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Abstract

Transfer learning, which is to improve the learning perfor-
mance in the target domain by leveraging useful knowledge
from the source domain, often requires that those two domains
are very close, which limits its application scope. Recently,
distant transfer learning has been studied to transfer knowl-
edge between two distant or even totally unrelated domains via
unlabeled auxiliary domains that act as a bridge in the spirit of
human transitive inference that two completely unrelated con-
cepts can be connected through gradual knowledge transfer.
In this paper, we study distant transfer learning by proposing
a DeEp Random Walk basEd distaNt Transfer (DERWENT)
method. Different from existing distant transfer learning mod-
els that implicitly identify the path of knowledge transfer
between the source and target instances through auxiliary in-
stances, the proposed DERWENT model can explicitly learn
such paths via the deep random walk technique. Specifically,
based on sequences identified by the random walk technique
on a data graph where source and target data have no direct
connection, the proposed DERWENT model enforces adjacent
data points in a sequence to be similar, makes the ending data
point be represented by other data points in the same sequence,
and considers weighted classification losses of source data.
Empirical studies on several benchmark datasets demonstrate
that the proposed DERWENT algorithm yields the state-of-
the-art performance.

Introduction
Transfer learning (Yang et al. 2020) aims to effectively en-
hance the performance of the target domain by learning useful
knowledge from the source domain and it has a wide range of
applications (Zhang et al. 2019; Uribe 2010; Pan et al. 2011),
especially when the target domain has limited or no label in-
formation. Using a large number of labeled data in the source
domain to improve the performance in the target domain with
limited or even no labeled training data via transfer learning
models can greatly reduce the cost of labeling in the target
domain.

A major assumption of traditional transfer learning is that
the source and target domains should be close or similar to
each other. When there is a large discrepancy between the
target domain and the source domain, traditional transfer
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learning methods likely fail to work and even lead to the
‘negative transfer’ phenomenon (Pan and Yang 2010; Yang
et al. 2020). Instead, distant transfer learning (Tan et al. 2015,
2017) is proposed to handle this situation. Inspired by the
transitive learning ability of human that two unrelated con-
cepts can be connected via some intermediate concepts as
a bridge, distant transfer learning uses data in auxiliary do-
mains as such bridge to connect two distant domains, which
makes the knowledge transfer between two distant domains
possible. Distant transfer learning broadens the application
scope of transfer learning and makes the learning system
close towards human intelligence.

As pioneered in distant transfer learning, Tan et al. (2015)
require that auxiliary domains include both characteristics of
the source and target domains in a form of the co-occurrence
data and propose a matrix-factorization-based model to
achieve one-step transitive learning through the auxiliary
domain. By relaxing such requirement on the data form in
the auxiliary domain, the Distant Domain Transfer Learning
(DDTL) method (Tan et al. 2017) utilizes the idea of self-
paced learning (Kumar, Packer, and Koller 2010) to select
both useful source and auxiliary data based on the recon-
struction error for improving the performance of the target
domain which has limited labeled data. However, those two
studies cannot explicitly identify the transfer paths between
the source and target domains via auxiliary domains.

In this paper, we follow the setting of (Tan et al. 2017) to
study distant transfer learning with an objective to identify
transfer paths between two distant domains, which is what
previous studies cannot achieve. An advantage of identifying
the transfer paths is to improve the interpretability of the
model by visualizing the transfer process. To achieve that, we
adopt deep random walk to generate transfer paths between
those two domains. Specifically, as shown in Figure 1, we
construct a graph on all the data from all the domains with
edge weights measuring the similarities of pairs of data based
on the hidden feature representation learned from a neural
network. Note that there are no edges between source and
target data in the graph as directly transferring is not so feasi-
ble. Then based on the constructed graph, we can generate
sequences to connect source and target data through auxil-
iary data. For each sequence, the proposed DeEp Random
Walk basEd distaNt Transfer (DERWENT) model enforces
adjacent data points in this sequence to be similar and makes
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Figure 1: An illustration of distant transfer learning. In distant
transfer learning, the source and target domains cannot be
directly transferred since the discrepancy between domains is
too large, making directly transfer fail to work. The proposed
DERWENT method can automatically find the transfer paths
via deep random walk between the source domain and the
target domain through auxiliary domains.

the ending data point in this sequence be represented by
other data points via a Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997). Moreover, the DER-
WENT model considers to minimize the weighted classifica-
tion loss of source data in a sequence with weights depending
on the data similarities.

