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Abstract
Continual relation extraction is an important task that focuses
on extracting new facts incrementally from unstructured text.
Given the sequential arrival order of the relations, this task
is prone to two serious challenges, namely catastrophic for-
getting and order-sensitivity. We propose a novel curriculum-
meta learning method to tackle the above two challenges
in continual relation extraction. We combine meta learning
and curriculum learning to quickly adapt model parameters
to a new task and to reduce interference of previously seen
tasks on the current task. We design a novel relation rep-
resentation learning method through the distribution of do-
main and range types of relations. Such representations are
utilized to quantify the difficulty of tasks for the construc-
tion of curricula. Moreover, we also present novel difficulty-
based metrics to quantitatively measure the extent of order-
sensitivity of a given model, suggesting new ways to evaluate
model robustness. Our comprehensive experiments on three
benchmark datasets show that our proposed method outper-
forms the state-of-the-art techniques. The code is available at
https://github.com/wutong8023/AAAI-CML.

Introduction
Relation extraction (?) aims at extracting structured facts as
triples from unstructured text. As an essential component of
information extraction, relation extraction has been widely
utilized in downstream applications such as knowledge base
construction (?) and population (?). However, given the con-
tinuous and iterative nature of the update process, continual
relation extraction (??) is a more realistic and useful set-
ting. Yet due to the limitations of storage and computational
resources, it is impractical to grant the relation extractor ac-
cess to all the training instances in previously seen tasks.
Thus, this continual learning formulation is in contrast to
the conventional relation extraction setting where the extrac-
tor is generally trained from scratch with the full access to
the training corpus.
∗This work has been done by Tongtong Wu during the visiting

period at Monash University, and the original idea was generated
in the internship at Gamma Lab, Ping An OneConnect.
†Contact author.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Catastrophic Forgetting (CF) is a well-known problem in
continual learning (?). The problem is that when a neural
network is utilized to learn a sequence of tasks, the learning
of the later tasks may degrade the performance of the learned
model for the previous tasks. Various recent works tackle the
CF problem, including consolidation-based methods (??),
dynamic architecture methods (??), or memory-based meth-
ods (???). These methods have been demonstrated in sim-
ple image classication tasks. Yet the memory-based meth-
ods have been proven to be the most promising for NLP
applications. EA-EMR (?) proposes a sentence embedding
alignment mechanism in memory maintenance and adopt
it to continual relation extraction learning. Based on EA-
EMR, MLLRE (?) introduces a meta-learning framework
for fast adaptation and EMAR (?) introduces a multi-turn co-
training procedure for memory-consolidation. Most of these
methods explore CF problem in the overall performance of
task sequences, but they lack the insight analysis of the char-
acteristics of each subtask and the corresponding model per-
formance.

Order-sensitivity (OS) is another major problem in con-
tinual learning, which is relatively under-explored (??). It
refers to the phenomenon that the performance of tasks
varies based on the order of the task arrival sequence. This is
due to not only the CF incurred by the different sequences of
previous tasks but also the unidirectional knowledge trans-
fer from the previous tasks. Order-sensitivity can be prob-
lematic in various aspects: (i) ethical AI considerations in
continual learning, e.g. fairness in the medical domain (?);
(ii) bench-marking of continual learning algorithms as most
of the existing works pick an arbitrary and random sequence
of the given tasks for evaluation (?); (iii) uncertainty to the
quality of extracted knowledge in the realistic scenario for
knowledge base population, where the model is faced with
only one sequence.

In this paper, we introduce the curriculum-meta learn-
ing (CML) method to tackle both the catastrophic forgetting
and order-sensitivity problems. Taking a memory-based ap-
proach, CML is based on the following observations about
the catastrophic forgetting and order sensitivity issues of the
previous works: (i) over-fitting to the experience memory,
indicating that the performance on any task will decrease as
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training progresses, and (ii) the interference between simi-
lar tasks, indicating that the model performs better on less
intrusive tasks. We therefore design a mechanism which se-
lectively reduces the replay frequency of memory to avoid
over-fitting, and steer the model to learn the bias between
the current task and previous most similar tasks to reduce
the order-sensitivity.

