishing stepsize.

The four attack methods of constructing adversarial sam-
ples we applied cover both white-box and black-box attacks
and are already introduced in the section of related work.

For FGSM and PGD, the maximum perturbation ε is set as
8/255 and the step size for PGD is ε/4. We use the L2 ver-
sion of C&W to generate adversarial examples. For ZOO,
we use the ZOO-ADAM algorithm and set the step size
η = 0.01, ADAM parameters β1 = 0.9, β2 = 0.999.

Implementation. We perform experiments on Intel Xeon
E5-2696 machine with 48GB RAM. It has been mentioned
that our model is implemented2 based on the DSG frame-
work (Dai et al. 2014). For the sake of efficiency, in the
experiment, we use a mini-batch setting. The random fea-
tures used in DSG are sampled according to pseudo-random
number generators. RBF kernel is used for natural DSG and
adv-SVM algorithms, the number of random features is set
as 210 and the batch size is 500. 5-fold cross validation is
used to choose the optimal hyper-parameters (the regular-
ization parameter C and the step size γ). The parameters C
and γ are searched in the region {(C, γ)| − 3 ≤ log2 C ≤
3 ,−3 ≤ log2 γ ≤ 3}. For algorithm adv-linear-SVM, we

2The DSG code is available at https://github.com/zixu1986/
Doubly Stochastic Gradients.
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model
Normal FGSM PGD C&W ZOO

acc time acc time acc time acc time acc time
Natural 75.65±0.36 18.03 65.10±0.51 22.50 63.32±0.47 19.63 47.30±0.76 23.52 52.76±0.89 21.23

adv-linear-SVM 73.65±0.58 671.23 70.00±0.52 592.93 60.39±0.75 665.73 48.82±0.93 594.90 50.00±0.24 606.98
adv-SVM(D) 75.00±0.43 19.35 72.70±0.57 22.89 64.55±0.49 20.31 50.00±0.95 17.65 53.03±0.69 19.74
adv-SVM(C) 75.25±0.32 18.25 73.95±0.53 18.46 65.95±0.67 21.94 50.55±0.79 19.73 53.70±0.81 18.65

Table 2: Accuracy (%) and running time (min) on CIFAR10 automobile vs. truck against different attacks.

model
Normal FGSM PGD C&W ZOO

acc time acc time acc time acc time acc time
Natural 99.48±0.08 50.11 98.82±0.24 47.72 97.82±0.31 58.14 89.42±0.37 49.18 91.90±0.48 39.50

adv-linear-SVM 98.39±0.37 2472.93 97.61±0.17 2624.47 98.81±0.34 2795.34 87.26±0.56 2485.43 88.39±0.75 2602.25
adv-SVM(D) 99.45±0.09 49.98 99.38± 0.15 53.94 99.02±0.47 56.47 93.46±0.36 49.02 93.81±0.64 54.65
adv-SVM(C) 99.46±0.13 57.15 99.45±0.17 48.16 99.16±0.35 62.52 95.00±0.57 47.89 94.72±0.76 50.14

Table 3: Accuracy (%) and running time (min) on MNIST8m 0 vs. 4 against different attacks.

use its free-range training model and set the hyper-parameter
Cf as 0.1 according to their analysis. This algorithm is im-
plemented in CVX−a package for specifying and solving
convex programs (Grant and Boyd 2014). The stop criterion
for all experiments is one pass over each entire dataset. All
results are the average of 10 trials.

Datasets. We evaluate the robustness of adv-SVM on two
well-known datasets, MNIST (Lecun and Bottou 1998) and
CIFAR10 (Krizhevsky and Hinton 2009). Since we focus on
binary classification of kernel SVM, here we select two sim-
ilar classes from the datasets respectively. Each pixel value
of the data is normalized into [0, 1]d via dividing its value by
255. Table 4 summarizes the 6 datasets used in our experi-
ments. Due to the page limit, we only show the results of
CIFAR10 automobile vs. truck and MNIST8m 0 vs. 4 here.
The results of other datasets are provided in the appendix .

Dataset Features Sample size
MNIST 1 vs. 7 784 15,170
MNIST 8 vs. 9 784 13,783

CIFAR10 automobile vs. truck 3,072 12,000
CIFAR10 dog vs. horse 3,072 12,000

MNIST 8M 0 vs. 4 784 200,000
MNIST 8M 6 vs. 8 784 200,000

Table 4: Datasets used in the experiments.

Experimental Results
We explore the defensive capability of our model against
PGD attack in terms of the attack steps K (Fig. 2a, 2b) and
the maximum allowable perturbation ε (Fig. 2c, 2d). For Fig.
2a and 2b, the maximum allowable perturbation ε is fixed as
8/255, for Fig. 2c and 2d, the attack step K is fixed as 10.

It can be seen clearly that PGD attack strengthens with
the increase of either K or ε. Meanwhile, increasing ε has
greater impact on test accuracy than increasingK. However,
due to the large allowable disturbance range, it increases the

risks of the detection of adversarial examples at the same
time since these perturbed examples are not so much simi-
lar as original examples, which explains the reason why our
algorithm has a better defensive capability for large ε.

We evaluate robustness of the 4 competing methods
against 4 types of attacks introduced earlier plus the clean
datasets (Normal). Here the attack strategy for PGD is 10
steps with max perturbation ε = 8/255. From Table 2 and 3,
we can see that on both datasets, the natural model achieves
the best accuracy on normal test images, but it’s not robust to
adversarial examples. Among four attacks, C&W and ZOO
have the strongest ability to trick models. Although PGD
and FGSM belong to the same type attack method, PGD has
stronger attack ability and is more difficult to defend since
it’s a multi-step iterative attack method rather than a single-
step one. According to the results of adv-linear-SVM, we
can see that this algorithm is not only time-consuming in
training examples, but also vulnerable to strong attacks like
C&W and ZOO, which even gets higher test error than unse-
cured algorithm (natural DSG). In comparison, our proposed
adv-SVM can finish tasks in just a few minutes and can de-
fend both white-box and black-box attacks.

Fig. 3 shows test error vs. iterations on three models
against four attacks. The results indicate that adv-SVM can
converge in a fast speed. Moreover, compared with adv-
SVM(D), adv-SVM(C) enjoys a faster convergence rate and
lower test error although it may oscillate slightly in the sta-
tionary phase, which is consistent with our analysis.

Conclusion
To alleviate SVMs’ fragility to adversarial examples, we
propose an adversarial training strategy named as adv-SVM
which is applicable to kernel SVM. DSG algorithm is also
applied to improve its scalability. Although we use the prin-
ciple of approximation, the theoretical analysis shows that
our algorithm can converge to the optimal solution. More-
over, comprehensive experimental results also reveal its effi-
ciency in adversarial training models and robustness against
various attacks.
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