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Abstract

Recently decentralized optimization attracts much attention
in machine learning because it is more communication-
efficient than the centralized fashion. Quantization is a
promising method to reduce the communication cost via cut-
ting down the budget of each single communication using
the gradient compression. To further improve the communi-
cation efficiency, more recently, some quantized decentral-
ized algorithms have been studied. However, the quantized
decentralized algorithm for nonconvex constrained machine
learning problems is still limited. Frank-Wolfe (a.k.a., con-
ditional gradient or projection-free) method is very efficient
to solve many constrained optimization tasks, such as low-
rank or sparsity-constrained models training. In this paper, to
fill the gap of decentralized quantized constrained optimiza-
tion, we propose a novel communication-efficient Decentral-
ized Quantized Stochastic Frank-Wolfe (DQSFW) algorithm
for non-convex constrained learning models. We first design
a new counterexample to show that the vanilla decentralized
quantized stochastic Frank-Wolfe algorithm usually diverges.
Thus, we propose DQSFW algorithm with the gradient track-
ing technique to guarantee the method will converge to the
stationary point of non-convex optimization safely. In our the-
oretical analysis, we prove that to achieve the stationary point
our DQSFW algorithm achieves the same gradient complex-
ity as the standard stochastic Frank-Wolfe and centralized
Frank-Wolfe algorithms, but has much less communication
cost. Experiments on matrix completion and model compres-
sion applications demonstrate the efficiency of our new algo-
rithm.

Introduction
Nowadays, many machine learning tasks have been de-
ployed on distributed systems that enable computations in
parallel, especially for large-scale models such as deep neu-
ral networks (DNNs). Recently, the centralized distribu-
tion structure has been used often. However, the central-
ized learning scheme has a key bottleneck of communica-
tion, where the communication burden of the central server
becomes larger as the number of nodes grows. For example,
when the system hasM workers, it will suffer from the com-
munication complexity of O(M). Thus, the decentralized
distribution structure recently has attracts much attention in
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machine learning due to its communication efficiency com-
pared with the centralized fashion. Specifically, decentral-
ized optimization adopts a pattern that each node maintains
its own local data and model and only communicates with its
neighbors. In fact, the communication complexity of decen-
tralized system at each iteration is dependent on the degree
of graph topology (usually not dependent on the number of
nodes) and data locality is allowed.

Recently, the decentralized learning becomes a popular
research topic in machine learning and has been widely
studied. For example, it was first studied to solve problems
of computing aggregates among clients or be used for the
sake of data locality and privacy (Ram, Nedić, and Veer-
avalli 2010; Yan et al. 2012), where centralized structure
is not allowed. A general decentralized algorithm can be
traced back to (Nedić and Ozdaglar 2009) that combines
gradient descent method and Gossip-type consensus step.
Subsequently, a degenerated case of decentralization that
achieves huge success is federated optimization (Konečný
et al. 2016), which adopts star topology but enables data to
be drawn from non-iid distribution. Besides, many other pre-
vious fully decentralized works such as (Lian et al. 2017;
Tang et al. 2018) that based on general network topology
have shown that decentralized method is able to achieve
more efficient communication without sacrificing the train-
ing result, indicating that decentralization is becoming com-
petitive and advantageous in distributed learning rather than
just an alternate of centralization when centralization is not
allowed. Lian et al. (2017) presented an important decen-
tralized optimization work to verify that the decentralized
method can outperform its centralized counterpart. Lian
et al. (2017) proposed an algorithm named Decentralized
Parallel Stochastic Gradient Descent (D-PSGD) to directly
compute the averaging value among each node with ex-
act communication, which has the same convergence rate
as centralized SGD in nonconvex optimization with non-
identical data distribution.