Our CML method contains two steps. In the first step,
it samples instances from the memory based on the diffi-
culty of the previous tasks for the current task, resulting in a
curriculum for continual learning. Then, it trains the model
on both the curriculum and training instances of the cur-
rent task. We further introduce a knowledge-based method to
quantify task difficulty according to the similarity of pairs of
relations. Taking a relation as a function mapping to named
entities in its domain and range, we define a similarity mea-
sure between two relations based on the conceptual distri-
bution of their head and tail entities. Our contributions are
summarized as follows:

• We propose a novel curriculum-meta learning method
to tackle the order-sensitivity and catastrophic forgetting
problems in continual relation extraction.

• We introduce a new relation representation learning
method via the conceptual distribution of head and tail
entities of relations, which is utilized to quantify the diffi-
culty of each relation extraction task for constructing the
curriculum.

• We conduct comprehensive experiments to analyze the
order-sensitivity and catastrophic forgetting problems in
state-of-the-art methods, and empirically demonstrate that
our proposed method outperforms the state-of-the-art
methods on three benchmark datasets.

Related Work
The conventional relation extraction methods could be cat-
egorized into three domains by the way data is used: su-
pervised methods (?????), semi-supervised methods (???),
and distantly supervised methods (??). Most of these meth-
ods assume a predefined relation schema and thus cannon be
easily generalized to new relations.

In this paper, we address the continual relation learning
problem (?), a relatively new and less investigated task. Con-
tinual learning in general faces two major challenges: catas-
trophic forgetting and order-sensitivity.

Catastrophic forgetting (CF) is a prominent line of
research in continual learning (??). Methods address-
ing CF can be broadly divided into three categories. (i)
Consolidation-based methods (????) consolidate model pa-
rameters important to previous tasks and reduce their learn-
ing weights. These methods employ sophisticated mecha-
nisms to evaluate parameter importance for tasks. (ii) Dy-
namic architecture methods (??) dynamically expand model
architectures to learn new tasks and effectively prevent for-
getting of old tasks. Sizes of these methods grow dramati-
cally with new tasks, making them unsuitable for NLP ap-
plications. (iii) Memory-based methods (?????) remember
a few examples in old tasks and continually learn them

with emerging new tasks to alleviate catastrophic forget-
ting. Among these methods, the memory-based methods
have been proven to be the most promising for NLP appli-
cations (??), including both relation learning (??).

Order-sensitivity (OS) (??) is another major problem in
continual learning that is relatively under-explored. It is the
phenomenon that a model’s performance is sensitive to the
order in which tasks arrive. In this paper, we tackle this prob-
lem by leveraging a curriculum learning method (?). Briefly,
we construct our curriculum by the similarity of tasks, thus
minimizing the impact and interference of previous tasks.

Curriculum-Meta Learning
Problem Formulation. In continual relation extraction,
given a sequence of K tasks {T1, T2, . . . , TK}, each task
Tk is a conventional supervised classification task, con-
taining a series of examples and their corresponding la-
bels {(x(i), y(i))}, where x(i) is the input data, contain-
ing the natural-language context and the candidate relations,
and y(i) is the ground-truth relation label of the context.
The model fθ(.) can access the training data of the cur-
rent task Dtraink and is trained by optimising a loss func-
tion l(fθ(x), y). The goal of continual learning is to train the
model fθ(.) such that it continually learns new tasks while
avoiding catastrophically forgetting the previously learned
tasks. Due to various constraints, the learner is typically al-
lowed to maintain and observe only a subset of the training
data of the previous tasks, contained in a memory setM.

The performance of the model fθ(.) is measured in the
conventional way, by whole accuracy Accw = accf,Dtest ,
on the entire test set, where Dtest =

⋃K
i=1Dtesti . Moreover,

model performance at task k is evaluated with average ac-
curacy on the test sets of all the tasks up to this task in the
sequenceAcca = 1

k

∑k
i=1 accf,i. Average accuracy is a bet-

ter measure of the effect of catastrophic forgetting as it em-
phasizes on a model’s performance of earlier tasks.

Framework. Our curriculum-meta learning (CML)
framework is described in Algorithm ??. CML maintains
initialization parameters θt and a memory setM that stores
the prototype instances of previous tasks. It performs the
following operations at each time step t during the learning
phase. (1) The meta-learner L fetches the initialization
parameters θt from the memory to initialize the model
fθt(.). (2) L replays on the curriculum set Dcurri

t,i which
is sampled and sorted by the knowledge-based curriculum
module. (3) L trains on the support set Dtrain

t,i of the current
task Tt. (4) Finally, L updates the learned parameters θt+1

and stores a small number of prototype instances of the
current task into the memory. During the evaluation phase,
the trained model is given a target set with labeled unseen
instances from all observed tasks (See Appendix A for the
workflow of CML.)