In summary, the main contributions of this paper are three-
fold.
1. We propose a novel DERWENT model for distant transfer
learning by utilizing deep random walk to generate transfer
paths between the source and target domains.
2. We conduct extensive experiments on twenty distant
transfer learning tasks constructed from several benchmark
datasets to validate the effectiveness of the proposed DER-
WENT model.
3. The proposed DERWENT model can identify transfer
paths, which can improve the model interpretability by visu-
alizing such sequences.

Related Works
In transfer learning, we are usually given a source domainDs
and a target domain Dt. There are mainly three typical types
of transfer learning algorithms, including instance-based
transfer learning (Dai et al. 2007; Khan and Heisterkamp
2016), feature-based transfer learning (Pan et al. 2009; Hu
and Yang 2011), and parameter-based transfer learning (Pan
et al. 2008). Recently, transfer learning is mostly combined
with deep neural networks (Tzeng et al. 2015; Long et al.
2016). However, the aforementioned works study traditional
transfer learning which requires that the source and target
domains are close and they may not achieve good perfor-
mance under the distant transfer learning setting or even lead
to negative transfer problem.

For distant transfer learning, Tan et al. (2015) use an auxil-
iary domain as a bridge between distant domains. However,
the data in the auxiliary domain need to take the form of the
co-occurrence data and the learning model relies on matrix

factorization, which greatly limits its application scope. The
major differences of the proposed DERWENT method with it
are that the DERWENT method has no such requirement on
the data form in auxiliary domains and that the DERWENT
method can achieve a multi-step transition in the auxiliary do-
mains while (Tan et al. 2015) can take only one step. DDTL
(Tan et al. 2017) aims to select useful data from the source
and auxiliary domains through a selective learning method
inspired by self-paced learning to improve the performance
in the target domain. The proposed DERWENT model is
different from DDTL in mainly two aspects. Firstly, DDTL
selects source and auxiliary data based on the idea of self-
paced learning but it cannot explicitly give the transfer paths
between the source and target domains, while the proposed
DERWENT method can do that with the help of the deep
random walk. Secondly, DDTL selects useful data from the
source and auxiliary domains according to the reconstruction
error, while the proposed DERWENT method relies on the
deep random walk with two designed criteria including the
similarity between adjacent data in a sequence sampled in
the deep random walk and the reconstruction of the ending
data point in the sequence based on other data points.

As mentioned by Tan et al. (2017), Self-Taught Learning
(STL) (Raina et al. 2007), which aims to learn a good feature
representation through a large amount of unlabeled data, can
also work under the distant transfer learning setting where
the auxiliary data take the role of unlabeled data. STL is an
unsupervised method with the original formulation relying
on linear sparse coding models. In recent years, with the
development of deep learning, STL has adopted deep neural
networks as basic models and has achieve better performance
as shown in (Kemker and Kanan 2017; Gan et al. 2014).
However, distant transfer learning is different from STL in
that STL treats the unlabeled data as the source domain, while
such unlabeled data is treated as data in the auxiliary domains
for distant transfer learning.

DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) aims to
obtain sequences of data nodes in a graph for model training.
DeepWalk mainly uses random walk to sample sequences
from the graph, and it is to maximize the co-occurrence prob-
ability among data nodes that appear within a window in the
spirit of the SkipGram model (Mikolov et al. 2013). Differ-
ent from Deepwalk, the proposed DERWENT method uses
random walk for a data graph to generate the transfer paths
between the source and target domains through auxiliary do-
mains for distant transfer learning and it is to maximize the
similarity between adjacent data points in a sampled sequence
and to minimize the reconstruction error of the ending data
point with respect to other data points in the same sequence
via the LSTM.