To reduce the communication cost in distributed system,
gradient quantization (Seide et al. 2014) is another effec-
tive method. Recently, many quantized gradient algorithms,
such as QSGD (Alistarh et al. 2017), signSGD (Bernstein
et al. 2018a) and its variant (Bernstein et al. 2018b), were
developed and showed excellent performance. In these algo-
rithms, the number of bits transmitted in each communica-
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tion round is reduced by packing and unpacking gradients.
Alistarh et al. (2017) proposed an unbiased quantization
scheme and proved it is capable to converge under convex
and non-convex conditions. However, for other quantization
method like 1-bit quantization or signSGD, the unbiased as-
sumption is not always satisfied. Karimireddy et al. (2019)
proved that when applying signSGD with a scalar factor
and error-feedback technique, the algorithm is guaranteed to
converge in non-convex optimization. More recently, to fur-
ther achieve communication-efficiency, multiple quantized
decentralized algorithms (Doan, Maguluri, and Romberg
2018; Reisizadeh et al. 2019a,b; Tang et al. 2019; Koloskova
et al. 2020) have been introduced. However, to the best of
our knowledge, the existing quantized decentralized algo-
rithm for constrained problem is still very limited. In fact,
the large-scale constrained optimization problems are pop-
ular in many machine learning applications, such as matrix
completion and deep neural network compression.

To address this challenging issue, in this paper, we focus
on studying the quantized decentralized algorithm for solv-
ing the following constraint optimization problem:

min
x∈Ω

1

M

M∑
i=1

fi(x), (1)

where fi(x) is a nonconvex smooth loss function, Ω is a con-
vex and compact constraint set, M is the number of worker
nodes. fi(x) is the objective function on node i and could
have the stochastic expectation or finite sum formulations:

fi(x) =

{
Eξ∼DiF (i)(x; ξ), stochastic
1
ni

∑ni
j=1 F

(i)
j (x), finite-sum

(2)

where Di is the data distributed on i-th node. Apparently,
finite-sum objective function is a particular case of stochas-
tic problem where Di consists of finite samples. We allow
distributionsDi to be non-identical, which is more adaptive
to general tasks in machine learning and is assumed in many
previous decentralized analyses (Lian et al. 2017; Tang et al.
2018; Lian et al. 2018).

To solve the above constrained optimization, the Frank-
Wolfe (a.k.a, conditional gradient or projection-free) method
is one of the most efficient and popular algorithms, be-
cause the Frank-Wolfe method only requires to compute a
linear oracle instead of the expensive projection operator
applied in proximal gradient methods (Ghadimi, Lan, and
Zhang 2016) and alternating direction method of multipliers
(Huang, Chen, and Huang 2019). In this paper, thus, we fo-
cus on designing the communication-efficient quantized de-
centralized Frank-Wolfe algorithm to solve the above prob-
lem (1). It is nontrivial to design such an algorithm. We
first provide a counterexample to show that the vanilla quan-
tized decentralized Frank-Wolfe algorithm usually diverges
(please see the following Counterexample section). Thus,
there exists an important research problems to be addressed:

Can we design a communication-efficient quantized de-
centralized Frank-Wolfe algorithm with convergence guar-
antee for non-convex optimization?

In this paper, we answer the above challenging question
with positive solution and propose a novel Decentralized

Quantized Stochastic Frank-Wolfe (DQSFW) algorithm to
solve the problem (1) using the gradient tracking technique
to guarantee the DQSFW can safely and fast converge to
the stationary point in non-convex optimization. Specifi-
cally, our DQSFW algorithm uses 1-bit gradient quantiza-
tion scheme. In summary, the main contributions of this
paper are given as follows:

(1) We propose a novel efficient Decentralized Quantized
Stochastic Frank-Wolfe (DQSFW) method to solve the
problem (1) with less communication cost but still good
convergence speed.

(2) We derive the rigorous theoretical analysis for our
DQSFW algorithm, and prove that our DQSFW algorithm
has the same gradient complexity O(ε−4) as the SFW
(Reddi et al. 2016) (the sequential algorithm) and QFW
(Zhang et al. 2019) (the centralized algorithm), but with
much less communication cost.

(3) We provide a new intuitive counterexample to show that
the decentralized optimization involving non-linear pro-
jection of gradient could lead to a potential divergent
problem which also exists in many cases where we gen-
eralize other non-Frank-Wolfe methods to decentralized
algorithms. To tackle this challenge, we utilize the gra-
dient tracking technique to guarantee the convergence of
our decentralized quantized Frank-Wolfe algorithm.