We will introduce the framework in terms of (1) the uti-
lization of the initialization parameters (i.e. meta training)
and (2) the utilization of the memory set (i.e. the curriculum-
based memory replay).

Meta Training. Meta learning, or learning to learn, aims
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Algorithm 1: Curriculum-Meta Learning
Input: Stream of incoming tasks T1, T2, ..; Classification

model fθ , Step size ε, Learning rate α, Relations
embedding r, Memory bufferM, Curriculum size
k, Curriculum instance size n, Knowledge-based
curriculum module gφ

1 Initialize θ
2 while there are still tasking do
3 Retrieve current task Tt
4 Initialize θt ← θ
5 while not convergence do
6 ifM is not empty then
7 Set Dtraint ← Dtraint ∪M
8 for each relation Ri in Tt do
9 Initialize θti ← θt

10 Sample Dtrain
t,i from Dtrain

t for Ri
11 if Tt is not the first task then
12 Sample k curriculum relations fromM

with gφ.
13 Sample n instances for each curriculum

relation
14 Construct sorted mini-batches, each

contains Dcurri
t,i of k × n instances.

15 Evaluate∇θtiLRi(fθti ) using Dcurri
t,i

16 Update θ′ti = Adam(θti , LRi(fθti ), α)

17 Evaluate∇θ′tiLRi(fθ′ti ) using Dtrain
t,i

18 Update θ∗ti = Adam(θ′ti , LRi(fθ′ti
), α)

19 Update θt+1 = θt +
ε
N

∑N
i=1(θ

∗
ti − θt)

20 Sample subTt from Tt
21 UpdateM←M∪ subTt
22 Update θ ← θt
23 Fine-tune θ onM

at developing algorithms to learn the generic knowledge of
how to solve tasks from a given distribution of tasks. With a
given basic relation extraction model (?) fθ(.) parameterized
by θ, we employ the gradient-based meta-learning method
(?) to learn a prior initialization θt at each time step t. During
adaption to a new task, the model parameters θ are quickly
updated from θt to the task-specific θ∗t with a few steps of
gradient descent. Formally, the meta learner L updates fθ(.)
that is optimized for the following objectives:

min
θ

ET∼p((T )[L(θ∗)] = min
θ

ET∼p((T )[L(U(DT θ))] (1)

where DT is the training data, L is the loss function for
task T , and U is the optimizer of fθ(.). Then, when it con-
verges on the current task, the model will generate the ini-
tialization parameter θt+1 for the next time step t+ 1:

θt+1 = θ +
ε

n

n∑
t=1

(θ∗t − θt), (2)

where the θ∗t is the updated parameter for the current task Tk
at time step t, and n is the number of instances which may
be processed in parallel at a time step.

Curriculum-based Memory Replay. Meta learner L re-
views the previous tasks in an orderly way before learning

the new task. Here, we denote by gφ(.) a function to repre-
sent the teacher which prepares the curriculum for the stu-
dent network (i.e. the relation extractor fθ(.)) for replay. Dif-
ferent from conventional experience-replay based models,
the teacher function needs to master three skills:

1. Assessing the difficulty of tasks. When a new task arrives,
this function calculates which of all observed previous
tasks interferes with the current task.

2. Sampling instances from the memory. By sampling, we
can reduce the time consumption in the replay stage and
alleviate the over-fitting problems caused by the high fre-
quency of updates on the memory.

3. Ranking the sampled instances by a certain strategy. The
teacher instructs the student model to learn the bias be-
tween the current task and observed similar tasks in the
most efficient way.
We sample the memory randomly and sort the sampled

instances according to the difficulty of each previous task
with respect to the current task. Based on the above require-
ments, we implement a knowledge-based curriculum mod-
ule, which is introduced in the next section.

