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Abstract
Due to the intractable partition function, training energy-
based models (EBMs) by maximum likelihood requires
Markov chain Monte Carlo (MCMC) sampling to approxi-
mate the gradient of the Kullback-Leibler divergence between
data and model distributions. However, it is non-trivial to
sample from an EBM because of the difficulty of mixing be-
tween modes. In this paper, we propose to learn a variational
auto-encoder (VAE) to initialize the finite-step MCMC, such
as Langevin dynamics that is derived from the energy func-
tion, for efficient amortized sampling of the EBM. With these
amortized MCMC samples, the EBM can be trained by max-
imum likelihood, which follows an “analysis by synthesis”
scheme; while the VAE learns from these MCMC samples
via variational Bayes. We call this joint training algorithm
the variational MCMC teaching, in which the VAE chases the
EBM toward data distribution. We interpret the learning al-
gorithm as a dynamic alternating projection in the context
of information geometry. Our proposed models can generate
samples comparable to GANs and EBMs. Additionally, we
demonstrate that our model can learn effective probabilistic
distribution toward supervised conditional learning tasks.

1 Introduction
Generative modeling of high-dimensional data is a very
challenging and fundamental problem in both computer vi-
sion and machine learning communities. Energy-based gen-
erative model (Zhu, Wu, and Mumford 1998; LeCun et al.
2006) with the energy function parameterized by a deep neu-
ral network was first proposed by Xie et al. (2016), and has
been drawing attention in the recent literature (Xie, Zhu,
and Wu 2017; Gao et al. 2018; Xie et al. 2018c; Xie, Zhu,
and Wu 2019; Du and Mordatch 2019; Nijkamp et al. 2019;
Grathwohl et al. 2019), not only for its empirically power-
ful ability to learn highly complex probability distribution,
but also for its theoretically fascinating aspects of repre-
senting high-dimensional data. Successful applications with
energy-based generative frameworks have been witnessed in
the field of computer vision, for example, video synthesis
(Xie, Zhu, and Wu 2017, 2019), 3D volumetric shape syn-
thesis (Xie et al. 2018c, 2020), unordered point cloud syn-
thesis (Xie et al. 2021a), supervised image-to-image trans-
lation (Xie et al. 2019), and unpaired cross-domain visual
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translation (Xie et al. 2021b). Other applications can be seen
in natural language processing (Bakhtin et al. 2021), biol-
ogy (Ingraham et al. 2018; Du et al. 2019), and inverse opti-
mal control (Xu et al. 2019).

Energy-based generative models directly define an un-
normalized probability density that is an exponential of the
negative energy function, where the energy function maps
the input variable to an energy scalar. Training an energy-
based model (EBM) from observed data corresponds to find-
ing an energy function, where observed data are assigned
lower energies than unobserved ones. Synthesizing new data
from the energy-based probability density can be achieved
by a gradient-based Markov chain Monte Carlo (MCMC)
method, which is an implicit and iterative generation pro-
cess, to find low energy regions of the learned energy land-
scape; we refer readers to two excellent textbooks (Liu 2008;
Barbu and Zhu 2020) and numerous references therein.
Energy-based generative models, therefore, unify the gen-
eration and learning processes in a single model.

A persisting challenge in training an EBM of high-
dimensional data via maximum likelihood estimation
(MLE) is the calculation of the normalizing constant or
the partition function, which requires a computationally in-
tractable integral. Therefore, an MCMC sampling proce-
dure, such as the Langevin dynamics or Hamiltonian Monte
Carlo (Neal 2011), from the EBMs is typically used to ap-
proximate the gradient of the partition function during the
model training. However, the MCMC is computationally ex-
pensive or even impractical, especially if the target distribu-
tion has multiple modes separated by highly low probability
regions. In such a case, traversing modes becomes very diffi-
cult and unlikely because different MCMC chains easily get
trapped by different local modes.

To tackle the above challenge, with the inspiration of the
idea of amortized generation in Kim and Bengio (2016); Xie
et al. (2018b), we propose to train a directed latent variable
model as an approximate sampler that generates samples
by deterministic transformation of independent and identi-
cally distributed random samples drawn from Gaussian dis-
tribution. Such an ancestral sampler can efficiently provide
a good initial point of the iterative MCMC sampling of the
EBM to avoid a long computation time to generate con-
vergent samples. We call this process of first running an
ancestral sampling by a latent variable model and then re-
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vising the samples by a finite-step Langevin dynamics de-
rived from an EBM the Ancestral Langevin Sampling (ALS).
ALS takes advantages of both Langevin sampling and ances-
tral sampling. First, because the ancestral sampler connects
the low-dimensional Gaussian distribution with the high-
dimensional data distribution, traversing modes of the data
distribution becomes more tractable and practical by sam-
pling from the low-dimensional latent space. Secondly, the
Langevin sampler is an attractor-like dynamics that can re-
fine the initial samples by attracting them to the local modes
of the energy function, thus making the initially generated
samples stabler and more likely configurations.