Notations
‖·‖1 denotes one norm of vector. ‖·‖2 denotes spectral norm
of matrix. ‖·‖F denotes Frobenius norm of matrix. ‖·‖∗ de-
notes trace norm of matrix. Let 1 be the column vector, each
entry of which is one. Given a network with M nodes, we
define a mixing matrix W = (wij) ∈ RM×M that repre-
sents the weights of neighbors in the communication round.
For example, in D-PSGD (Lian et al. 2017), the consensus
step on i-th node is formulated as

x
(i)
t =

M∑
i=1

wijx
(j)
t .

Generally, W is a symmetric doubly stochastic matrix that
satisfies WT = W and W1 = 1. In the experiment section,
we will consider a uniformly weighted ring-based network,
whose mixing matrix is shown as Eq. (3).

W =



1/3 1/3 0 · · · 0 1/3
1/3 1/3 1/3 0 · · · 0
0 1/3 1/3 1/3 0 · · ·
...

. . .
. . .

. . .
0 · · · 0 1/3 1/3 1/3

1/3 0 · · · 0 1/3 1/3

 (3)

Related Works
Decentralized Frank-Wolfe
Decentralized Frank-Wolfe algorithm (DeFW) (Wai et al.
2017) is recently proposed to apply deterministic Frank-
Wolfe method in decentralized structure. It is guaranteed to
converge in both convex and non-convex problems. The au-
thors compute net averaging on parameters and gradients.
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Algorithm DeFW QFW DQSFW

Decentralized
√

×
√

Stochastic ×
√ √

Quantized ×
√ √

Reference (Wai et al. 2017) (Zhang et al. 2019) Ours

Table 1: Comparison of related works.

In previous work about decentralization such as (Lian et al.
2017), they do not have to calculate the averaging of gradi-
ents. Compared with DeFW, our DQSFW changes the deter-
ministic algorithm to a stochastic one, which is more adap-
tive to large scale machine learning tasks. When the number
of samples is very large, the full gradient is too expensive to
calculate. Besides, we also take advantage of the technique
of gradient quantization, which will further reduce the cost
of communication.

Quantized Frank-Wolfe
Quantized Frank-Wolfe algorithm (QFW) (Zhang et al.
2019) is recently proposed to solve the centralized dis-
tributed problems. It uses the the following momentum
scheme as gradient estimator:

ḡt = (1− ρt)ḡt−1 + ρtgt (4)

which is also used in (Locatello et al. 2019) as a way to
decrease the noise of gradient. In our algorithm, we com-
bine this momentum scheme with the Gossip method. For
gradient compressing, they adopt the s-Partition Encoding
Scheme, which encodes the i-th coordinates gi into an ele-
ment from set {±1,± s−1

s , · · · ,± 1
s , 0}. It requires log2(s+

1) bits to transfer each coordinate of the gradient. A scalar
factor ‖g‖∞ is also transmitted thus the total bits of quan-
tized gradient is 32+d·log2(s+1) where d is the dimension
of gradient. When s is large, the variance of this compres-
sor will become small (Zhang et al. 2019), which means the
quantized gradient is more precise, but costs more bits. In
this paper, we use 1-bit signSGD scheme with a scalar fac-
tor (Karimireddy et al. 2019; Koloskova, Stich, and Jaggi
2019) shown as following:

C(x) =
‖x‖1
d

sign(x) (5)

where d is the dimension of x. Notice that here signSGD is
only a representative of feasible compressors. We can also
use other compressor as long as it satisfies the Compressor
Assumption in section 4, which is an important assumption
in many theoretical analysis of related work about gradi-
ent quantization. For example, we can also use top-k SGD,
which is a gradient sparsification method that automatically
satisfies the Compressor Assumption. We consider signSGD
because it is efficient and convenient to implement.

The comparisons between DeFW, QFW and our DQSFW
are summarized in Table 1. We can see that our DQSFW al-
gorithm is the first work to incorporate stochastic gradient
descent and gradient quantization in decentralized Frank-
Wolfe type algorithm.

Figure 1: A graph to demonstrate the counter-example.

Counterexample
In this section, we provide an intuitive counterexample that
indicates the divergent trap if Frank-Wolfe method is sim-
ply generalized to the decentralized algorithm without mak-
ing consensus on gradient when data at different nodes are
drawn from non-identical distributions.

