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Abstract

Despite the wide applications of Adam in reinforcement
learning (RL), the theoretical convergence of Adam-type RL
algorithms has not been established. This paper provides the
first such convergence analysis for two fundamental RL algo-
rithms of policy gradient (PG) and temporal difference (TD)
learning that incorporate AMSGrad updates (a standard alter-
native of Adam in theoretical analysis), referred to as PG-
AMSGrad and TD-AMSGrad, respectively. Moreover, our
analysis focuses on Markovian sampling for both algorithms.
We show that under general nonlinear function approxima-
tion, PG-AMSGrad with a constant stepsize converges to a
neighborhood of a stationary point at the rate of O(1/T )
(where T denotes the number of iterations), and with a di-
minishing stepsize converges exactly to a stationary point at
the rate of O(log2 T/

√
T ). Furthermore, under linear func-

tion approximation, TD-AMSGrad with a constant stepsize
converges to a neighborhood of the global optimum at the
rate of O(1/T ), and with a diminishing stepsize converges
exactly to the global optimum at the rate of O(log T/

√
T ).

Our study develops new techniques for analyzing the Adam-
type RL algorithms under Markovian sampling.

Introduction
Reinforcement learning (RL) aims to study how an agent
learns a policy through interacting with its environment to
maximize the accumulative reward. RL has so far accom-
plished tremendous success in various applications such
as playing video games (Mnih et al. 2013), bipedal walk-
ing (Castillo et al. 2019), online advertising (Pednault, Abe,
and Zadrozny 2002), to name a few. In general, there are two
widely used classes of RL algorithms: policy-based methods
and value function based methods.

For the first class, policy gradient (PG) (Sutton et al. 2000)
is a basic algorithm which has motivated many advanced
policy-based algorithms including actor-critic (Konda and
Tsitsiklis 2000), DPG (Silver et al. 2014), TRPO (Schulman
et al. 2015), PPO (Schulman et al. 2017), etc. The idea of
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PG (Sutton et al. 2000) is to parameterize the policy and op-
timize a target accumulated reward function by (stochastic)
gradient descent. The asymptotic and non-asymptotic con-
vergence have been characterized for PG in various scenar-
ios, which will be further discussed in Related Work.

For the second class of value function based algorithms,
temporal difference (TD) learning (Sutton 1988) is a funda-
mental algorithm which has motivated more advanced al-
gorithms such as Q-learning (Watkins and Dayan 1992),
SARSA (Rummery and Niranjan 1994), etc. TD (Sutton
1988) typically parameterizes the value function of an un-
known policy and iteratively finds the true value function
or its estimator by following the (projected) Bellman opera-
tion, which is also analogous to a stochastic gradient descent
(SGD) update. The theoretic analysis has been established
for TD in various scenarios, which will be discussed in Re-
lated Work.

Despite extensive exploration, all the existing theoretical
studies of PG and TD have focused on SGD-type updates
without adaption on the stepsize. In practice, however, the
adaptive momentum estimation (Adam) method (Kingma
and Ba 2015) has been commonly used in RL (Bello et al.
2017; Stooke and Abbeel 2018). There is so far no theo-
retic guarantee established to show that RL algorithms that
incorporate the Adam-type updates have provable conver-
gence. The goal of this paper is to theoretically character-
ize the convergence rate of the Adam-type PG and TD al-
gorithms. Such a study requires new technical tools to ana-
lyze the Adam-type algorithms under Markovian sampling.
The analysis does not follow easily from the existing stud-
ies of Adam-type algorithms in optimization, which usually
assume independent and identically distributed (i.i.d.) sam-
pling. It does not follow from the existing studies of SGD-
type RL algorithms because of the unique complication of
adaptive momentum update coupled to the bias errors in
Markovian sampling.

Our Contribution
We provide the first non-asymptotic convergence guaran-
tee for Adam-type PG and TD algorithms that incorporate
the update rule of AMSGrad (referred to as PG-AMSGrad
and TD-AMSGrad, respectively). Our techniques also lead
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to an improved result for the vanilla PG. Specifically, (1)
we first show that under general nonlinear function approx-
imation, PG-AMSGrad with a constant stepsize1 converges
to a neighborhood of a stationary point at a rate of O(1/T )
(where T denotes the number of iterations), and with a di-
minishing stepsize converges exactly to a stationary point at
a rate ofO(log2 T/

√
T ). (2) Furthermore, under linear func-

tion approximation, TD-AMSGrad with a constant stepsize
converges to a neighborhood of the global optimum at a rate
of O(1/T ), and with a diminishing stepsize converges ex-
actly to the global optimum at a rate of O(log T/

√
T ). (3)

By adapting our technical tools to analyze the vanilla PG
with the SGD update under Markovian sampling, we obtain
an orderwisely better computational complexity than the ex-
isting works, which is summarized in Table 1.