From the learning perspective, by comparing the differ-
ence between the observed examples and the ALS exam-
ples, the EBM can find its way to shift its density toward the
data distribution via MLE. The ALS with a small number
of Langevin steps can accelerate the training of the EBM in
terms of convergence speed. To approximate the Langevin
sampler and serves as a good MCMC initializer, the latent
variable model learns from the evolving EBM by treating
the ALS examples at each iteration as training data. Differ-
ent from Kim and Bengio (2016); Xie et al. (2018b), we
follow the variational Bayes (Kingma and Welling 2014)
to train the latent variable model by recruiting an approxi-
mate but computationally efficient inference model, which
is typically an encoder network. Specifically, after the EBM
revises the initial examples provided by the latent variable
model, the inference model infers the latent variables of the
revised examples, and then the latent variable model up-
dates its mapping function by regressing the revised exam-
ples on their corresponding inferred latent codes. The infer-
ence model and the latent variable model form a modified
variational auto-encoder (VAE) (Kingma and Welling 2014)
that learns from evolving ALS samples, which are MCMC
samples from the EBMs. In this framework, the EBM pro-
vides infinite batches of fresh MCMC examples as training
data to the VAE model. The learning of the VAE are affected
by the EBM. While providing help to the EBM in sampling,
the VAE learns to chase the EBM, which runs towards the
data distribution with the efficient sampling, ALS. Within
the VAE, the inference model and the posterior of the la-
tent variable model get close to each other via maximizing
the variational lower bound of the log likelihood of the ALS
samples. In other words, the latent variable model is trained
with both variational inference of the inference model and
MCMC teaching of the EBM. We call this the Variational
MCMC teaching.

Moreover, the generative framework can be easily gener-
alized to the conditional model by involving a conditional
EBM and a conditional VAE, for representing a distribu-
tion of structured output given another structured input. This
conditional model is very useful and can be applied to plenty
of computer vision tasks, such as image inpainting etc.

Concretely, our contributions can be summarized below:

1. We present a new framework to train energy-based mod-
els (EBMs), where a VAE is jointly trained via MCMC
teaching to fast initialize the Langevin dynamics of the
EBM for its maximum likelihood learning. The amortized

sampler is called ancestral Langevin sampler.

2. Our model provides a new strategy that we call vari-
ational MCMC teaching to train latent variable model,
where an EBM and an inference model are simultane-
ously trained to provide infinite training examples and
efficient approximate inference for the latent variable
model, respectively.

3. We naturally unify the maximum likelihood learning,
variational inference, and MCMC teaching in a single
framework to induce maximum likelihood learning of all
the probability models.

4. We provide an information geometric understanding of
the proposed joint training algorithm. It can be interpreted
as a dynamic alternating projection.

5. We provide strong empirical results on unconditional im-
age modeling and conditional predictive learning to cor-
roborate the proposed method.

2 Related Work
There are three types of interactions inside our model. The
inference model and the latent variable model are trained
in a variational inference scheme (Kingma and Welling
2014), the energy-based model (EBM) and the latent vari-
able model are trained in a cooperative learning scheme (Xie
et al. 2018b), and also the EBM and the data distribution
forms an MCMC-based maximum likelihood estimation or
“analysis by synthesis” learning scheme (Xie et al. 2016; Du
and Mordatch 2019; Nijkamp et al. 2019).

Energy-based density estimation. The maximum likeli-
hood estimation of the energy-based model (Zhu, Wu, and
Mumford 1998; Wu, Zhu, and Liu 2000; LeCun et al. 2006;
Hinton 2012; Xie et al. 2014; Lu, Zhu, and Wu 2016; Xie
et al. 2016), follows what Grenander and Miller (2007) call
“analysis by synthesis” scheme, where, at each iteration,
the computation of the gradient of the log-likelihood re-
quires MCMC sampling, such as the Gibbs sampling (Ge-
man and Geman 1984), or Langevin dynamics. To overcome
the computational hurdle of MCMC, the contrastive diver-
gence (Hinton 2002), which is an approximate maximum-
likelihood, initializes the MCMC with training data in learn-
ing the EBM. The noise-contrastive estimation (Gutmann
and Hyvärinen 2012) of the EBM turns a generative learn-
ing problem into a discriminative learning one by preform-
ing nonlinear logistic regression to discriminate the ob-
served examples from some artificially generated noise ex-
amples. Nijkamp et al. (2019) propose to learn EBM with
non-convergent non-persistent short-run MCMC as a flow-
based generator, which can be useful for synthesis and re-
construction. The training of the EBM in our framework still
follows “analysis by synthesis”, except that the synthesis is
performed by the ancestral Langevin sampling.

Training an EBM jointly with a complementary
model. To avoid MCMC sampling of the EBM, Kim and
Bengio (2016) approximate it by a latent variable model
trained by minimizing the Kullback-Leibler (KL) diver-
gence from the latent variable model to the EBM. It involves
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an intractable entropy term, which is problematic if it is ig-
nored. The gap between the latent variable model and the
EBM due to their imbalanced model design may still cause
bias or model collapse in training. We bridge the gap by tak-
ing back the MCMC to serve as an attractor-like dynamics
to refine any imperfection of the latent variable model in the
learned VAE. Xie et al. (2018b); Song and Ou (2018) study
a similar problem. In comparison with Xie et al. (2018b),
which either uses another MCMC to compute the intractable
posterior of the latent variable model or directly ignores the
inference step for approximation in their experiments, our
framework learns a tractable variational inference model for
training the latent variable model. The proposed framework
is a variant of cooperative networks in Xie et al. (2018b).

3 Preliminary
In this section, we present the backgrounds of energy-based
models (EBMs) and variational auto-encoders (VAEs),
which will serve as foundations of the proposed framework.