Given f(x) = f1(x) + f2(x), where x ∈ Ω =

{(x, y)|x2 + y2 ≤ 1}, f1(x) = x and f2(x) =
√

3y
(See Figure 1). We can calculate gradients v1 = (1, 0),
v2 = (0,

√
3), v = (1,

√
3). Since the gradient is never

equal to 0, according to the Frank-Wolfe gap (see Eq. (9)),
the only stationary point is (− 1

2 ,−
√

3
2 ) (blue point), where

the tangent of unit ball is vertical to direction (1,
√

3). How-
ever, if we update x by Frank-Wolfe algorithm on each node
separately, the linear oracle will yield d1 = (−1, 0) and
d2 = (0,−1). Then we make consensus on x and get itera-
tion formula xi+1 = (1− γ)xi + γ(− 1

2 ,−
1
2 ). Sequence xi

eventually converges to point (− 1
2 ,−

1
2 ) (red point), which

is not a stationary point.
It is reasonable to credit the divergence to the non-

commutative relation between linear oracle and addition.
For SGD based decentralized learning algorithms, they can
converge well because of the commutative property of addi-
tion. The above divergence problem is also likely to happen
to other variant algorithms of SGD that involves non-linear
map of gradients in decentralized system, not just Frank-
Wolfe type methods. For example, adaptive gradient method
is a family of algorithms that adjust the learning rate accord-
ing to the magnitude of gradient. The Decentralized ADAM
algorithm (DADAM) (Nazari, Tarzanagh, and Michailidis
2019) was proved to converge under the criterion named lo-
cal regret. Nonetheless, local regret probably leads to a result
that each node converges to its own local stationary point,
while they do not cooperate well enough as an entire sys-
tem. This phenomenon reminds us when we generalize an
algorithm with steps that are not commutative to addition,
similar divergence problem is likely to come out.

In DeFW (Wai et al. 2017), the gradients can be averaged
directly by gradient tracking, a technique to accelerate con-
sensus in distributed optimization (Xu et al. 2015; Nedić,
Olshevsky, and Shi 2017). DIGing also considers the incre-
ment of gradient when averaging the non-quantized full gra-
dient. However, in this paper we have to face the variance
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of stochastic gradient and the noise of quantization. These
issues do not occur in DeFW. Therefore, we have to use a
new strategy to let them make consensus gradually.

New Decentralized Quantized Stochastic
Frank-Wolfe Algorithm

In this section, we propose a novel efficient Decentralized
Quantized Stochastic Frank-Wolfe (DQSFW) algorithm to
solve the problem (1) by using the gradient tracking tech-
nique (Xu et al. 2015; Wai et al. 2017). The DQSFW algo-
rithm is given in Algorithm 1.

In Algorithm 1, x(i)
t is a column vector that denote the

model parameter on i-th node at iteration t. We use upper
case Xt to represent the matrix

Xt = [x
(1)
t , x

(2)
t , . . . , x

(M)
t ]

Inspired by Choco-Gossip algorithm (Koloskova, Stich, and
Jaggi 2019), we also define a replicated x̂(i)

t of x(i)
t on each

node. The reason is when we apply gossip update, the ex-
act value of model parameter on other nodes are unknown
since there exists quantization and the communication is in-
exact. The replica x̂(i)

t is an estimation of x(i)
t , which is also

updated at each iteration. And the consensus step is formu-
lated as line 8 in Algorithm 1. According to the update of
x̂

(i)
t (line 9 and line 10 in Algorithm 1), on all neighbors of

the i-th node, the replica is added by an indentical transmit-
ted message z(i)

t , which implies the values x̂(i)
t on all neigh-

bors of the i-th node are the same. Therefore, replica x̂(i)
t is

well-defined. Similar to Xt, we also define matrices

X̂t = [x̂
(1)
t , x̂

(2)
t , . . . , x̂

(M)
t ],

Xt = [x̄t, x̄t, . . . , x̄t]

where x̄t represent the mean value: x̄t = 1
M

∑M
i=1 x

(i)
t .

g
(i)
t is a stochastic gradient on i-th node calculated by

selected samples and v(i)
t is our key estimation of the gra-

dient on i-th node which is defined as Eq. (6) with a kind
of momentum scheme. Here v̂(i)

t is the replica of v(i)
t (see

similar concept of x̂(i)
t ). For initialization, we set v̂(i)