Technically, we develop new techniques to analyze
Adam-type RL algorithms which are not available in the ex-
isting RL and MDP literature, nor in optimization literature.
Specifically, (1) the Adam-type (i.e., AMSGrad) update in
PG and TD algorithms causes a unique bias error in gradient
estimation due to Markovian sampling, which does not exist
in conventional optimization with i.i.d. sampling, and takes
much more challenging form than that in SGD-type RL al-
gorithms due to the Adam-type update. Our analysis is the
first to bound such a bias error. (2) The sampling process
in PG is further subject to a time-varying Markov chain so
that the sampling distribution is changing over time. Thus,
we develop a novel technique to provide finite-time error
bounds by jointly exploiting how fast Markov chain changes
together with the ergodicity of each instantaneous Markov
chain. Such a technique sharpens the existing analysis for
vanilla PG with orderwise improvement. We then apply this
new technique further to address the coupling introduced by
AMSGrad to PG.

Related Work
Due to the rapidly growing theoretical studies on RL, we
review only the most relevant studies below.

Convergence analysis of PG: Asymptotic convergence
of PG based on stochastic approximation (SA) was estab-
lished in Williams (1992); Baxter and Bartlett (2001); Sutton
et al. (2000); Kakade (2002); Pirotta, Restelli, and Bascetta
(2015); Tadić, Doucet et al. (2017). In specific RL problems
such as LQR, PG has been proved to converge to the op-
timal policy (Fazel et al. 2018; Malik et al. 2019; Tu and
Recht 2019). Under convex policy function approximation,
Bhandari and Russo (2019) also showed that PG can find the
optimal policy. Under the general nonconvex approximation,
Shen et al. (2019); Papini, Pirotta, and Restelli (2017); Pa-
pini et al. (2018); Papini, Pirotta, and Restelli (2019); Xu,
Gao, and Gu (2019, 2020) characterized the convergence
rate for PG and variance reduced PG to a stationary point
under finite horizon, and Zhang et al. (2019); Karimi et al.

1The “stepsize” here refers to the basic stepsize α in the AMS-
Grad update (4). The overall learning rate of the algorithm is de-
termined by the basic stepsize α, hyperparameters β1 and β2, and
the first and second moments of gradients as given in (1)-(4), and
is hence adaptive during the AMSGrad iteration.

(2019) provided the convergence rate for PG in the infinite-
horizon scenario. (Wang et al. 2020) studied natural PG with
neural network function approximation in an overparameter-
ized regime. Convergence analysis has also been established
for the variants of PG, such as TRPO/PP0 (Shani, Efroni,
and Mannor 2020; Liu et al. 2019), Actor-Critic (Xu, Wang,
and Liang 2020a,b), etc. This paper studies the infinite-
horizon scenario, but focuses on Adam-type PG, which has
not been studied in the literature.

Convergence analysis of TD: Originally proposed in
Sutton (1988), TD learning with function approximation
aroused great interest in analyzing its convergence. While a
general TD may not converge as pointed out in Baird (1995);
Györfi and Walk (1996), Tsitsiklis and Van Roy (1997) pro-
vided conditions to ensure asymptotic convergence of TD
with linear function approximation under i.i.d. sampling.
Other results on asymptotic convergence using the tools
from linear SA were provided in Kushner and Yin (2003);
Benveniste, Métivier, and Priouret (2012). Non-asymptotic
convergence was established for TD under i.i.d. sampling
in, e.g., Dalal et al. (2018); Bhandari, Russo, and Singal
(2018); Lakshminarayanan and Szepesvari (2018), and un-
der Markovian sampling in, e.g., Bhandari, Russo, and Sin-
gal (2018); Srikant and Ying (2019); Hu and Syed (2019).
The convergence rate of TD with nonlinear function ap-
proximation has recently been studied in Cai et al. (2019)
for overparameterized neural networks using i.i.d. samples.
In contrast to the aforementioned work on TD with the
SGD-type updates, this paper studies Adam-type TD under
Markovian sampling.

Adaptive reinforcement learning algorithms: Adaptiv-
ity has been applied to RL algorithms to improve the per-
formance. (Shani, Efroni, and Mannor 2020) used an adap-
tive proximity term to study the convergence of TRPO. An
adaptive batch size was adopted to improve the policy per-
formance (Papini, Pirotta, and Restelli 2017) and reduce the
variance (Ji et al. 2020) of PG. The aforementioned pa-
pers did not study how the adaptive learning rate can af-
fect the performance of PG or TD. More recently, concur-
rent works also analyzed TD(0) and TD(λ) (Sun et al. 2020)
incorporating adaptive gradient descent (AdaGrad) updates
and Q-learning (Weng et al. 2020) with AMSGrad updates.
However, this paper provides the first convergence guarantee
when Adam-type updates are applied to PG and TD.