3.1 EBM and Analysis by Synthesis
Let x ∈ RD be the high-dimensional random variable, such
as an input image. An EBM (also called Markov random
field, Gibbs distribution, or exponential family model), with
an energy function Uθ(x) and a set of trainable parameters
θ, learns to associate a scalar energy value to each configura-
tion of the random variable, such that more plausible config-
urations (e.g., observed training images) are assigned lower
energy values. Formally, an EBM is defined as a probability
density with the following form:

pθ(x) =
1

Z(θ)
exp[−Uθ(x)], (1)

where Z(θ) =
∫

exp[−Uθ(x)]dx is a normalizing constant
or a partition function depending on θ, and is analytically
intractable to calculate due to high dimensionality of x. Fol-
lowing the EBM introduced in Xie et al. (2016), we can pa-
rameterize Uθ(x) by a bottom-up ConvNet with trainable
weights θ and scalar output.

Assume a training dataset D = {xi, i = 1, ..., n} is
given and each data point is sampled from an unknown dis-
tribution pdata(x). In order to use the EBM pθ(x) to esti-
mate the data distribution pdata(x), we can minimize the
negative log-likelihood of the observed data L(θ,D) =
− 1
n

∑n
i=1 log pθ(xi), or equivalently the KL-divergence

between the two distributions KL(pdata(x)||pθ(x)) by
gradient-based optimization methods. The gradient to up-
date parameters θ is computed by the following formula

∂

∂θ
KL(pdata(x)||pθ(x))

=Ex∼pdata(x)

[
∂Uθ(x)

∂θ

]
− Ex̃∼pθ(x)

[
∂Uθ(x̃)

∂θ

]
.

(2)

The two expectations in Eq. (2) are approximated by aver-
aging over the observed examples {xi} and the synthesized
examples {x̃i} that are sampled from the model pθ(x), re-
spectively. This will lead to an analysis by synthesis algo-
rithm that iterates a synthesis step for image sampling and
an analysis step for parameter learning.

Drawing samples from EBMs typically requires Markov
chain Monte Carlo (MCMC) methods. If the data distribu-
tion pdata(x) is complex and multimodal, the MCMC sam-
pling from the learned model is challenging because it may
take a long time to mix between modes. Thus, the ability to
generate efficient and fair examples from the model becomes
the key to training successful EBMs. In this paper, we will
study amortized sampling for efficient training of the EBMs.

3.2 Latent Variable Model and Variational
Inference

Consider a directed latent variable model of the form

z ∼ N (0, Id), x = gα(z) + ε, ε ∼ N (0, σ2ID), (3)

where z ∈ Rd is a d-dimensional vector of latent vari-
ables following a Gaussian distribution N (0, Id), Id is a
d-dimensional identity matrix, gα is a nonlinear mapping
function that is parameterized by a top-down deep neural
network with trainable parameters α, and ε ∈ RD is the
residual noise that is independent of z.

The marginal distribution of the model in Eq. (3) is
qα(x) =

∫
qα(x|z)q(z)dz, where the prior distribution

q(z) = N (0, Id) and the conditional distribution of x given
z is qα(x|z) = N (gα(z), σ2ID). The posterior distribu-
tion is qα(z|x) = qα(z, x)/qα(x) = qα(x|z)q(z)/qα(x).
Both posterior distribution qα(z|x) and marginal distribu-
tion qα(x) are analytically intractable. As in Han et al.
(2017), the model can be learned by maximum likelihood
estimation or equivalently minimizing the KL-divergence
KL(pdata(x)||qα(x)), whose gradient is given by

∂

∂α
KL(pdata(x)||qα(x))

=Epdata(x)qα(z|x)

[
− ∂

∂α
log qα(z, x)

]
.

(4)

MCMC methods can be used to compute the gradient
in Eq. (4). For each data point xi sampled from the data
distribution, we infer the corresponding latent variable zi
by drawing samples from qα(z|x) via MCMC methods,
then the expectation term can be approximated by aver-
aging over the sampled pairs {xi, zi}. However, MCMC
sampling of the posterior distribution may also take a long
time to converge. To avoid MCMC sampling from qα(z|x),
VAE (Kingma and Welling 2014) approximates qα(z|x) by
a tractable inference network, for example, a multivariate
Gaussian with a diagonal covariance structure πβ(z|x) ∼
N (µβ(x), diag(vβ(x))), where both µβ(x) and vβ(x) are
d-dimensional outputs of encoding bottom-up networks of
data point x, with trainable parameters β. With this repa-
rameterization trick, the objective of VAE becomes to find α
and β to minimize

KL(pdata(x)πβ(z|x)||qα(z, x))

=KL(pdata(x)||qα(x)) + KL(πβ(z|x)||qα(z|x)),
(5)

which is a modification of the maximum likelihood estima-
tion objective. Minimizing the left-hand side in Eq. (5) will
also lead to a minimization of the first KL-divergence on the
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right-hand side, which is the maximum likelihood estima-
tion objective in Eq. (4). In this paper, we will propose to
learn a latent variable model in the context of VAE as amor-
tized sampler to train the EBM.

4 Methodology

We study to learn an EBM via MLE with a VAE as amor-
tized sampler. The amortized sampler is achieved by inte-
grating the latent variable model (the generator network in
VAE) and the short-run MCMC of the EBM. We propose to
jointly train EBM and VAE via variational MCMC teaching.