Knowledge-based Curriculum
Intrinsically, order-sensitivity is caused by a model’s in-
ability to guarantee optimal performance for all previous
tasks. However, from the perspective of experiments, order-
sensitivity is closely related to the unbalanced forgetting rate
(or the unbalanced difficulty) of different tasks, where we
assume that task difficulty is due to the interactions between
semantically similar relations in an observed task sequence.
Intuitively, if the conceptual distribution of two relations is
similar, these two relations tend to be expressed in similar
natural language contexts, such as the relations “father”
and “mother”.

Semantic Embedding-based Difficulty Function. To
formalize this intuition, we define a difficulty estimation
function based on the semantic embeddings of relations in
each task. Given a set of K tasks {T1, T2, ..., TK}, the diffi-
culty of task Ti is defined as:

Dli :=
1

K − 1

K∑
j=1
j 6=i

Sji (3)

Sij is the similarity score between tasks Ti and Tj , which is
defined as the average similarity among relation pairs from
the two tasks:

Sji :=
1

M ×N

M∑
m=1

N∑
n=1

snm, (4)

where M and N are the numbers of relations in each
task respectively, and snm calculates the Cosine similar-
ity between the embeddings of the two relations: snm :=
cos(emdm, emdn). Using snm, we calculate the difficulty of
each relation in the memory with respect to the relations in
the current task, in order to sort and sample the relations
stored in memory into the final curriculum.
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Relation Representation Learning. In order to calculate
the semantic embedding of each relation, inspired by (?),
we introduce a knowledge- and distribution-based represen-
tation learning method. Intuitively, the representation of a
relation is learned from the types of its head and tail entities.
Consider a knowledge graph G = {(h, r, t) ∈ E ×R× E},
where h and t are the head and tail entities, r is the relation
between them, and E andR represent the sets of entities and
relations respectively. We reduce the relation representation
learning task into the problem of learning the conceptual dis-
tribution of each relation which is optimized based on the
following objective:

min
φ
L(φ;G) =

min
φ

∑
(h′,t′;r)∈G

[− logPφ(h′|r)− logPφ(t′|r)] (5)

where h′ and t′ are the concepts (i.e. the hypernyms
obtained from the knowledge graph) of the head and
tail entities respectively. Pφ(h′|r) = exp(NNφ1(h′, r)),
and Pφ(t′|r) = exp(NNφ2(t′, r)), where NNφ(a, b) =
MLPφ(a)>b is two-layer neural network parameterized
with φ. Finally, we obtain two representations emdhr and
emdtr for each relation, which indicate the conceptual-
distribution of head entities and tail entities respectively. We
concatenate these two embeddings to generate the final rep-
resentation of the relation emdr := [emdhr ; emdtr].

Experiments
In this section, we aim to empirically address the following
research questions related to our contributions:
RQ1: Why and to what extent do current memory replay-
based approaches suffer from catastrophic forgetting and
order-sensitivity?
RQ2: How to qualitatively and quantitatively understand
task difficulty?
RQ3: Compared with the state-of-the-art methods, can our
method (curriculum-meta learning with the knowledge-
based curriculum) effectively alleviate catastrophic
forgetting and order-sensitivity?

Datasets. We conduct our experiments on three datasets,
including Continual-FewRel, Continual-SimpleQuestions,
and Continual-TACRED, which were introduced in (?).
FewRel (?) is a labelled dataset which contains 80 rela-
tions and 700 instances per relation. SimpleQuestions is
a knowledge-based question answering dataset containing
single-relation questions (?), from which a relation extrac-
tion dataset was extracted (?). The relation extraction dataset
contains 1,785 relations and 72,238 training instances. TA-
CRED (?) is a well-constructed RE dataset that contains 42
relations and 21,784 examples. Considering the special rela-
tion “n/a” (i.e, not available) in TACRED, we follow (?) and
filter out these examples with the relation “n/a” and use the
remaining 13,012 examples for Continual-TACRED.

Following ??, we partition the relations of each dataset
into some groups and then consider each group of relations
as a distinct task Tk. We form training and testing set for

each task, based on the instances in the original dataset
labeled by the relations in the task. Following the previous
work, we employ two relation partitioning methods. Firstly,
the unbalanced division is based on clustering, using the
averaged word embeddings (?) of relation names with the
K-means clustering algorithm (?). Secondly, the random
partitioning into groups with a similar number of relations
(?). For Continual-FewRel, we partition its 80 relations into
10 distinct tasks. Similarly, we partition the 1,785 relations
in Continual-SimpleQuestions into 20 disjoint tasks, so as
well as partition the 41 relations in Continual-TACRED into
10 tasks.