Convergence analysis of Adam-type algorithms in con-
ventional optimization: Adam was proposed in Kingma
and Ba (2015) to speed up the training of deep neural net-
works, but the vanilla Adam was shown not to converge
in Reddi, Kale, and Kumar (2018). Instead, AMSGrad was
proposed as a slightly modified version to justify the theo-
retic performance of Adam. Its regret bounds were charac-
terized in Reddi, Kale, and Kumar (2018); Tran and Phong
(2019) for online convex optimization. Recently, AMSGrad
was proved to converge to a stationary point for noncon-
vex optimization (Zou et al. 2019; Zhou et al. 2018; Chen
et al. 2019a). Our study provides the first convergence guar-
antee for Adam-type algorithms in RL, where time-varying
Markovian sampling poses the key difference and challenge
in our analysis from conventional optimization.
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Preliminary
In this section, we provide the necessary background for the
problems that we study in this paper.

Markov Decision Process
We consider the standard RL setting, where an agent inter-
acts with a (possibly stochastic) environment (e.g. process
or system dynamics). This interaction is usually modeled
as a discrete-time discounted Markov Decision Processes
(MDPs), described by a tuple (S,A,P, R, γ, ζ), where S is
the state space which is possibly countably infinite, A is the
finite action space with cardinality |A|, P : S × A × S 7→
[0, 1] is the probability kernel for the state transitions, e.g.,
P(·|s, a) denotes the probability distribution of the next state
given the current state s and action a. In addition, R :
S ×A 7→ [0, Rmax] is the reward function mapping station-
action pairs to a bounded subset of R, γ ∈ (0, 1) is the dis-
count factor, and ζ denotes the initial state distribution. The
agent’s decision is captured by the policy π := π(·|s) which
characterizes the density function over the action spaceA at
the state s ∈ S . We denote ν := νπ as the stationary distri-
bution of the transition kernel P for a given π. In addition, we
define the γ-discounted stationary visitation distribution of
the policy π as µπ(s) =

∑∞
t=1 γ

tPζ,π(st = s). Further, we
denote µπ(s, a) = µπ(s)π(a|s) as the (discounted) state-
action visitation distribution.

Update Rule of AMSGrad
Although Adam (Kingma and Ba 2015) has gained great
success in practice, it was shown not to converge even in the
simple convex setting (Reddi, Kale, and Kumar 2018). In-
stead, a slightly modified version called AMSGrad (Reddi,
Kale, and Kumar 2018) has been widely used to understand
the success of adaptive momentum optimization algorithms.
Given a gradient gt at time t, the generic form of AMSGrad
is given by

mt = (1− β1)mt−1 + β1gt; (1)

vt = (1− β2)v̂t−1 + β2g
2
t ; (2)

v̂t = max(v̂t−1, vt); V̂t = diag(v̂t,1, . . . , v̂t,d); (3)

θt+1 = θt − αtV̂
− 1

2
t mt, (4)

where αt is the stepsize, and β1, β2 are two hyper-
parameters. In addition, mt, vt given in (2) are viewed as
the estimation of the first moment and second moment, re-
spectively, which play important roles in adapting the learn-
ing rate as in (4). Compared to Adam, the main difference
of AMSGrad lies in the first equation of (4), which guaran-
tees the sequence v̂t to be non-decreasing, whereas Adam
does not require this. Such a difference is considered to be a
central reason causing the non-convergent behavior of Adam
(Reddi, Kale, and Kumar 2018; Chen et al. 2019a).

Notations
We use ‖x‖ := ‖x‖2 =

√
xTx to denote the `2-norm of a

vector x, and use ‖x‖∞ = max
i
|xi| to denote the infinity

norm. When x, y are both vectors, x/y, xy, x2,
√
x are all

calculated in the element-wise manner, which are used in
the update of AMSGrad. We denote [n] = {1, 2, . . . , n},
and dxe ∈ Z as the integer such that dxe − 1 ≤ x < dxe.

Convergence of PG-AMSGrad under
Markovian Sampling

In this section, we study the convergence of an Adam-type
policy gradient algorithm (PG-AMSGrad) with nonlinear
function approximation and under non-i.i.d. sampling.