4.1 Ancestral Langevin Sampling

To learn the energy-based generative model in Eq. (1) and
compute the gradient in Eq. (2), we might bring in a directed
latent variable model qα(x) to serve as a fast non-iterative
sampler to initialize the iterative MCMC sampler guided by
the energy function Uθ, for the sake of efficient MCMC con-
vergence and mode traversal of the EBM. In our paper, we
call the resulting amortized sampler the ancestral Langevin
sampler, which draws a sample by first (i) sampling an ini-
tial example x̂ via ancestral sampling, and then (ii) revising
x̂ with a finite-step Langevin update, that is

(i) x̂ = gα(ẑ), ẑ ∼ N (0, Id),

(ii) x̃t+1 = x̃t −
δ2

2

∂Uθ(x̃t)

∂x̃
+ δN (0, ID), x̃0 = x̂,

(6)

where x̂ is the initial example generated by ancestral sam-
pling, x̃ is the example generated by the Langevin dynam-
ics, t indexes the Langevin time step, and δ is the step size.
The Langevin dynamics is equivalent to a stochastic gradi-
ent descent algorithm that seeks to find the minimum of the
objective function defined by Uθ(x).

Generally, in the original “analysis by synthesis” algo-
rithm, the Langevin dynamics shown in Eq. (6)(ii) is ini-
tialized with a noise distribution, such as Gaussian distribu-
tion, i.e., x̃0 ∼ N (0, ID), and this usually takes a long time
to converge and is also non-stable in practise because the
gradient-based MCMC chains can get trapped in the local
modes when exploring the model distribution.

As to the ancestral Langevin sampling in Eq. (6), intu-
itively, if the latent variable model in Eq. (6)(i) can mem-
orize the majority of the modes in pθ(x) by low dimen-
sional codes ẑ, then we can easily traverse among modes
of the model distribution by simply sampling from p(ẑ) =
N (0, Id), because p(ẑ) is much smoother than pθ(x). The
short-run Langevin dynamics initialized with the output x̂
of the latent variable model emphasizes on refining the de-
tail of x̂ by further searching for a better mode x̃ around x̂.
Ideally, if pθ(x) and qα(x) fit the data distribution pdata(x)
perfectly, the example x̂ produced by the ancestral sampling
will be exactly on the modes of Uθ(x). In this case, the fol-
lowing Langevin revision will not change the x̂, i.e., x̃ = x̂.
Otherwise, the Langevin update will further improve x̂.

4.2 Variational MCMC Teaching
With {x̃i}ñi=1 ∼ pθ(x) via ancestral Langevin sampling in
Eq. (6), we can compute the gradient in Eq. (2) by

∂

∂θ
KL(pdata(x)||pθ(x))

≈ 1

n

n∑
i=1

∂Uθ(xi)

∂θ
− 1

ñ

ñ∑
i=1

∂Uθ(x̃i)

∂θ

(7)

and then update θ by Adam (Kingma and Ba 2015). Con-
sider in this iterative algorithm, the current model parameter
θ and α are θt and αt respectively. We useMθt to denote the
Markov transition kernel of a finite-step Langevin dynamics
that samples from the current distribution pθt(x). We also
use Mθtqαt(x) =

∫
Mθt(x

′, x)qαt(x
′)dx′ to denote the

marginal distribution obtained by running Mθt initialized
from current qαt(x). The MCMC-based MLE training of θ
seeks to minimize the following objective at each iteration

θt+1 = arg min
θ

[KL(pdata(x)‖pθ(x))

−KL(Mθtqαt(x)‖pθ(x))],
(8)

which is considered as a modified contrastive divergence in
Xie et al. (2018b,a). Meanwhile, qαt+1(x) is learned based
on how the finite steps of LangevinMθt revises the initial
example {x̂i} generated by qαt(x) to mimic the Langevin
sampling. This is the energy-based MCMC teaching (Xie
et al. 2018b,a) of qα(x) .

Although qα(x) initializes the Langevin sampling of
{x̃i}, the corresponding latent variables of {x̃i} are no
longer {ẑi}. To retrieve the latent variables of {x̃i}, we pro-
pose to infer z̃ ∼ πβ(z|x̃), which is an approximate tractable
inference network, and then learn α from complete data
{z̃i, x̃i}ñi=1 to minimize

∑
i ||x̃i−gα(z̃i)||2 (or equivalently

maximize
∑
i log qα(z̃i, x̃i)). To ensure πβ(z|x̃) to be an ef-

fective inference network that mimics the computation of the
true inference procedure z̃ ∼ qα(z|x̃), we simultaneously
learn β by minimizing KL(πβ(z|x)||qα(z|x)), i.e., the repa-
rameterization trick of the variational inference of qα(x).

The learning of πβ(z|x) and qα(x|z) forms a VAE that
treats {x̃i} as training examples. Because {x̃i} are depen-
dent on θ and vary during training, the objective function of
the VAE is non-static. This is essentially different from the
original VAE that has a fixed training data. Suppose we have
{x̃i}ñi=1 ∼ Mθtqαt(x) at the current iteration t, the VAE
objective in our framework is the minimization of variational
lower bound of the negative log likelihood of {x̃i}ñi=1, i.e.,

L(α, β) =
ñ∑
i=1

[− log qα(x̃i)

+ γKL(πβ(zi|x̃i)||qα(zi|x̃i))],

(9)

where γ is a hyper-parameter that specifies the importance
of the KL-divergence term. Since when ñ→∞, we have

min
α

ñ∑
i=1

[− log qα(x̃i)] = min
α

KL(Mθtqαt(x)||qα(x)),
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thus Eq. (9) is equivalent to minimizing

KL(Mθtqαt(x)||qα(x)) + KL(πβ(z|x)||qα(z|x))