−1 = 0

and v(i)
−1 = g

(i)
0 . The definition and role of βt will be dis-

cussed later in Remark 2. Our convergence analysis shows
that though our gradient estimator in line 4 is biased, the gra-
dients on all nodes are getting close to the full gradient uni-
formly. To make consensus on gradient and parameter, we
adopt the gossip update (Koloskova, Stich, and Jaggi 2019)
in line 4 and line 8 respectively.

v
(i)
t = (1−βt)v(i)

t−1 +βtg
(i)
t +αt

∑
j

wij(v̂
(j)
t−1− v̂

(i)
t−1) (6)

In line 5 and line 9 of Algorithm 1, we apply a gradient
quantization method that satisfies the Compressor Assump-
tion. As mentioned previously, the quantization scheme is
not limited to the signSGD used in this paper. Line 7 is the
typical linear oracle in Frank-Wolfe method to get a direc-
tion d

(i)
t . In vanilla Frank-Wolfe algorithm, the update of

Algorithm 1 Decentralized Quantized Stochastic Frank-
Wolfe (DQSFW)
Input: restricted domain Ω, matrix W , initial point
X̂0 = X0 ∈ Ω
Parameter: ηt, γt, βt, αt, T
Output: x̄t̂, where t̂ is chosen uniformly from
{0, 1, . . . , T}

1: On i-th node:
2: for t = 0, 1, . . . , T − 1 do
3: Compute an estimation of the gradient g(i)

t

4: Update v
(i)
t = (1 − βt)v

(i)
t−1 + βtg

(i)
t +

αt
∑
j wij(v̂

(j)
t−1 − v̂

(i)
t−1)

5: Compute q(i)
t = C(v

(i)
t − v̂

(i)
t−1) and communicate

with neighbors
6: Update replica v̂(j)

t = v̂
(j)
t−1 + q

(j)
t for neighbor j

7: Calculate linear oracle d
(i)
t such that d

(i)
t =

arg maxd∈Ω〈d,−v(i)
t 〉

8: Update x
(i)
t+1 = (1 − ηt)x

(i)
t + ηtd

(i)
t +

γt
∑
j wij(x̂

(j)
t − x̂

(i)
t )

9: Compute z(i)
t = C(x

(i)
t+1 − x̂

(i)
t ) and communicate

with neighbors
10: Update replica x̂(j)

t+1 = x̂
(j)
t + z

(j)
t for neighbor j

11: end for

x
(i)
t should be x(i)

t+1 = x
(i)
t + ηt(d

(i)
t − x

(i)
t ). For conve-

nience, we define matrices

Vt = [v
(1)
t , v

(2)
t , . . . , v

(M)
t ],

V̂t = [v̂
(1)
t , v̂

(2)
t , . . . , v̂

(M)
t ],

V t = [v̄t, v̄t, . . . , v̄t],

Dt = [d
(1)
t , d

(2)
t , . . . , d

(M)
t ],

Dt = [d̄t, d̄t, . . . , d̄t]

where v̄t and d̄t are mean values

v̄t =
1

M

M∑
i=1

v
(i)
t , d̄t =

1

M

M∑
i=1

d
(i)
t

By the doubly stochastic property of W , we have
Xt+1 = (1− ηt)Xt + ηtDt (7)

It is easy to verify that when x0 ∈ Ω, x̄t ∈ Ω for ∀t. Hence
the constraint is always satisfied. Here we should notice that
we do not have to store all the replica in practice.

We can regard
∑
j wij(x̂

(j)
t − x̂

(i)
t ) as a term, and obtain

iteration formula∑
j

wij(x̂
(j)
t+1 − x̂

(i)
t+1) =

∑
j

wij(x̂
(j)
t − x̂

(i)
t )

+
∑
j

wij(z
(j)
t − z

(i)
t ). (8)

Therefore, we only need one buffer with the size of xt to
compute this term. So it is with

∑
j wij(v̂

(j)
t − v̂

(i)
t ). We

will use Eq. (8) to save memory in our experiments.
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Convergence Analysis
In this section, we study the convergence properties of our
DQSFW algorithm. All proofs can be found in Supplemen-
tary Material. We begin with introducing some mild assump-
tions and the definition of Frank-Wolfe gap (Jaggi 2013):