Tan et al. (2014) and Ng, Wu, and Ye (2012) use random
walk to transfer information between two heterogeneous do-
mains. Those two works are different from ours in two as-
pects. Firstly, the problem settings are different. Those two
works require the existence of co-occurrence data for trans-
ferring between two heterogeneous domains, while our work
has no such requirement. Secondly, the ways to use random
walk are different. Those two works use random walk to com-
pute the probabilities of traversing between source and target
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instances and then use such probabilities to do the transfer in
terms of instances or features, however, our work uses ran-
dom walk for sampling sequences to connect two domains
through auxiliary domains and then uses sampled sequences
to update the entire network based on three proposed losses.

The DERWENT Model
In this section, we introduce the proposed DERWENT model.

Problem Settings
By following the problem setting in DDTL (Tan et al. 2017)
where there are a source domain and a target domain, the
source domain has a large labeled training dataset Ds =
{(xsi , ysi )}

ns
i=1, where ysi ∈ {0, 1} is the class label of the

ith data point xsi in the source domain and ns denotes the
number of data points in the source domain, and the target do-
main has a small labeled training datasetDt = {(xti, yti)}

nt
i=1,

where yti ∈ {0, 1} is the class label of the ith data point xti in
the target domain and nt denotes the number of data points
in the target domain. Here we assume ns � nt. Since the
source and target domains have a large discrepancy, the direct
transfer from the source domain to the target domain may
have no effect or even negative effect to improve the perfor-
mance of the target domain. Instead, we assume that there is
an auxiliary unlabeled dataset Da = {xa1 , . . . ,xana

} where
na � nt denotes the number of data points. This auxiliary
dataset contains data points from diverse auxiliary domains
and it will act as a bridge to help transfer the knowledge from
the source domain to the target domain in order to improve
the performance of the target domain.

The Model
To achieve that, we propose the DERWENT model which is
based on deep random walk.

In the DERWENT model, we first learn a hidden repre-
sentation for all the data in the source, auxiliary, and target
domains as x̂∗i = φ(x∗i ), where φ(·) denotes a feature ex-
traction network and the superscript ∗ in x∗i can be s, a, or
t.

To measure similarities between data points, we construct
a graph G on all the data from all the domains with each data
point corresponding to a node in this graph and edge weights
defined as
e(x̂, x̂) = 0 ∀x ∈ Ds ∪ Da ∪ Dt

e(x̂1, x̂2) = exp{cos(x̂1, x̂2)} ∀x1,x2 ∈ D∗ ∀∗ ∈ {s, a, t}
e(x̂1, x̂2) = exp{η1cos(x̂1, x̂2)} ∀x1 ∈ Ds x2 ∈ Da
e(x̂1, x̂2) = exp{η1cos(x̂1, x̂2)} ∀x1 ∈ Da x2 ∈ Ds
e(x̂1, x̂2) = exp{η2cos(x̂1, x̂2)} ∀x1 ∈ Dt x2 ∈ Da
e(x̂1, x̂2) = exp{η2cos(x̂1, x̂2)} ∀x1 ∈ Da x2 ∈ Dt,

(1)
where x̂ = φ(x), x̂1 = φ(x1), x̂2 = φ(x2), η1, η2 are hyper-
parameters to increase the probability of finding source/target
nodes depending on the direction of the random walk as in-
troduced later, and cos(·, ·) denotes the cosine similarity be-
tween two vectors, matrices or tensors of the same size with
its definition as cos(z1, z2) = 〈z1, z2〉/

√
〈z1, z1〉〈z2, z2〉

where 〈·, ·〉 denotes the dot product. Based on Eq. (1), we can

see that there is no self loop in this graph. Moreover, there
is no edge between the source and target samples and this is
because the two domains have a large discrepancy, leading
to unreliable similarities. Note that during the optimization
process, φ(·) changes over epochs and so do the edge weights
in the graph G.

Based on the graph G, the random walk works as follows.
Suppose we want to traverse the nodes in a graph. At current
node i, the probability to visit node j next is proportional
to e(i, j). So the random walk will start at a node and then
randomly visit the next node with such probability until reach
some goal node.