=KL(Mθtqαt(x)πβ(z|x)||qα(x|z)q(z)). (10)

Unlike the objective function of the maximum likeli-
hood estimation KL(Mθtqαt(x)||qα(x)), which involves
intractable marginal distribution qα(x), the variational ob-
jective function is the KL-divergence between the joint dis-
tributions, which is tractable because πβ(z|x) parameterized
by an encoder is tractable. In comparison with the original
VAE objective in Eq. (5), our VAE objective in Eq. (10)
replaces pdata(x) by Mθtqαt(x). At each iteration, mini-
mizing the variational objective in Eq. (10) will eventually
decrease KL(Mθtqαt(x)||qα(x)). Since qα(x) is learned in
the context of both MCMC teaching (Xie et al. 2018a) and
variational inference (Kingma and Welling 2014). We call
this the variational MCMC teaching. Algorithm 1 describes
the proposed joint training algorithm of EBM and VAE.

Algorithm 1 Cooperative training of EBM and VAE via
variational MCMC teaching

Input: (a) training images {xi}ni=1, (b) number of Langevin
steps l

Output: (a) model parameters {θ, α, β}, (b) initial samples
{x̂i}ñi=1, (c) Langevin samples {x̃i}ñi=1

1: Let t← 0, randomly initialize θ, α, and β.
2: repeat
3: ancestral Langevin sampling: For i = 1, ..., ñ,

sample ẑi ∼ N (0, Id), then generate x̂i = g(ẑi), and
run l steps of Langevin revision starting from x̂i to ob-
tain x̃i, each step following Eq. (6)(ii).

4: modified contrastive divergence: Treat {x̃}ñi as
MCMC examples from pθ(x), and update θ by Adam
with the gradient computed according to Eq. (7).

5: variational MCMC teaching: Treat {x̃}ñi as train-
ing data, update α and β by minimizing VAE objective
in Eq. (9) via Adam.

6: Let t← t+ 1
7: until t = T

Figure 1 shows a comparison of the basic ideas of dif-
ferent types of MCMC teaching strategies. Figure 1(a) and
(b) illustrate the diagrams of the original MCMC teaching
and its fast variant in Xie et al. (2018a), respectively. Fig-
ure 1(c) displays the proposed variational MCMC teach-
ing algorithm. Our framework in Figure 1(c) involves three
models and adopts the reparameterization trick for infer-
ence, which is different from Figure 1(a) and (b).

4.3 Optimality of the Solution
In this section, we present a theoretical understanding of the
framework presented in Section 4. A Nash equilibrium of
the model is a triplet (θ̂, α̂, β̂) that satisfies:

θ̂ = arg minθ[KL(pdata(x)‖pθ(x))−KL(Mθ̂qα̂(x)‖pθ(x))], (11)

α̂ = arg minα[KL(Mθ̂qα̂(x)‖qα(x)) + KL(πβ̂(z|x)‖qα(z|x))], (12)

β̂ = arg min
β

KL(πβ(z|x)‖qα̂(z|x)). (13)

We show that below if (θ̂, α̂, β̂) is a Nash equilibrium of
the model, then pθ̂ = qα̂ = pdata.

In Eq. (12) and Eq. (13), the tractable encoder πβ̂(z|x)
seeks to approximate the analytically intractable poste-
rior distribution qα̂(z|x) via a joint minimization. When
KL(πβ̂(z|x)‖qα̂(z|x)) = 0, then the second KL-divergence
term in Eq. (12) vanishes, thus reducing Eq. (12) to
minα KL(Mθ̂qα̂(x)‖qα(x)), which means that qα̂ seeks
to be a stationary distribution of Mθ̂, which is pθ̂. For-
mally speaking, when minα KL(Mθ̂qα̂(x)||qα(x)) = 0,
thenMθ̂qα̂(x) = qα̂(x), that is, qα̂ converges to the station-
ary distribution pθ̂, therefore we have qα̂(x) = pθ̂(x). As
a result, the second KL-divergence in Eq. (11) vanishes be-
cause KL(Mθ̂qα̂(x)‖pθ̂(x)) = KL(Mθ̂pθ̂(x)‖pθ̂(x)) = 0.
Eq. (11) is eventually reduced to minimizing the first KL-
divergence KL(pdata(x)‖pθ̂(x)), thus, pθ̂(x) = pdata(x).
The overall effect of the algorithm is that the EBM pθ runs
toward the data distribution pdata while inducing the la-
tent variable model qα to get close to the data distribu-
tion pdata as well, because qα chases pθ toward pdata, i.e.,
qα → pθ → pdata, thus qα̂ = pθ̂ = pdata. In other words,
the joint training algorithm can lead to MLE of qα and pθ.

4.4 Conditional Predictive Learning
The proposed framework can be generalized to super-
vised learning of the conditional distribution of an out-
put x given an input y, where both input and output are
high-dimensional structured variables and may belong to
two different modalities. We generalize the framework by
turning both EBM and latent variable model into con-
ditional ones. Specifically, the conditional EBM pθ(x|y)
represents a conditional distribution of x given y by us-
ing a joint energy function Uθ(x, y), the conditional la-
tent variable model qα(x|y, z) generates x by mapping y
and a vector of latent Gaussian noise variables z together
via x = gα(y, z), and the conditional inference network
πβ(z|y, x) ∼ N (µβ(x, y), vβ(x, y)), where µβ(x, y) and

Figure 1: Diagrams of different types of MCMC teaching
algorithms. (a) original MCMC teaching with an MCMC-
based inference process. (b) fast MCMC teaching without an
inference step. (c) variational MCMC teaching. The double-
solid-line arrows indicate generation and reconstruction by
the latent variable model with parameters α. The dashed-line
arrows indicate Langevin dynamics guided by θ in the latent
space or data space. The double-dashed-line arrow indicates
inference and encoding by the inference model with β.