Policy Gradient and PG-AMSGrad
Suppose that policies are parameterized by θ ∈ Rd and form
a policy class Π := {πθ|θ ∈ Rd}, which in general is a
nonlinear function class. The policy gradient method is usu-
ally used to solve the following infinite-horizon optimization
problem:

maximize
θ∈Rd

J(θ) = E

[ ∞∑
t=1

γtR(st, at)

]
. (5)

The gradient of J(θ) with respect to θ is captured by the
policy gradient theorem for infinite-horizon MDP with the
discounted reward (Sutton et al. 2000), and is given by

∇θJ(θ) = E
µθ

[Qπθ (s, a)∇θ log(πθ(a|s))] , (6)

where the expectation is taken over the discounted state-
action visitation distribution µθ := µπθ (s, a), and Qπθ (s, a)
denotes the Q-function for an initial state-action pair (s, a)
defined as

Qπθ (s, a) = E

[ ∞∑
t=1

γtR(st, at)
∣∣∣s1 = s, a1 = a

]
.

In addition, we refer to ∇θ log πθ(a|s) as the score function
corresponding to the policy πθ.

Since the transition probability is unknown, the policy
gradient in (6) needs to be estimated via sampling. The Q-
function Qπθ (s, a) and the score function are typically es-
timated by independent samples. First, at each time t, we
draw a sample trajectory to provide an estimated Q-function
Q̂πθ (s, a) based on the algorithm EstQ (Zhang et al. 2019)
(see Algorithm 3 in Appendix A for details). Such an esti-
mator has been shown to be unbiased (Zhang et al. 2019).
That is, if we use Oq to denote the randomness including
the samples and horizon in EstQ, then we have

E
Oq
Q̂πθ (s, a) = Qπθ (s, a), ∀(s, a). (7)

Next, based on the policy gradient theorem for infinite-
horizon MDP with the discounted reward (Sutton et al.
2000), the gradient estimator to approximate∇θJ(θ) at time
t is given by

gt :=g(θt; st, at)=Q̂πθt (st, at)∇θt log(πθt(at|st)), (8)

where the estimated Q-function Q̂πθ (s, a) is obtained by the
algorithm EstQ (Zhang et al. 2019) (see Algorithm 3 in Ap-
pendix A for details), and the score function ∇θ log πθ(a|s)
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Algorithm 1 PG-AMSGrad

1: Input: α, θ1, β1, β2,m0 = 0, v̂0 = 0, t = 1, s1 ∼
ζ(·), a1 ∼ πθ1(·|s).

2: while not converge do
3: Assign stepsize αt.
4: Obtain Q̂πθt (st, at)← EstQ(st, at, θt).
5: Compute gt = Q̂πθt (st, at)∇θt log(πθt(at|st)).
6: mt = (1− β1)mt−1 + β1gt.
7: vt = (1− β2)v̂t−1 + β2g

2
t .

8: v̂t = max(v̂t−1, vt), V̂t = diag(v̂t,1, . . . , v̂t,d).

9: θt+1 = θt − αtV̂
− 1

2
t mt.

10: t← t+ 1.
11: Sample st ∼ P̂ (·|st−1, at−1), at ∼ πθt(·|st).
12: end while

is estimated by samples {(st, at)} drawn following the
policy πθt and the transition function P̂ (·|st, at) =
γP(·|st, at) + (1 − γ)ζ(·) proposed in Konda (2002) with
ζ(·) being the initial distribution and P being the transition
probability of the original MDP. Such a transition probabil-
ity guarantees the MDP to converge to the state-action visita-
tion distribution. We then apply such a gradient estimator to
update the policy parameter by the AMSGrad update given
in (1)-(4), and obtain PG-AMSGrad as in Algorithm 1.

We note that the gradient estimator obtained in (8) is bi-
ased, because the score function is estimated by a sequence
of Markovian samples. We will show that such a biased gra-
dient estimator is in fact computationally more efficient than
the unbiased estimator used in the existing literature (Zhang
et al. 2019). Our main technical novelty here lies in devel-
oping techniques to analyze the biased estimator under the
AMSGrad update for PG.

Technical Assumptions
In the following, we specify some technical assumptions in
our convergence analysis.

We consider a general class of parameterized policy func-
tions that satisfy the following assumption.

Assumption 1. Assume that the parameterized policy πθ
is differentiable with respect to θ, and the score function
∇θ log πθ(a|s) corresponding to πθ(·|s) exists. In addition,
we assume both the policy function and the score function
are Lipschitz continuous with the parameters Lπ and L, re-
spectively, i.e., for all θ1, θ2 ∈ Rd,

|πθ1(a|s)− πθ2(a|s)| ≤ Lπ ‖θ1 − θ2‖ ;

‖∇θ1 log(πθ1(a|s))−∇θ2 log(πθ2(a|s))‖ ≤ L ‖θ1 − θ2‖ .
Further, the score function is uniformly bounded by cΘ, i.e.,
for any (s, a) ∈ S ×A and any θ,

‖∇θ log(πθ(a|s))‖ ≤ cΘ.