In the DERWENT model, we can construct the random
walk in two directions. The random walk of the first type
starts at a node corresponding to a data point in the source
domain, and then randomly visits one of its neighbors with
the probability proportional to edge weights. This process
will continue until reaching a node in the target domain or
the number of nodes visited exceeds a threshold denoted by
θ. The random walk of the second type acts similarly but it
will start at a node in the target domain and will stop when
reaching a node in the source domain or the number of nodes
visited exceeds θ.

We first introduce how to learn from the first type in the
DERWENT model. Given a mini-batch which contains a
subset of data points from the source, auxiliary, and target
domains, we first construct a graph G on this mini-batch with
η1 being 1 and η2 being η that is a hyperparameter. Here
η is required to be larger than 1. Such setting will increase
the probability to find a target instance in the neighborhood
during the random walk and shorten the length of sequences
in the random walk. Then we conduct random walk on the
graph G to sample several sequences with different starting
nodes. For the ith sequence Si = (x̂i,1, . . . , x̂i,nsi

) where
nsi denotes the length of this sequence or equivalently the
number of nodes visited satisfying nsi ≤ θ, we expect two
neighboring data points to be similar, which is to help learn
the feature extraction network, and define the corresponding
similarity loss as

li,1 =

nsi
−1∑

j=1

(
− lnσα(cos(x̂i,j , x̂i,j+1))

− ln(1− σα(cos(x̂i,j , ẑi,j)))
)
,

(2)

where σα(x) = 1
1+exp{−αx} denotes a scaled sigmoid func-

tion to make the output spread more over [0, 1] due to the
limited range (i.e., [−1, 1]) of the cosine similarity, and ẑi,j
is sampled randomly out of Si but in the mini-batch to act as
a dissimilar data point to x̂i,j .

For Si, if the last data point is from the target domain,
which means that the random walk finds a path from the
source domain to the target domain, we expect that this target
data point can be represented based on other data points in
this sequence since nodes in a sequence generated by deep
random walk are inherently related based on the hidden fea-
ture representation. To achieve that, we use the sequence of
Si except x̂i,nsi

to reconstruct it and hence we can formulate
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Figure 2: The architecture of the DERWENT model can be divided into three parts: (1) Images features are extracted by a
pre-trained deep convolution neural network (CNN) followed by the feature extraction network φ(·). (2) According to the hidden
feature representation generated in the previous step, we construct a graph G on each mini-batch data points and adopt the
random walk to generate transfer paths. (3) Three losses are calculated based on the sampled sequences.

the corresponding sequence loss as

li,2 = ‖x̂i,nsi
− fd(LSTM(x̂i,1, . . . , x̂i,nsi

−1))‖, (3)

where LSTM(·) denotes an LSTM to output the hidden state
of the last position and fd(·) is a neural decoder to generate
an approximation of x̂i,nsi

. Here the LSTM is used since
x̂i,1, . . . , x̂i,nsi

−1 form a sequence.
Moreover, by defining the set of labeled data in Si from

either source or target domain as Li, we formulate the classi-
fication loss as

li,3 =
∑

(x̂,y)∈Li

w(x̂)
(
− (1− y) ln(1− σ(fc(x̂)))

− y ln(σ(fc(x̂)))
)
,

where σ(x) = 1
1+exp{−x} denotes the sigmoid function, fc(·)

denotes the classification network, and w(x̂), a measure of
the instance importance, is equal to 1 for a target data point
and otherwise a positive value smaller than 1. For a source
data point x̂, we define w(x̂) as w(x̂) = σα(cos(x̂, x̂i,nsi

)),
which reflects the confidence to use the loss of a source data
point for the target domain.

By combining the above three losses, the objective function
of the DERWENT model with the first type of the random
walk is formulated as

min
∑
i

li,1 + oi(λ1li,2 + λ2li,3), (4)

where λ1, λ2 are regularization parameters, and the indicator
oi equals 1 when Si reaches a target data point and other-
wise 0. Hence the sequence loss and classification loss are
only used when the sequence reaches a target data point.
Parameters to be optimized in problem (4) include those in
the feature extraction network φ(·), the LSTM(·), the neural
decoder fd(·), and the classification network fc(·).