10445



vβ(x, y) are outputs of an encoder network taking x and
y as inputs. qα(x|y, z) and πβ(z|x, y) form a conditional
VAE (Sohn, Lee, and Yan 2015). Both the latent variable
z in the latent variable model and the Langevin dynamics in
the EBM allow for randomness in such a conditional map-
ping, thus making the proposed model suitable for repre-
senting one-to-many mapping. Once the conditional model
is trained, we can generate samples {x̃i} conditioned on an
input y by following the ancestral Langevin sampling pro-
cess. To use the model on prediction tasks, we can perform a
deterministic generation as prediction without sampling, i.e.,
the conditional latent variable model first generates an ini-
tial prediction via z∗ = E(z), x̂i = gα(yi, z

∗), and then the
conditional EBM refines x̂ by a finite steps of noise-disable
Langevin dynamics x̃t+1 = x̃t− δ

2

2
∂U(x̃t,yi)

∂x̃ with x̃t=0 = x̂,
which actually is a gradient descent that finds a local mini-
mum around x̂ in the learned energy function Uθ(x, y = yi).

5 Information Geometric Understanding
In this section, we shall provide an information geometric
understanding of the proposed learning algorithm, and show
that our learning algorithm can be interpreted as a process
of dynamic alternating projection within the framework of
information geometry.

5.1 Three Families of Joint Distributions
The proposed framework includes three trainable models,
i.e., energy-based model pθ(x), inference model πβ(z|x),
and latent variable model qα(x|z). They, along with the
empirical data distribution pdata(x) and the Gaussian prior
distribution q(z), define three families of joint distributions
over the latent variables z and the data x. Let us define
• Π-distribution: Π(z, x) = pdata(x)πβ(z|x)

• Q-distribution: Q(z, x) = q(z)qα(x|z)
• P-distribution: P (z, x) = pθ(x)πβ(z|x)

In the context of information geometry, the above three fam-
ilies of distributions can be represented by three different
manifolds. Each point of the manifold stands for a probabil-
ity distribution with a certain parameter.

The variational MCMC teaching that we proposed in this
paper to train both EBM and VAE actually integrates varia-
tional learning and energy-based learning, which is a modifi-
cation of maximum likelihood estimation. The training pro-
cess alternates these two learning processes, and eventually
leads to maximum likelihood solutions of all the models. We
first try to understand each part separately below, and then
we integrate them together to give a final interpretation.

5.2 Variational Learning as Alternating
Projection

The original variational learning algorithm, such as
VAEs (Kingma and Welling 2014), is to learn {α, β} from
training data pdata(x), whose objective function is a joint
minimization minβ minα KL(Π||Q). However, in our learn-
ing algorithm, the VAE component learns to mimic the EBM
at each iteration by learning from its generated examples.
Thus, given θt at iteration t, our VAE objective becomes

Figure 2: Variational learning is interpreted as an process of
alternating projection between manifolds Pθt and Q. Man-
ifold Pθt is represented by a blue curve and manifold Q is
represented by a red curve. Each point of the red curve cor-
responds to a certain α, while each point of the blue curve
corresponds to a certain β.

minβ minα KL(Pθt ||Q), where we put subscript θt in P to
indicate that the P-distribution is associated with a fixed θt.
The following reveals that KL(Pθt ||Q) is exactly the VAE
loss we use in Eq. (10).

KL(Pθt ||Q)

=KL(pθt(x)πβ(z|x)||qα(x|z)q(z))
=KL(pθt(x)||qα(x)) + KL(πβ(z|x)||qα(z|x))

=KL(Mθtqαt(x)||qα(x)) + KL(πβ(z|x)||qα(z|x)).

(14)

Minimizing the KL-divergence between two probability dis-
tributions can be interpreted as a projection from a proba-
bility distribution to a manifold (Cover 1999). Therefore, as
illustrated in Figure 2, each manifold is visualized as a curve
and the joint minimization in VAE in Eq. (14) can be inter-
preted as alternating projection (Han et al. 2019) between
manifolds Pθt and Q, where πβ and qα run toward each
other and eventually converge at the intersection between
manifolds Pθt and Q.

5.3 Energy-Based Learning as Manifold Shifting
With the examples generated by the ancestral Langevin
sampler, the objective function of training the EBM is
minθ KL(Π||P ), i.e., minθ KL(pdata||pθ). As illustrated in
Figure 3, Pθ0 runs toward Π and seeks to match it. Each
point in each curve represents a different β.

Figure 3: Energy-based learning is interpreted as a manifold
shifting process from Pθ0 to Π, where θ0 denotes the initial
θ at time 0. Manifolds {Pθt} are represented by blue curves,
while manifold Π is represented by a green curve.
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5.4 Integrating Energy-Based Learning and
Variational Learning as Dynamic Alternating
Projection

The joint training of pθ, πβ , qα in the proposed framework
integrates energy-based learning and variational learning,
which can be interpreted as a dynamic alternating projection
betweenQ and P , whereQ is static but P is changeable and
keeps shifting toward Π. See Figure 4 for an illustration. Ide-
ally, P matches Π, i.e., Pθ̂ = Π. The alternating projection
would converge at the intersection point among Q,P and Π
(see Figure 5), where we have minα minβ KL(Π||Q), which
is the objective of the original VAE. In other words, Q and
P get close to each other, while P seeks to get close to Π. In
the end, qα chases pθ towards pdata.