The above assumption is standard in the studies of PG
with nonconvex function approximation (Zhang et al. 2019;
Xu, Gao, and Gu 2019; Papini et al. 2018).

In Algorithm 1, we sample a data trajectory using the tran-
sition kernel P̂ and the policy πθt . Such a sequence of sam-
ples are non-i.i.d. and follow a Markovian distribution. We
assume that the MDP and the policies we consider satisfy
the following standard mixing property.

Assumption 2. For any θ ∈ Rd, there exist constant σ > 0
and ρ ∈ (0, 1) such that

sup
s∈S
‖P (st ∈ ·|s1 = s)− µθ(·)‖TV ≤ σρ

t ∀t,

where ‖µ1 − µ2‖TV denotes the total-variation norm (or
the total-variation distance between two probability mea-
sures µ1 and µ2).

This assumption holds for irreducible and aperiodic
Markov chains (Mitrophanov 2005), and is widely adopted
in the theoretical analysis of RL algorithms under Marko-
vian sampling (Bhandari, Russo, and Singal 2018; Chen
et al. 2019b; Zou, Xu, and Liang 2019; Karimi et al. 2019).

Convergence of PG-AMSGrad
In this section, we provide the convergence analysis of PG-
AMSGrad as given in Algorithm 1. We first consider the
case with a constant stepsize, and then provide the result
with a diminishing stepsize.

Although AMSGrad has been studied in conventional op-
timization, our analysis of PG-AMSGrad mainly deals with
the following new challenges arising in RL. First, samples
here are generated via an MDP and distributed in a non-
i.i.d. fashion. Thus the gradient estimator is biased and we
need to control the bias with a certain upper bound scaled by
the stepsize. Second, the sampling distribution also changes
over time, which causes additional complication. Thus, our
technical development mainly handles the above two chal-
lenges under the adaptive momentum update rule of AMS-
Grad. We provide the convergence results that we obtain and
relegate the main proofs to the appendices in the following.

We first provide the Lipschitz properties for the true pol-
icy gradient and its estimator, which are useful for establish-
ing the convergence. Recall that in Algorithm 1, the gradient
estimator gt = Q̂πθt (st, at)∇θt log(πθt(at|st)) at time t is
obtained by using the Q-function estimator generated by the
EstQ algorithm (see Appendix A). Note that Q̂πθ (s, a) is an
unbiased estimator of Qπθ (s, a) for all (s, a) (Zhang et al.
2019), and the samples for estimation are independent of
those for other steps in PG-AMSGrad except the initial sam-
ple. Taking expectation over the randomness in EstQ at time
t (denoted as Oqt ), we obtain an estimator ∇θt J̃(θt; st, at)
defined as

∇θt J̃(θt; st, at) := E
Oqt

[gt]

= E
Oqt

[
Q̂πθt (st, at)∇θt log(πθt(at|st))

]
= Qπθt (st, at)∇θt log(πθt(at|st)). (9)

We obtain the Lipschitz properties of ∇θJ̃(θ; s, a) and
∇θJ(θ) in the following lemma.

10463



Lemma 1. (Lipschitz property of policy gradient) Under
Assumptions 1 and 2, the policy gradient ∇θJ(θ) defined
in (6) is Lipschitz continuous with the parameter cJ , i.e.,
∀θ1, θ2 ∈ Rd,

‖∇θ1J(θ1)−∇θ2J(θ2)‖ ≤ cJ ‖θ1 − θ2‖ , (10)

where the constant coefficient cJ = RmaxL
1−γ + (1+cΘ)Rmax

1−γ ·

|A|Lπ
(

1 + dlogρ σ
−1e+ 1

1−ρ

)
. Further, the policy gra-

dient estimator ∇θJ̃(θ; s, a) defined in (9) is also Lips-
chitz continuous with the parameter cJ̃ , i.e., ∀θ1, θ2 ∈
Rd, ∀(s, a) ∈ S ×A,∥∥∥∇θ1 J̃(θ1; s, a)−∇θ2 J̃(θ2; s, a)

∥∥∥ ≤ cJ̃ ‖θ1−θ2‖ , (11)

where cJ̃ = RmaxL
1−γ + cΘ|A|Lπ

(
1 + dlogρ σ

−1e+ 1
1−ρ

)
.