Evaluation Metrics. We employ the following four metrics
to measure model performance. Note that the last two met-
rics, the average forgetting rate and the error bound, are new
metrics we propose in this paper.
Whole Accuracy of the resulting model at the end of the

continual learning process on the full test sets of all tasks,
Accw := accf,Dtest .

Average Accuracy of the resulting model trained on task
Tk on all the test sets of all tasks seen up to stage k of
the continual learning process, Acca := 1

k

∑k
i=1 accf,i.

Compared to Accw, Acca highlights the catastrophic for-
getting problem. However, as we will empirically show,
Acca is subject to order-sensitivity of the tasks sequence,
and thus does not accurately measure the level of forget-
ting on a specific task.

Average Forgetting Rate for task j after k time steps, Frj
avg

is a new metric to evaluate task-specific model perfor-
mance on order-sensitivity.

Frj
avg :=

1

k − 1

k−1∑
i=1

accji+1 − acc
j
i

accji
, (6)

where accji is the model’s average performance on a spe-
cific task Tj when it appears in the ith position of distinct
task permutations:

accji :=
1

(J − 1)!

∑
π∈Π[1,...,J] st πi=j

acci(π) (7)

where acci(π) is the final accuracy on task Ti of the
model trained on the permutation π, Π[1,..,J] is the set of
all permutations of the tasks {T1, . . . ,TJ}, and πi is the
index of Task Ti of the sequence. We note that the num-
ber of all permutations in which task Ti is fixed at posi-
tion j is (J−1)!. Of course we may not be able to exactly
compute accjf,i as the size of possible tasks persmutations
grows exponentially. Therefore, we estimate this quantity
by Monte Carlo sampling of some permutations.

Error Bound is a new metric to evaluate the overall model
performance regarding order-sensitivity.

EB := Zα
2
× δ√

n
, (8)

whereZα
2

is the confidence coefficient of confidence level
α, and δ is the standard deviation of accuracy obtained
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from n distinct task permutations. Note that a model with
a lower error bound shows better robustness and less
order-sensitivity for the input sequences.

Baseline Models.
We compare our proposed CML with knowledge-based

curriculum-meta learning with the following baseline mod-
els, among which Vanilla is employed as the base learner for
both CML and the other models (see Appendix B for hyper-
parameters.):

1. Vanilla (?), which is the basic model for conventional su-
pervised relation extraction not specifically designed for
the continual learning setup.

2. EWC (?), which adopts elastic weight consolidation to
add special L2 regularization on parameter changes.
Then, EWC uses Fisher information to measure the pa-
rameter importance to old tasks, and slow down the up-
date of those parameters important to old tasks.

3. AGEM (?), which takes the gradient on sampled memo-
rized examples from memory as the only constraint on the
optimization directions of the current task.

4. EA-EMR (?), which maintains a memory of previous
tasks to alleviate the catastrophic forgetting problem.

5. MLLRE (?), which leverages meta-learning to improve
the usage efficiency of training instances.

6. EMAR (?), which introduces episodic memory activation
and reconsolidation to continual relation learning.

Main Results
To evaluate the overall performance of our model CML
(RQ3), we conduct experiments on the three datasets under
both task division methods: unbalanced cluster-based task
division and the uniform random task division.

The following observations can be made from Table ??.
(i) Our model CML achieves the best Accw and Acca in both
settings and on the three datasets in the majority of cases.
(ii) Specifically, CML achieves the best Accw and Acca in
the two larger datasets Continual-FewRel and Continual-
SimpQ. (iii) CML obtains the lowest error bounds EB in the
majority of cases, demonstrating better stability and lower
order-sensitivity. (iv) The two task division methods produce
the most prominent Acca differences on Continual-Fewrel
for CML. when the data is evenly distributed (i.e. Random),
CML’s Acca is significantly reduced to be almost equal to
Accw (from 76.0 to 63.0). On the other two datasets, the
performance difference is much less noticeable.

Although the three metrics Acca, Accw, and EB are good
measures of the overall model performance, they do not pro-
vide task-specific insights, which we will further discuss in
the following subsection.