Figure 4: Variational MCMC teaching as dynamic alternat-
ing projection. Manifolds P , Q, and Π are represented by
blue, red, and green curves, respectively.

Figure 5: Convergent point of the dynamic alternating pro-
jection. Triplet (θ̂, α̂, β̂) is the Nash equilibrium (optimal
solution) of the learning algorithm.

5.5 Comparison with Related Models
We highlight the difference between the proposed method
and the closely related models, such as triangle diver-
gence (Han et al. 2019) and cooperative network (Xie et al.
2018b). The proposed model optimizes

min
θ,α,β

KL(Π||P ) + KL(P ||Q)

or equivalently
min
θ,α,β

KL(pdata||pθ)+KL(pθ||qα)+KL(πβ(z|x)||qα(z|x)),

which is different from the triangle divergence (Han et al.
2019) framework which also trains energy-based model, in-
ference model and latent variable model together but opti-
mizes the following different objective

min
θ,α,β

KL(Π||Q) + KL(Q||P )−KL(Π||P ).

The cooperative learning (Xie et al. 2018b) framework
(CoopNets) jointly trains the energy-based model pθ(x) and
the latent variable model qα(x) by

min
θ,α

KL(pdata||pθ) + KL(pθ||qα),

without leaning an approximate πβ(z|x). Instead, Coop-
Nets (Xie et al. 2018b) directly accesses the inference pro-
cess qα(z|x) by MCMC sampling.

6 Experiments
We present experiments to demonstrate the effectiveness of
our strategy to train EBMs with (a) competitive synthesis for
images, (b) high expressiveness of the learned latent variable
model, and (c) strong performance in image completion. We
use the PaddlePaddle 1 deep learning platform.

6.1 Image Generation
We show that our framework is effective to represent a prob-
ability density of images. We demonstrate the learned model
can generate realistic image patterns. We learn our model
from MNIST (LeCun et al. 1998), Fashion-MNIST (Xiao,
Rasul, and Vollgraf 2017) and CIFAR-10 (Krizhevsky 2009)
images without class labels. Figure 6 shows some exam-
ples generated by the ancestral Langevin sampling. We also
quantitatively evaluate the qualities of the generated images
via FID score (Heusel et al. 2017) and Inception score (Sal-
imans et al. 2016) in Table 1 and Table 2. The experiments
validate the effectiveness of our model. We design all net-
works in our model with simple convolution and ReLU lay-
ers, and only use 15 or 50 Langevin steps. The Langevin step
size δ = 0.002. The number of latent dimension d = 200.

Model FID
GLO (Bojanowski et al. 2018) 49.60
CGlow (Liu et al. 2019) 29.64
CAGlow (Liu et al. 2019) 26.34
VAE (Kingma and Welling 2014) 21.85
DDGM (Kim and Bengio 2016) 30.87
BEGAN (Berthelot, Schumm, and Metz 2017) 13.54
EBGAN (Zhao, Mathieu, and LeCun 2017) 11.10
Triangle (Han et al. 2019) 6.77
CoopNets (Xie et al. 2018b) 9.70
Ours 8.95

Table 1: Comparison with baseline models on MNIST
dataset with respect to FID score (l = 50).

We also check whether the latent variable model qα(x|z)
learns a meaningful latent space z in this learning scheme
by demonstrating interpolation between generated examples
in the latent space as shown in Figure 7(a). Each row of
transition is a sequence of gα(zη) with interpolated zη =

ηzl +
√

1− η2zr where η ∈ [0, 1], zl and zr are the latent
variables of the examples at the left and right ends respec-
tively. The transitions appear smooth, which means that the
latent variable model learns a meaningful image embedding.

1https://www.paddlepaddle.org.cn
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Figure 6: Generated samples by the models learned on MNIST, Fashion-MNIST and CIFAR-10 datasets respectively.

Model IS
PixelCNN (Van den Oord et al. 2016) 4.60
PixelIQN (Ostrovski, Dabney, and Munos 2018) 5.29
EBM (Du and Mordatch 2019) 6.02
DCGAN (Radford, Metz, and Chintala 2016) 6.40
WGAN+GP (Gulrajani et al. 2017) 6.50
CoopNets (Xie et al. 2018a) 6.55
Ours 6.65

Table 2: Inception scores on CIFAR-10 dataset (l = 15).

We also check the gap between pθ and qα once the model is
leaned, by visualizing the Langevin dynamics initialized by
a sample from the latent variable model in Figure 7(b). Each
row shows one example, in which the leftmost image is gen-
erated by the latent variable model via ancestral sampling,
and the rest image sequence shows the revised examples at
different Langevin steps. The rightmost one is the final syn-
thesized example after 15 steps of Langevin revision. We can
find that even though the Langevin dynamics can still im-
prove the initial example (we can carefully compare the left-
most and the rightmost images, the rightmost one is a little
bit sharper than the leftmost one), but their difference is quite
small, which is in fact a good phenomenon revealing that the
latent variable model has caught up with the EBM, which
runs toward the data distribution. That is, qα becomes the
stationary distribution of pθ, or KL(Mθ̂qα̂(x)||qα̂(x))→ 0.