Next, we provide the main convergence results. The first
theorem characterizes the convergence of PG-AMSGrad
with a constant stepsize. Recall that the stepsize refers to the
parameter α in AMSGrad update (4), not the overall learn-
ing rate.
Theorem 1. (Convergence of PG-AMSGrad with constant
stepsize) Fix β1, β2 in Algorithm 1. Initialize Algorithm 1
such that |g1,i| ≥ G0 for all i ∈ [d] with some G0 > 0.
Suppose Assumptions 1 and 2 hold. Let αt = α for t =
1, . . . , T . Then after running T steps of PG-AMSGrad as
given in Algorithm 1, we have:

min
t∈[T ]

E
[
‖∇θtJ(θt)‖2

]
≤ C1

T
+ αC2,

where C1 = G∞E[J(z1)]
α +

dG3
∞

G0(1−β1) +

2G∞τ
∗

G0
G2
∞ +

dcJαG∞(3β2
1+2(1−β1)(1−β1/β2))

(1−β1)(1−β2)(1−β1/β2) , C2 =

G3
∞
G0

[
(3cJ+cJ̃ )τ∗

G0
+d+ dLπG∞(2τ∗+(τ∗)2)

2G0

]
. with cJ , cJ̃ de-

fined in Lemma 1 in Appendix C, τ∗ = min{τ : mρτ ≤ α}
and G∞ = cΘRmax

1−γ .

Theorem 1 indicates that under the constant stepsize, PG-
AMSGrad converges to a neighborhood of a stationary point
at a rate ofO

(
1
T

)
. The size of the neighborhood can be con-

trolled by the stepsize α. One can observe that α controls a
tradeoff between the convergence rate and the convergence
accuracy. Decreasing α improves the convergence accuracy,
but slows down the convergence, since the coefficient C1

contains α in the denominator. To balance such a tradeoff,
we set the stepsize αt = 1√

T
. In this case, the mixing time

becomes τ∗ = O(log T ) and thus PG-AMSGrad converges
to a stationary point with a rate of O

(
log2 T√

T

)
.

In the following, we adopt a diminishing stepsize to elimi-
nate the convergence error and obtain the exact convergence.
Theorem 2. (Convergence of PG-AMSGrad with diminish-
ing stepsize) Suppose the same conditions of Theorem 1
hold, and let αt = α√

t
for t = 1, . . . , T . Then running T

steps of PG-AMSGrad as given in Algorithm 1, we have:

min
t∈[T ]

E
[
‖∇θtJ(θt)‖2

]
≤ C1

T
+

C2√
T
,

where C1 = f1G∞
α + 2dcJαG∞

1−β2
+ 2τ∗G∞

G0
G2
∞ +

3dcJβ
2
1αG∞

(1−β1)(1−β2)(1−β1/β2) , C2 = RmaxG∞
α(1−γ) +

dG3
∞

G0(1−β1) +

αG3
∞

G0

[
2(3cJ+cJ̃ )τ∗

G0
+ d

(
1 + LπG∞(τ∗+(τ∗)2)

G0

)]
with cJ , cJ̃

defined in Lemma 1 in Appendix C, τ∗ = min{τ : mρτ ≤
αT = α√

T
} and G∞ = cΘRmax

1−γ .

Theorem 2 indicates that under a diminishing stepsize,
PG-AMSGrad can converge exactly to a stationary point.
Since τ∗ = O(log T ), the convergence rate is given by
O
(

log2 T√
T

)
.

Theorems 1 and 2 indicate that under both constant and
diminishing stepsizes, PG-AMSGrad finds a stationary point
efficiently with guaranteed convergence. However, there is a
tradeoff between the convergence rate and accuracy. With
a constant stepsize, PG-AMSGrad can converge faster but
only to a neighborhood of a stationary point whose size is
controlled by the stepsize, whereas a diminishing stepsize
yields a better convergence accuracy, but attains a lower con-
vergence rate.

Improved Analysis on SGD-type PG under
Markovian Data
Although our focus in this paper is on the Adam-type PG,
our techniques also yield an improved convergence rate for
the SGD-type PG under infinite horizon Markovian sam-
pling over the existing studies (Zhang et al. 2019; Karimi
et al. 2019). In the following, we present such results and
make the comparisons to illustrate the novelty of our analy-
sis.