The second type of the random walk can be formulated
similarly with slight differences. To increase the probability
to reach a source node in the graph G and shorten the length
of sequences, η1 and η2 are set to η and 1, respectively, where
η is used in the first type of the random walk. The similarity
loss (i.e., li,1) has no change. The sequence loss (i.e., li,2) is
formulated similarly with the ending data point x̂i,nsi

from
the source domain being represented by other data points in
the same sequence. In the classification loss (i.e., li,3), the
starting target data point will contribute the classification loss
no matter whether the sequence reaches the source domain,
which is different from the first type as the label information
in the target domain is highly valued.

The entire objective function of the DERWENT model
is to sum those of the two types up. The architecture of the
DERWENT model is illustrated in Figure 2.

Discussion
Different from DDTL, the DERWENT model identifies the
transfer path {Si} between the source and target domains in
two directions based on the random walk technique, learns
good feature extraction network via the similarity and se-
quence losses (i.e., li,1 and li,2), and reuses the label infor-
mation in the source domain by defining the weight func-
tion w(·) based on the learned feature extraction network.
Different from the DeepWalk method which maximizes the
co-occurrence probability among the data nodes, the DER-
WENT method maximizes the similarity between adjacent
data points in a sampled sequence via the similarity loss and
minimizes the reconstruction error of the ending data point
via the sequence loss.

Experiments
In this section, we conduct experiments to evaluate the pro-
posed DERWENT model.
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Experimental Settings
We conduct experiments on three benchmark datasets, in-
cluding the Animals with Attributes (AwA) dataset (Xian
et al. 2019), the Caltech-256 dataset (Griffin, Holub, and
Perona 2007), and the CIFAR-100 dataset (Krizhevsky and
Hinton 2009). The AwA dataset contains 30,475 pictures
with 50 categories, where the number of instances per class
varies from 92 to 1,168. We select one of three categories
including ‘chihuahua’, ‘sheep’ and ‘lion’ to form the positive
class of the source domain, and select one of six categories
including ‘antelope’, ‘chimpanzee’, ‘rabbit’, ‘bobcat’, ‘pig’
and ‘german+shepherd’ as the positive class of the target
domains. Moreover, by following (Tan et al. 2017), we mix
data from seven categories ‘beaver’, ‘blue+whale’, ‘mole’,
‘mouse’, ‘ox’, ‘skunk’, and ‘weasel’ to form the negative
class for source and target domains but with no overlapping.
Data of all the remaining categories are used as auxiliary
domains. The Caltech-256 dataset contains 30,607 images
with 257 categories, including a background category ‘clut-
ter’. There are 80 to 827 images in each category. To validate
the performance between distant domains, we select some
relatively different categories to form the source and target
domains, such as ‘baseball-bat’, ‘conch’, ‘airplane’, ‘skate-
board’, ‘soccer-ball’, ‘horse’ and ‘gorilla’. Specifically, we
first randomly select a category as the positive class of the
source domain and then randomly select another category to
be the positive class of the target domain. Data in the ‘clutter’
category are randomly selected to form negative instances
for both source and target domains but with no overlapping.
Data of all the remaining categories are used as auxiliary do-
mains. The CIFAR-100 dataset contains 100 classes, where
the number of instances per class is 500. We select one cat-
egory from ‘chair’, ‘bus’, ‘rose’, ‘woman’, and ‘bottle’ to
form the positive class of the source domain and select one
of three categories including ‘cup’, ‘phone’ and ‘bowl’ as the
positive class of the target domain.

We mix data from categories related to aquatic mammals
including ‘beaver’, ‘dolphin’, ‘otter’, ‘seal’ and ‘whale’ to
form negative examples for source and target domains with
no overlapping. Data of all the remaining categories are used
as auxiliary domains.