G(x) = max
v∈Ω
〈v − x,−∇f(x)〉 (9)

The convergence criteria is E[G(x)] ≤ ε.
Assumption 1. (Lipschitz Gradient) There is a constant L
such that for ∀i ∈ {1, 2, . . . ,M}, we have

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖. (10)

Assumption 2. (Compact Domain) There is a diameter D
of domain Ω.
Assumption 3. (Lower Bound) Function f(x) has the lower
bound infx∈Ω f(x) = f− > −∞.
Assumption 4. (Spectral Gap) Given the symmetric dou-
bly stochastic matrix W , we define λ1, λ2, . . . , λM to be its
eigenvalues in descending order. Then max{|λ2|, |λM |} <
1. Let ρ = max{|λ2|, |λM |} and ζ = 1− λM .
Assumption 5. (Compressor Assumption) CompressorC(·)
satisfies ‖C(x)− x‖2 ≤ (1− δ)‖x‖2, where 0 < δ ≤ 1.
Assumption 6. (Bounded Gradient and Bounded Variance)
The generated gradient estimator g(i)

t satisfies E[g
(i)
t ] =

∇fi(x(i)
t ), E‖g(i)

t −∇fi(x
(i)
t )‖2 ≤ σ2, ‖∇F (i)(x

(i)
t ; ξ)‖ ≤

G.
Based on above assumptions, we demonstrate three lem-

mas of our DQSFW algorithm. Lemma 1 and lemma 2 es-
timate the consensus between model parameter Xt and gra-
dient Vt respectively. Lemma 3 implies that our gradient es-
timator Eq. (6) on different node approaches the value of
full gradient uniformlly and gradually. The detailed proof of
lemmas can be found in supplementary material section A.

Lemma 1. Let δ0 = 1 −
√

1− δ2, δ1 = 1 − (1 − δ2
0)2.

αt = γt = γ = min{1, δ0ζ ,
(1−ρ)δ1

2ζ2 }. c1 = (1−ρ)γ, c2 = δ,

c3 = min{ (1−ρ)γ
2 , δ12 }.A = (1+c1)(1− (1−ρ)γ)2 +(1−

δ)(1+ 1
c2

)γ2ζ2,B = (1+ 1
c1

)γ2ζ2+(1−δ)(1+c2)(1+γζ)2.

Let Q = 8(1 + 1
c3

)(A + B). Set η0 =
c33

16(1+c3)(A+B) and
ηt = η0

(t+1)θ
, 0 < θ < 1. Then there exists a constant R1

satisfying

‖Xt −Xt‖2F + ‖Xt − X̂t‖2F ≤
QR1MD2

(t+ 1)2θ

Lemma 2. Let c4 = c23, β0 = B(1+c4)
Ac4

and βt = β0

(t+1)2θ/3
.

Then there exists constant R2 such that

‖Vt − Vt‖2F + ‖Vt − V̂t‖2F ≤
QR2MG2

(t+ 1)2θ/3

Lemma 3. Denote v̄t = 1
M

∑M
i=1 v

(i)
t . There exists constant

S such that

E‖v̄t −
1

M

M∑
i=1

∇fi(x(i)
t )‖2 ≤ S

(t+ 1)2θ/3

Next, we will propose the main theorem of our conver-
gence analysis. Please check the detailed proof in supple-
mentary material section B.

Theorem 1. Let Q, R1, R2 and S be the constants defined
in Lemma 1 to Lemma 3. Step size ηt is set as Lemma 1.
Then we have

E[G(x̄t)] ≤ E
[f(x̄t − f(x̄t+1)

ηt
)
]

+
D
√

2(S +QR1L2D2)

(t+ 1)θ/3

+
D
√
QR2G

(t+ 1)θ/3
+
ηtL

2D2

2
.

Theorem 2. Suppose T iterations have been completed.
Let t̂ is chosen randomly with identical probability from
{0, 1, . . . , T}. Set θ = 3

4 . Then by Theorem 1 we can obtain

E[G(x̄t̂)] = O(
1

T 1/4
).