We consider the SGD-type PG algorithm that uses the
same gradient estimator and sampling strategy as those of
Algorithm 1, but adopts the SGD update (i.e., θt+1 = θt −
αtgt) rather than the AMSGrad update. We call such an al-
gorithm as PG-SGD. The following proposition character-
izes the convergence rate for PG-SGD.
Proposition 1. Suppose Assumptions 1 and 2 hold. After
running T steps of PG-SGD with a constant stepsize αt = α
for t = 1, . . . , T , we have:

min
t∈[T ]

E
[
‖∇θtJ(θt)‖2

]
≤ J(θ1)/α+ 2G2

∞τ
∗

T
+ αC1,

where C1 =G2
∞

[
cJ
2 +(3cJ+cJ̃)τ∗+1+ LπG∞(2τ∗+(τ∗)2)

2

]
,

with cJ , cJ̃ defined in Lemma 1 in Appendix C, τ∗ =

min{τ : mρτ ≤ α} and G∞ = cΘRmax

1−γ . Furthermore, af-
ter running T steps of PG-SGD with a diminishing stepsize
αt = 1−γ√

t
for t = 1, . . . , T , we have:

min
t∈[T ]

E
[
‖∇θtJ(θt)‖2

]
≤ C2

(1− γ)T
+

C3

(1− γ)2
√
T
,

where C2 = J(θ1) + 2(1− γ)2G2
∞τ
∗, C3 = Rmax + (1−

γ)3G2
∞
[
cJ + 2(3cJ + cJ̃)τ∗ + 1 + LπG∞(τ∗ + (τ∗)2)

]
,

with τ∗=min{τ : mρτ ≤αT = 1−γ√
T
}.

We next compare Proposition 1 with two recent stud-
ies on the infinite-horizon PG under non-i.i.d. sampling.
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PG algorithms Stepsize Convergence rate

Karimi et al. (2019) c1√
t

Õ
(

1
(1−γ)2

√
T

+ c2

)
Zhang et al. (2019) (1− γ)2(1−√γ) Õ

(
1

(1−γ)3(1−√γ)T + 1
(1−γ)3(1−√γ)

)
1√
t

Õ
(

1
(1−γ)5(1−√γ)2

√
T

)
This work 1− γ Õ

(
1

(1−γ)2T + 1
(1−γ)2

)
1−γ√
t

Õ
(

1
(1−γ)2

√
T

)
Table 1: Comparison of convergence rate (with diminishing stepsize) and error bound (with constant stepsize) for policy gradient
with non-i.i.d. sampling. Some remarks on the table are as follows. (a) c1, c2 are time-independent positive constants. (b) The
convergence rate of Karimi et al. (2019) includes the best existing dependence of Lipshitz constant on 1−γ for fair comparison
with other studies.

Table 1 summarizes such the comparison of the conver-
gence rate and error bound among the relevant studies. First,
Karimi et al. (2019) studied infinite-horizon PG with a bi-
ased gradient estimator. Their convergence analysis has a
non-vanishing error even with a diminishing stepsize. In
contrast, we obtain a fine-grained bound on the bias and
show that PG converges exactly to a stationary point under
the diminishing stepsize.

Another closely related such study was by Zhang et al.
(2019), but their algorithm adopts an unbiased gradient esti-
mator at the cost of using more samples. As a comparison,
Proposition 1 indicates that PG-SGD with a biased gradi-
ent estimator attains a better convergence rate and accuracy.
More specifically, under the constant stepsize, (Zhang et al.
2019, Corollary 4.4) showed that their PG algorithm con-
verges with an optimized error bound ofO

(
1

(1−γ)3(1−√γ)

)
,

whereas PG-SGD with a biased gradient estimator achieves
a much smaller error bound O

(
1

(1−γ)2

)
by taking α =

1 − γ. Similarly, under the diminishing stepsize, (Zhang
et al. 2019, Theorem 4.3) showed that their PG algorithm
converges at a rate of O

(
1

(1−γ)5(1−√γ)2
√
T

)
, whereas our

PG-SGD converges at a rate of O
(

log2(
√
T/(1−γ))

(1−γ)2
√
T

)
, which

is much faster since γ is usually close to 1, and log T is con-
sidered to be less influential in practice.

Convergence of TD-AMSGrad under
Markovian Sampling

In this section, we adopt AMSGrad to TD learning and ana-
lyze its convergence under Markovian sampling. The proof
techniques of bounding the bias and the nature of the con-
vergence are very different from those of PG-AMSGrad.

TD Learning and TD-AMSGrad
Policy evaluation is a fundamental task in RL, and often
plays a critical role in other algorithms such as PG that we
study before. The goal of policy evaluation is to obtain an ac-
curate estimation of the accumulated reward function known
as the value function V : S 7→ R for a given policy π defined

as

V π(s) = E

[ ∞∑
t=1

γtR(st, at)
∣∣∣s1 = s

]
.