According to the above construction of different domains,
on the AwA dataset, we have 9 distant transfer learning
tasks, including ‘chihuahua-to-bobcat’ (C→B), ‘chihuahua-
to-antelope’ (C→A), ‘chihuahua-to-pig’ (C→P), ‘sheep-to-

rabbit’ (S→R), ‘sheep-to-chimpanzee’ (S→CH), ‘sheep-to-
german+shepherd’ (S→SH), ‘lion-to-rabbit’ (L→R), ‘lion-
to-chimpanzee’ (L→CH), and ‘lion-to-german+shepherd’
(L→SH). On Caltech-256 dataset, we have 6 dis-
tant transfer learning tasks, including ‘airplane-to-soccer-
ball’ (A→S), ‘gorilla-to-baseball-bat’ (G→B), ‘airplane-to-
skateboard’ (A→SK), ‘horse-to-conch’ (H→C), ‘soccer-ball-
to-skateboard’ (S→SK), and ‘soccer-ball-to-conch’ (S→C).
On the CIFAR-100 dataset, we have 5 distant transfer
learning tasks, including ‘bus-to-phone’ (B→P), ‘chair-
to-cup’ (C→CU), ‘rose-to-phone’ (R→P), ‘bottle-to-bowl’
(BT→BW), and ‘woman-to-phone’ (W→P).

Baseline models in comparison include a deep neural net-
work (DNN) which is trained on the target data only, DAN
(Long et al. 2015), DANN (Ganin et al. 2016), CNN-based
STL (Kemker and Kanan 2017), and DDTL. We also com-
pare with two varaints of the proposed DERWENT method
denoted by DERWENT w/o L1 and DERWENT w/o LSTM
by discarding the similarity loss defined in Eq. (2) and the
sequence loss defined in Eq. (3), respectively. We use the
VGG-11 model (Simonyan and Zisserman 2015) pre-trained
on the ImgeNet dataset as the backbone network followed
by the feature extraction network φ(·), which has a Fully-
Connected (FC) layer with 256 hidden units and the activation
function as the tanh function. We use the same network struc-
ture for all the baseline models. In the DERWENT model, a
one-layer bi-directional LSTM with 128 hidden units is used
to compute the sequence loss defined in Eq. (3), the neural
decoder fd(·) has a FC layer with 256 outputs, and the clas-
sification network fc(·) has a FC layer with 2 outputs. For
optimization, we use the mini-batch SGD with the Nestorov
momentum 0.9. The batch size is set to 128, including 10, 8,
and 110 in the source, target and auxiliary domains, respec-
tively. The learning rate is set to 0.01. η in the graph (i.e.,
Eq. (1)) is initialized to 1.1 and then increased according to
epochs as 1.1bepochs/3c. All the regularization parameters in
the DERWENT model are set to 1.

Experimental Results
In each experiment, we randomly selected 10 labeled in-
stances in each class in the target domain for training and the
rest for testing. Each setting is repeated for three times and
the average results are reported in Tables 1-3. According to
the results, we can see that in most cases the accuracies of
DAN and DANN, which are transfer learning methods, are

Method C→B C→A C→P S→R S→CH S→SH L→R L→CH L→SH Avg

DNN 83.5 89.1 65.0 87.3 76.0 77.5 87.3 76.0 77.5 79.9
DAN 85.3 88.7 63.7 88.2 63.8 76.1 82.3 64.5 80.3 77.0
DANN 82.9 86.2 61.9 78.5 68.2 73.4 71.1 72.1 76.7 74.6
STL 83.1 89.8 64.4 89.1 79.9 80.5 89.1 79.9 80.5 81.8
DDTL 85.6 92.9 77.2 89.3 72.5 79.2 91.8 78.7 80.8 83.1
DERWENT w/o L1 90.0 93.4 74.3 92.6 89.0 90.9 93.6 87.7 90.0 89.1
DERWENT w/o LSTM 91.3 96.1 75.9 94.2 85.2 91.9 93.2 88.7 92.7 89.9
DERWENT 90.3 96.3 77.9 94.6 92.7 91.8 93.8 89.4 92.0 91.0

Table 1: Accuracy (%) of various models on different tasks of the AwA dataset.
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Method A→S G→B A→SK H→C S→SK S→C Avg

DNN 82.9 72.6 66.7 82.8 66.7 82.8 75.8
DAN 85.4 68.4 76.4 84.5 63.4 83.3 76.9
DANN 79.3 70.9 65.6 84.9 61.3 82.8 74.1
STL 84.1 76.1 69.9 75.3 69.9 75.3 75.1
DDTL 84.1 71.8 78.5 89.2 61.3 84.9 78.3
DERWENT w/o L1 89.0 82.1 83.9 89.2 74.2 88.2 84.4
DERWENT w/o LSTM 90.8 80.3 81.7 90.3 77.4 89.2 85.0
DERWENT 90.8 85.4 84.9 87.1 77.4 91.4 86.2

Table 2: Accuracy (%) of various models on different tasks of the Caltech-256 dataset.