Remark 1. Theorem 2 shows that our DQSFW algo-
rithm reach a gradient complexity of O(ε−4) to achieve
ε-accuracy stationary point. And the Frank-Wolfe gap is
asymptotic to 0, rather than a neighborhood of which the
size is dependent on ε. This is because all parameters in our
algorithm are independent of ε, while in SFW, step size and
number of iterations are functions of ε.

Remark 2. θ = 3
4 is the best trade-off between consensus

and stepsize. If βt is too large, the noise of quantization and
the variance of stochastic gradient will cause bad consensus
and then affect the convergence. If βt is too small, the step-
size should also be small. Otherwise the averaged gradient
cannot catch up with the changing of x, which will cause
slow convergence. This trade-off is the challenge and intu-
ition to define our gradient estimator as Eq. (6).

Remark 3. From the proof in supplementary material we
can see the theoretical framework does not only work for
signSGD, but also all compressors that satisfy Assumption
5.

Experimental Results
To validate the efficiency of our new DQSFW algorithm, we
conduct the experiments on two constrained machine learn-
ing applications: matrix completion and model compression.

Decentralized Low-Rank Matrix Completion
Low-rank matrix completion is a model to solve a broad
range of learning tasks, such as collaborative filtering (Ko-
ren, Bell, and Volinsky 2009) and multi-label learning (Xu,
Jin, and Zhou 2013). The loss function of low-rank matrix
completion problem has the following form:

min
X∈RM×N

∑
(i,j)∈Ω

φ(Xij − Yij), s.t. ‖X‖∗ ≤ C

where φ : R→ R is the potential non-convex empirical loss
function. Y is the target matrix and Ω is the set of observed
entries. (Wai et al. 2017) also conducts this experiment with
MSE loss function and robust Gaussian loss function. In our
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Figure 2: The experimental results of decentralized low-rank matrix completion for dataset MovieLens 100k and MovieLens
1m. Figure (a), (b) and (c) show the training loss with respect to bits transferred on MovieLens 100k with 20, 40 and 60 workers
respectively. Figure (d), (e) and (f) show the training loss with respect to bits transferred on MovieLens 1m with 20, 40 and 60
workers respectively.

Name User Movie Record

MovieLens 100k 943 1682 100000
MovieLens 1m 6040 3952 1000209

Table 2: Descriptions of MovieLens Datasets.

experiment, to verify that our algorithm works well for non-
convex objective functions, we adopt the robust Gaussian
loss function

φ(z) =
σ0

2
(1− exp(− z

2

σ0
)) (11)

In our experiment, parameter σ0 is fixed to be 2. We
run our experiment on two benchmark datasets, MovieLens
100k and MovieLens 1m (Harper and Konstan 2015). Both
of two datasets are records of movie ratings from plenty of
users, and are usually used to train recommendation sys-
tems. The descriptions of these two datasets are shown in
Table 2. MovieLens 100k has 943 users, 1682 movies, and
100000 rating records. MovieLens 1M has 6040 users, 3952
movies, and 1000209 rating records. All ratings vary from
0 to 5. We scale them to interval [0, 1]. The rating records
can be converted into matrix, where row represents user id
and column represents movie id. Each record serves as an
observation. As our purpose is to verify the performance of
optimization algorithm, we take all data for training.

For both datasets, we deploy our experiment on M =
20, 40, 60 MPI worker nodes respectively by mpi4py. Each
node is an Intel Xeon E5-2660 machine within an infini-
band network. We assign 1/M of the rating records to each
worker. For MovieLens 100k, we set C = 2000 while for
MovieLens 1m we set C = 5000.

In this task, the linear oracle can be obtained by singular
value decomposition (SVD). Let the SVD of v(i)

t be U · S ·
V T . Then the linear oracle d = −C · u · vT where u and v
are the singular vectors corresponding to the largest singular
value (also named leading vectors of SVD). In practice, we
only need to compute the leading vectors, while in projected
algorithms we have to do the completed SVD.