Analysis of Unbalanced Forgetting
We designed another experiment to better understand the
reason for catastrophic forgetting and order-sensitivity

1https://github.com/thunlp/ContinualRE
2https://github.com/hongwang600/

(RQ1). In this experiment, each task is assigned a fixed
ID. Starting with an initial “run” of tasks 0, 1, . . . , 9, we
test model performance on ten different runs generated by
the cyclic shift of the initial run. The results of EA-EMR
on Continual-Fewrel are summarised in Table ?? (See Ap-
pendix C for the result for EMAR, MLLRE, and CML.)

As shown in Table ??, comparing the results in the rows
of P0 and P9 of each task, we can observe that most tasks
see a significant drop in accuracy from P9 (when the task
is the last one seen by the model) to P0 (when the task is
the first one seen by the model), indicating that they suffer
from catastrophic forgetting. Intuitively, forgetting on a task
reflects an increase in empirical error. We hypothesized that
this is most likely due to frequent replay of limited task-
related memory, in other words, over-fitting on memory. We
tested this hypothesis by adjusting the ratio of training data
to memory. Table ?? shows that when memory size is fixed
(e.g. 50), more training data (i.e. all vs 200 vs 100) results
in poorer performance for all models except EMAR, indi-
cating the model is over-fitting on memory. This is due to a
higher replay frequency of the memory. When we fix the ra-
tio of the training data to memory (e.g. 100:25 and 200:50),
model performance conforms to the general rule of better
performance with more data. Thus, the results shown in Ta-
ble ?? support our hypothesis.

When reading each column in Table ?? separately, we find
that the forgetting rate of each task is different, which cannot
be solely explained by the issue of over-fitting on memory.
For example, the model performance on T4 and T0 is ex-
actly the same (100%) when they appear at the last position
P9. However, performance on T4 does not degrade with the
advance of its position. On the other hand, we can observe a
decreasing trend of performance on T0 as its position moves
back. Moreover, we observe that order-sensitivity may be re-
lated to the difficulty of the earlier task in a run, where dif-
ficulty refers to a task’s tendency of being more easily for-
gotten by the model. For instance, we can observe that the
final Acca of the run ID = 4 experiment (in dark-orange)
is the highest, whereas the final Acca of the run ID = 6
experiment (in light orange) is the lowest. Also, among all
tasks at position P0, task T4 has the highest accuracy while
task T6 has the lowest. Both of the above observations may
be explained by task difficulty, which we further study in the
next subsection.

Analysis of Task Difficulty
In this section, we present the qualitative and quantita-
tive analyses in order to better understand the difficulty of
tasks (RQ2). We choose EA-EMR as the case study on
the Continual-FewRel dataset with the tasks constructed
through clustering.

Qualitative Analysis. Figure ?? shows the t-SNE visual-
ization of the relations, where nodes represent relations, col-
ors represent the tasks, and the distance is calculated from
the hidden layer in EA-EMR.

As can be seen from the figure, tasks T4 and T8 have only
one relation each, and that the relation in T4 is far away from
the others but the relation T8 is much closer. The differ-
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Continual-FewRel Continual-SimpQ Continual-TACRED

Accw Acca Accw Acca Accw Acca

Setting Model Acc EB Acc EB Acc EB Acc EB Acc EB Acc EB

Vanilla‡ 16.3 ±4.10 19.7 ±3.90 60.3 ±2.52 58.3 ±2.30 12.0 ±3.21 8.7 ±2.35
EWC† 27.1 ±2.32 30.2 ±2.10 67.2 ±3.16 59.0 ±2.20 14.5 ±2.51 14.5 ±2.90

AGEM† 36.1 ±2.51 42.5 ±2.63 77.6 ±2.11 72.2 ±2.72 12.5 ±2.24 16.5 ±2.20
EA-EMR‡ 59.8 ±1.50 74.8 ±1.30 82.7 ±0.48 86.2 ±0.33 17.8 ±1.01 25.4 ±1.17
EMAR† 53.8 ±1.30 68.6 ±0.71 80.0 ±0.83 76.9 ±1.39 42.7 ±2.92 52.5 ±1.74
MLLRE 56.8 ±1.30 70.2 ±0.93 84.5 ±0.35 86.7 ±0.46 34.4 ±0.49 41.2 ±1.37