Method B→P C→CU R→P BT→BW W→P Avg

DNN 89.7 87.4 89.7 87.2 89.7 88.7
DAN 89.3 79.6 81.9 85.8 93.4 86.0
DANN 90.1 73.0 74.2 76.7 91.3 81.1
STL 89.2 87.8 89.2 86.2 89.2 88.3
DDTL 91.5 86.0 88.0 83.3 94.4 88.6
DERWENT w/o L1 93.0 88.2 90.5 91.5 95.1 91.7
DERWENT w/o LSTM 93.4 91.3 92.2 90.5 96.3 92.7
DERWENT 93.8 91.1 93.0 91.5 96.9 93.3

Table 3: Accuracy (%) of various models on different tasks of the CIFAR-100 dataset.

Figure 3: Some transfer paths generated by the DERWENT method. Specifically, each row in both columns represents a transfer
path from the source domain in a red rectangle to the target domain in a green rectangle.
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Figure 4: Sensitivity analysis of hyperparameters of the DERWENT model.

lower than that of DNN. It is because that there is a large
discrepancy between the source and target domains which re-
sults in ‘negative transfer’ for the traditional transfer learning
methods. The STL method performs slightly better than DNN
as STL can learn a useful feature representation from auxil-
iary domains. As a distant transfer learning method, DDTL
performs better than DNN, DAN, DANN, and STL as it uses
auxiliary domains as a bridge to help transfer the knowledge
contained in the source domain to help the learning in the
target domain. The variaints of the proposed DERWENT
method perform worse than DERWENT method but better
than others, implying that each loss function defined in the
DERWENT method is necessary. Among all the methods in
comparison, the proposed DERWENT method performs the
best, which demonstrates the effectiveness of the proposed
DERWENT method.

Visualization of Transfer Paths
In order to understand how the proposed DERWENT method
transfers knowledge between distant domains through aux-
iliary domains, we visualize the transfer paths obtained by
the DERWENT method in Figure 3. According to Figure
3, we can see that in each path, the source image in a red
rectangle is completely different from the target image in
a green rectangle, and from left to right, images visited by
the random walk are gradually close to the target image. For
example, in two tasks ‘airplane-to-soccer-ball’ (located in
the third row from the bottom in the left column of Fig-
ure 3) and ‘skateboard-to-soccer-ball’ (located in the second
row from the bottom in the right column of Figure 3), the
source and target domains are significantly different. The
DERWENT method first relates source images to the ‘blimp’
and ‘bowling-pin’ classes, respectively, which are similar
to source images, and then gradually visits images that are
more similar to the target domain until reaching some target
images. Hence, based on transfer paths, we can understand
how the DERWENT model works and this can improve the
model interpretability.

Sensitivity Analysis
To test the sensitivity of the performance of the DERWENT
model with respect to different hyperparameters including
the maximum length θ of sampled sequences in the random
walk, the number of labeled instances in each class of the

target domain, and α used in the similarity loss (i.e., Eq. (2)),
we conduct experiments for each hyperparameter by fixing
other hyperparameters on three distant transfer learning tasks,
including L→R, S→SH, and C→B. According to the results
shown in Figure 4, we can see that θ has little effect on the
performance and one possible reason is that the random walk
has reached the destination in less than θ steps. It is obvious
that more labeled instances in the target domain lead to better
performance. Moreover, according to the results, setting α to
3 has the best performance for the three tasks and this is the
setting for α in all the experiments.

Conclusion
To solve the distant transfer learning problem, we propose
the DERWENT method based on deep random walk, which
can help transfer knowledge from the source domain to the
target domain across auxiliary domains gradually. Different
from existing methods, the proposed DERWENT method
can automatically find the transfer paths. The proposed DER-
WENT method has shown state-of-the-art performance in
three benchmark image datasets.

In the future research, we are interested in extending the
DERWENT model to deal with multiple source domains.
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