We choose two other projection-free methods DeFW (Wai
et al. 2017) and QFW (Zhang et al. 2019) as baseline
methods. For decentralized algorithms, we use a ring-based
topology as the communication network because it is con-
venient to implement and achieves linear speedup in com-
munication (Lian et al. 2017). For QFW, s of the s-partition
encoding is set to be 1. For all of the three algorithms, we set
step size ηt = t−0.75. The results of low-rank matrix com-
pletion on MovieLens 100k and MovieLens 1m are shown in
Figure 2. As many previous quantization work did (includ-
ing QFW), we analyze the experimental results with respect
to bits transferred, which means the number of bits sent or
received on the busiest node. For decentralized algorithms it
can be any node and for centralized algorithm it is the mas-
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Figure 3: The experimental result of decentralized model compression for VGG11 neural network on dataset CIFAR 10. Figure
(a) shows the training loss against time. Figure (b) shows the training loss against the number of bits transferred

ter node. The number is divided by the size of x since it is
always proportional to the size of x.

From the experimental results we can see that our
DQSFW algorithm achieves the best performance on both
datasets. Moreover, we can see that our algorithm becomes
more competitive as the number of workers becomes larger,
which verifies the scalability of our method. With more
workers, more sample gradients can be computed, but the
number of gradients computed by DeFW keeps the same.

Model Compression
Deep neural networks (DNNs) have achieved remarkable
performance in many fields at recent years. But one of its
shortages is the high cost of a large number of parameters.
Thus, many attempts have been made to reduce the num-
ber of parameters in DNNs, such as dropout and pruning.
Among these methods, one solution is to add constraint on
parameters to make them sparse compulsively (Liu et al.
2015; Bietti et al. 2019). In (Bietti et al. 2019), one popu-
lar method was proposed via adding the spectral norm con-
straint as follows:

‖Wl‖2 ≤ τ (12)

for each layer l. Because the model compression is attract-
ing increasing attentions in both machine learning research
and applications, in this experiment, we solve the model
compression problem using the decentralized learning set-
ting, and validate the performance of different decentralized
quantized algorithms on this task. Here the linear oracle is
d = −τ · U · V T , where U · S · V T is the SVD of v(i)

t . This
result can be achieved easily by the fact that trace norm and
spectral norm are dual norms.

In our experiment, we run this task to compress VGG11
network on CIFAR 10 dataset, which has 50000 training
samples and 10 labels, with constraint (12). We conduct this
task on decentralized settings where data are distributed on
different nodes to verify our algorithms. Following (Bietti
et al. 2019), we use cross-entropy loss function as the crite-
rion and set τ = 0.8. The experiment is implemented on 8

GTX1080 GPUs by Pytorch. Each GPU is treated as a single
worker. The communication is based on NVIDIA NCCL.

We consider DeFW and QFW as baseline methods and
ring-based topology as communication network. For DeFW
and our DQSFW, the decentralized system is uniform weight
ring network. For QFW, s is set to be 1. For all three algo-
rithms, step size is chosen as ηt = 1

2 t
−0.75. Because of the

limitation of CUDA memory, we cannot compute the full
gradient for DeFW. We calculate 1/5 of the full gradient
instead. This issue also indicates the limitation of DeFW al-
gorithm.

The experimental results are visualized in Figure 3. To
validate the efficiency of our algorithm, we compare the loss
with respect to the bits transmitted. Similar to the matrix
completion experiment, the number of bits transferred is di-
vided by the size of parameter. For decentralized algorithms,
the number is counted on any node, while for centralized al-
gorithm it is counted on master node. According to the re-
sults, we can see that DeFW is almost infeasible for this task.
From the view of time, QFW and DQSFW have similar per-
formance. From the view of bits transferred, our DQSFW
has the best performance among the three algorithms, which
verifies the superior performance of our new algorithm.

Conclusion
In this paper, we proposed a new Decentralized Quantized
Stochastic Frank-Wolfe (DQSFW) algorithm to solve the
non-convex constrained optimization problem. We revealed
a potential divergence problem that is likely to occur in the
general decentralized training, not just for Frank-Wolfe type
methods, and also provided a solution by making consensus
on gradient. We derived the new theoretical analysis to prove
that our algorithm can achieve the same gradient complexity
O(ε−4) as the Stochastic Frank-Wolfe (SFW) method with
much less communication cost, and the Frank-Wolfe gap is
asymptotic to 0. The experimental results on two machine
learning applications, matrix completion and deep neural
network compression, validate the superior performance of
our new algorithm.
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