Cluster

CML (ours) 60.2 ±0.71 76.0 ±0.24 85.6 ±0.34 87.5 ±0.32 44.4 ±1.16 49.3 ±1.01
Vanilla‡ 19.1 ±1.20 19.3 ±1.30 55.0 ±1.30 55.2 ±1.30 10.2 ±2.02 10.4 ±2.31
EWC† 30.1 ±1.07 30.2 ±1.05 66.4 ±0.81 66.7 ±0.83 15.3 ±1.70 15.4 ±1.79

AGEM† 36.9 ±0.80 37.0 ±0.83 76.4 ±1.02 76.7 ±1.01 13.4 ±1.47 14.3 ±1.62
EA-EMR‡ 61.4 ±0.81 61.6 ±0.76 83.1 ±0.41 83.2 ±0.47 27.3 ±1.01 30.3 ±0.70
EMAR† 62.7 ±0.63 62.8 ±0.62 82.4 ±0.86 84.0 ±0.78 45.1 ±1.48 46.4 ±2.00
MLLRE 59.8 ±0.91 59.8 ±0.94 85.2 ±0.25 85.5 ±0.31 36.4 ±0.66 38.0 ±0.58

Random

CML (ours) 62.9 ±0.62 63.0 ±0.59 86.5 ±0.22 86.9 ±0.28 43.7 ±0.83 45.3 ±0.72

Table 1: The average accuracy Acca and whole accuracy Accw with error bounds by 0.95 confidence, on the test sets of
observed tasks at the final time step, where † and ‡ indicate the result generated from the source code provided by (?)1 and (?)2

respectively.

Train 100 200 all

Memory 25 50 50 50

EA-EMR Acca 70.7 75.5 74.8 73.9
Accw 53.2 57.4 59.8 59.6

MLLRE Acca 68.4 72.1 70.2 51.0
Accw 51.9 57.8 56.8 47.3

EMAR Acca 60.1 66.7 68.6 74.1
Accw 43.7 51.2 53.8 57.7

CML Acca 73.6 76.4 76.0 58.0
Accw 54.7 60.3 60.2 49.1

Table 2: Experimental results on the impact of the amount
and ratio of memory on model performance over Continual-
FewRel.

Figure 1: The t-SNE (?) visualization of the encoding of
relations generated by the hidden layer in EA-EMR over
Continual-FewRel, where each point represents a relation-
ship, each color represents a task, and the position anchored
by the label is the center of the task.

ence in their distances from the other relations may explain
the difference in their task-specific performance in Table ??,
where T4 does not suffer from catastrophic forgetting but
T8 does. In other words, T4 is easy whereas T8 is more dif-
ficult.

Similarly, we can observe that T3 (colored in black) con-
tains only two relations, and it overlaps significantly with the
other tasks. Therefore, catastrophic forgetting is more seri-
ous on T3, i.e., T3 is difficult. Finally, we can observe that
tasks T1 and T6 are difficult tasks, as their centroids are very
close. They both suffer from serious catastrophic forgetting
as can be seen from Table ??. Therefore, in continual learn-
ing, the difficulty of a task T may be characterized by the
correlation between T and the other observed tasks. In the
relation extraction scenario, we define this correlation as the
semantic similarity between the relations.

Quantitative Analysis. Based on the above analysis, we
hypothesize that a model could achieve better performance
if we can measure the similarity of the current task and pre-
vious tasks and guide the model to distinguish similar tasks.

For ease of expression, we denote the measure difficulty
of each task Ti as the prior difficulty Dprior, and denote
the average forgetting rate Friavg as the posterior difficulty
Dpost. The prior difficulty Dprior is the estimated value of
knowledge graph embedding, and the posterior difficulty is
related to the performance of each model.

Specifically, we use our embedding-based task difficulty
function defined in Eq. (??) as the prior difficulty Dprior,
and average forgetting rate defined in Eq. (??) as the pos-
terior difficulty. Table ?? shows the correlation between the
prior difficulty and the posterior difficulty, and thus offers
evidence of the effectiveness of our representation learning
method.