6.2 Image Completion
We apply our conditional model to image completion, where
we learn a stochastic mapping from a centrally masked im-
age to the original one. The centrally masked image is of
the size 256 × 256 pixels, centrally overlaid with a mask
of the size 128 × 128 pixels. The conditional energy func-
tion in pθ(x|y) takes the concatenation of the masked im-
age y and the original image x as input and consists of
three convolutional layers and one fully-connected layer.
For the conditional latent variable model qα(x|y, z), we fol-
low Isola et al. (2017) to use a U-Net (Ronneberger, Fis-
cher, and Brox 2015), with the latent vector z concatenated

(a) Interpolation by the latent variable model

(b) Langevin revision by the learned model

Figure 7: Model analysis. (a) Interpolation between latent
vectors of the images on the two ends. (b) Visualization
of ancestral Langevin dynamics when the model converges.
For each row, the leftmost image is the synthesized output
by the ancestral sampling. The rest image sequence displays
the synthesized images revised at different Langevin steps.

with its bottleneck. We set d = 8. The conditional encoder
πβ(z|y, x) has five residual blocks and MLP layers to get
the variational encoding. We compare our method with base-
lines including pix2pix (Isola et al. 2017), cVAE-GAN (Zhu
et al. 2017), cVAE-GAN++ (Zhu et al. 2017), Bicycle-
GAN (Zhu et al. 2017), and cCoopNets (Xie et al. 2018a)
on the Paris StreetView (Pathak et al. 2016) and the CMP
Facade datasets (Tyleček and Šára 2013) in Table 3. The re-
covery performance is measured by the peak signal-to-noise
ratio (PSNR) and Structural SIMilarity (SSIM) between the
recovered image and the original image. Our method outper-
forms the baselines. Figure 8 shows some qualitative results.
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Input pix2pix cVAE-GAN BicycleGAN cCoopNets cVAE-GAN++ ours ground truth

Figure 8: Example results of image completion on the Facade test dataset.

Method Facade StreetView
PSNR SSIM PSNR SSIM

pix2pix 19.34 0.74 15.17 0.75
cVAE-GAN 19.43 0.68 16.12 0.72
cVAE-GAN++ 19.14 0.64 16.03 0.69
BicycleGAN 19.07 0.64 16.00 0.68
cCoopNets 20.47 0.77 21.17 0.79
Ours 21.62 0.78 22.61 0.79

Table 3: Comparison with baselines for image completion.

6.3 Model Analysis
Our framework involves three different components, each
of which has some key hyper-parameters that might affect
the behavior of the whole training process. We investigate
some factors that may potentially influence the performance
of our framework on CIFAR-10. The results are reported af-
ter 1,000 epochs of training.

Number of Langevin steps and Lagevin step size We
first study how the number of Langevin steps and their step
size affect the synthesis performance. Table 4 shows the in-
fluence of varying number of Langevin step and Langevin
step size, respectively. As the number of Langevin steps in-
creases and the step size decreases, we observe improved
quality of image synthesis in terms of inception score.

IS ↑ l = 5 l = 8 l = 15 l = 30 l = 60
δ = 0.001 3.606 4.333 6.072 6.038 6.143
δ = 0.002 3.847 5.568 6.075 5.989 5.882
δ = 0.004 4.799 5.286 5.979 5.907 5.933
δ = 0.008 5.146 5.164 5.835 4.574 3.482

Table 4: Influence of number of MCMC steps l and MCMC
step size δ, with the number of latent dimension d = 200,
and variational loss penalty γ = 2.

Number of dimensions of the latent space We also study
how the number of dimensions of the latent space affect the
ancestral Langevin sampling process in training the energy-
based model. Table 5 displays the inception scores as a func-

tion of the number of latent dimensions of qα(x). We set
l = 10, δ = 0.002, and γ = 2.

d 1200 600 200 100 50 10
IS ↑ 6.017 6.213 6.159 6.085 6.027 5.973

Table 5: Influence of the number of latent dimension d

Variational loss penalty The penalty weight γ of the term
of KL-divergence between the inference model and the pos-
terior distribution in Eq. (9) plays an important role in ad-
justing the tradeoff between having low auto-encoding re-
construction loss and having good approximation of the pos-
terior distribution. Table 6 displays the inception scores of
varying γ, with d = 200, l = 10, and δ = 0.002. The opti-
mal choice of γ in our model is roughly 2.

γ 0.05 0.5 1 2 8 10
IS ↑ 5.106 5.663 5.905 6.159 5.890 4.693

Table 6: Influence of the variational loss penalty γ

7 Conclusion
This paper proposes to learn an EBM with a VAE as an
amortized sampler for probability density estimation. In par-
ticular, we propose the variational MCMC teaching algo-
rithm to train the EBM and VAE together. In the proposed
joint training framework, the latent variable model in the
VAE and the Langevin dynamics derived from the EBM
learn to collaborate to form an efficient sampler, which is
essential to provide Monte Carlo samples to train both the
EBM and the VAE. The proposed method naturally uni-
fies the maximum likelihood estimation, variational learn-
ing, and MCMC teaching in a single computational frame-
work, and can be interpreted as a dynamic alternating pro-
jection within the framework of information geometry. Our
framework is appealing as it combines the representational
flexibility and ability of the EBM and the computational
tractability and efficiency of the VAE. Experiments show
that the proposed framework can be effective in image gen-
eration, and its conditional generalization can be useful for
computer vision applications, such as image completion.
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