We can learn from Table ?? four main conclusions: (i)
The Pccs of the three models demonstrate that the seman-
tic embedding-based prior difficulty does positive to the for-
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task ID T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

run ID 0 1 2 3 4 5 6 7 8 9 Acca Accw

P0 88.1 39.0 49.9 59.9 100.0 23.8 28.2 48.5 52.6 53.9 76.8 62.7
P1 82.2 43.5 68.8 33.9 100.0 30.7 56.7 39.6 71.1 59.0 73.4 63.9
P2 83.0 49.9 66.7 75.9 100.0 26.7 57.4 74.7 58.5 64.1 72.6 61.2
P3 91.9 48.3 76.3 77.0 100.0 23.2 54.3 77.0 83.7 50.6 62.8 59.0
P4 90.4 44.1 73.6 79.6 100.0 43.5 47.5 69.6 86.7 77.6 77.7 58.4
P5 97.0 42.8 71.2 79.9 100.0 46.0 74.9 68.5 80.0 76.8 79.5 61.6
P6 98.5 79.2 69.3 75.5 100.0 52.4 82.6 88.1 88.1 80.4 74.6 58.7
P7 97.0 80.2 92.1 67.9 100.0 57.1 81.9 87.6 93.3 81.4 67.4 56.3
P8 91.9 81.5 91.9 92.7 99.3 68.0 86.1 93.4 92.6 90.8 77.4 56.1
P9 100.0 89.7 97.4 96.0 100.0 82.1 91.9 94.7 99.3 93.1 77.7 58.7

µ 92.0 59.8 75.7 73.8 99.9 45.4 66.2 74.2 80.6 72.8 74.0 59.7
σ 6.25 20.06 14.39 17.51 0.22 19.92 20.41 18.50 15.35 14.99 5.26 2.61

Table 3: A case study of EA-EMR on the FewRel dataset, where task ID = {T0, ...,T9} represents the fixed ID of each task,
run ID = {0, ..., 9} represents the runs with loop offset from 0 to 9, Position = P0, ...,P9 represents the position of a task
in a run. µ and δ are the mean and variance of accuracy (read vertically) respectively. Different runs are listed diagonally, for
example, when T0 is at P1 and run ID is 9, we can obtain the acc10 = 82.2% at the final time step, and Acca = 76.8%,
Accw = 62.7%. See Appendix C for such result of EMAR, MLLRE and the proposed CML.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 PCCs

Dprior 0.121 0.141 0.168 0.054 0.035 0.186 0.112 0.152 0.146 0.137 -

Dpost

EA-EMR 0.060 0.098 0.061 0.028 0.001 0.137 0.139 0.060 0.044 0.051 0.559
MLLRE 0.022 0.078 0.091 0.085 -0.004 0.147 0.060 0.064 0.069 0.075 0.667
EMAR 0.036 0.016 0.027 0.007 0.006 0.016 0.008 0.026 0.020 0.005 0.499
CML -0.002 0.108 0.051 0.065 -0.002 0.113 0.108 0.046 0.070 0.068 0.470

Table 4: Prior difficulty and posterior difficulty of each task, where Pccs indicates the Pearson correlation coefficient between
the estimated prior difficulty by Eq.(??) (i.e., Dprior) and the average forgetting rate of each model (i.e., Dpost).

getting rate indicating which tasks are difficult for a model.
(ii) Comparing the Pccs values of CML with the other three
methods, our proposed CML with the knowledge-based cur-
riculum does alleviate the interference between similar tasks
as it achieves the lowest forgetting rate. (iii) For tasks T0 and
T4 in CML, the average forgetting rate is negative, which
means that the accuracy of these tasks decreases as they
move towards the end. (iv) Based on the analysis of Table ??,
Table ?? (See Appendix C for the other three relevant ta-
bles), it is evident that CML improves the overall accuracy
and effectively alleviates the order-sensitivity problem. We
note that the improvements do come at a cost of moderately
decreased accuracy on simple tasks such as T0 and T4.

Conclusion
In this paper, we proposed a novel curriculum-meta learn-
ing method to tackle the catastrophic forgetting and order-
sensitivity issues in continual relation learning. The con-
struction of the curriculum is based on the notion of task
difficulty, which is defined through a novel relation repre-
sentation learning method that learns from the distribution
of domain and range types of relations. Our comprehensive
experiments on the three benchmark datasets show that our
proposed method outperforms the state-of-the-art models,
and is less prone to catastrophic forgetting and less order-
sensitive. In future, we will investigate an end-to-end cur-

riculum model and a new dynamic difficulty measurement
based on the framework presented in this paper.
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