Under the function approximation, the value function V (s)
is parameterized by θ ∈ Rd and denoted by V (s; θ). As
many recent finite-time analysis of TD (Bhandari, Russo,
and Singal 2018; Xu, Zou, and Liang 2019; Srikant and
Ying 2019), we consider the linear approximation class of
the value function V (s; θ) defined as

V (s; θ) = φ(s)T θ, (12)

where θ ∈ Rd, and φ : S → Rd is a vector function with
the dimension d, and the elements of φ represent the nonlin-
ear kernel (feature) functions. Then the vanilla TD algorithm
follows a stochastic iterative method given by

θt+1 = θt − αtgt, (13)

where αt is the stepsize, and gt is defined as

gt := g(θt; st, at, st+1)

=
(
φT (st)θt −R(st, at)− γφT (st+1)θt

)
φ(st). (14)

Here, gt serves as a stochastic pseudo-gradient, and is an
estimator of the full pseudo-gradient given by

ḡ(θt)=E
ν

[(
φT (st)θt−R(st, π(st))−γφT (st+1)θt

)
φ(st)

]
(15)

where the expectation is taken over the stationary distribu-
tion of the states. We note that ḡ(θt) is not a gradient of a
loss function, but plays a similar role as the gradient in the
gradient descent algorithm.

Then TD-AMSGrad is obtained by replacing the update
(13) by the AMSGrad update given in (2)-(4) as in Algo-
rithm 2.

As seen in Algorithm 2, the state-action pairs are sampled
as a trajectory under the transition probability P with un-
known policy π. Therefore, the samples along the trajectory
are dependent, and hence we need to analyze the conver-
gence of TD-AMSGrad under Markovian sampling.
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Algorithm 2 TD-AMSGrad

1: Input: α, λ, θ1, β1, β2,m0 = 0, v̂0 = 0, s1 ∼ ζ(·).
2: for t = 1, 2, . . . , T do
3: Assign αt, β1t = β1λ

t.
4: Sample at ∼ π, st+1 ∼ P(·|st, at).
5: Compute gt as (14).
6: mt = (1− β1t)mt−1 + β1tgt.
7: vt = (1− β2)v̂t−1 + β2g

2
t .

8: v̂t = max(v̂t−1, vt), V̂t = diag(v̂t,1, . . . , v̂t,d).

9: θt+1 = ΠD,V̂ 1/4
t

(
θt − αtV̂

− 1
2

t mt

)
,

where ΠD,V̂ 1/4
t

(θ′) = min
θ∈D

∥∥∥V̂ 1/4
t (θ′ − θ)

∥∥∥.

10: end for
11: Output: 1

T

∑T
t=1 θt.

Technical Assumptions
In this section, we introduce some standard technical as-
sumptions for our analysis.

We first give the following standard assumption on the
kernel function in the linear function approximation (Tsit-
siklis and Van Roy 1997; Bhandari, Russo, and Singal 2018;
Xu, Zou, and Liang 2019; Chen et al. 2019b).
Assumption 3. For any state s ∈ S , the kernel function φ :
S → Rd is uniformly bounded, i.e., ‖φ(s)‖ ≤ 1, ∀s ∈ S . In
addition, we define a feature matrix Φ as

Φ =


φT (s1)

φT (s2)
...

 =


φ1(s1) · · · φd(s1)

φ1(s2) · · · φd(s2)
...

...
...

 ,
and assume that the columns of Φ are linearly independent.

The boundedness assumption is mild since we can always
normalize the kernel functions.

The next assumption of the bounded domain is standard
in theoretical analysis of the Adam-type algorithms (Reddi,
Kale, and Kumar 2018; Tran and Phong 2019), where the
boundedness parameter D∞ can be chosen as discussed in
Bhandari, Russo, and Singal (2018).
Assumption 4. The domain D ⊂ Rd of approximation pa-
rameters is a ball originating at θ = 0 with a bounded di-
ameter containing θ?. That is, there exists D∞, such that
θ? ∈ D, and ‖θm − θn‖ < D∞, for any θm, θn ∈ D.

Convergence of TD-AMSGrad
In the following, we provide the convergence results for TD-
AMSGrad with linear function approximation under Marko-
vian sampling.

First consider the full pseudo-gradient ḡ(θ) in (15). We
define θ∗ as the fixed point of ḡ(θ), i.e., ḡ(θ∗) = 0. Then
θ∗ is the unique fixed point under Assumption 3 following
from the contraction property of the projected Bellman op-
erator (Tsitsiklis and Van Roy 1997).

The following theorem provides the convergence of TD-
AMSGrad under a constant stepsize coupled with diminish-
ing hyper-parameters in the AMSGrad update.

Theorem 3. (Convergence of TD-AMSGrad with constant
stepsize) Let β1t = β1λ

t and δ = β1/β2 with δ, λ ∈ (0, 1) in
Algorithm 2. Initialize Algorithm 2 such that |g1,i| ≥ G0 for
all i ∈ [d] with someG0 > 0. Let αt = α, t = 1, . . . , T , and
suppose Assumptions 2-4 hold. Then the output of Algorithm
2 satisfies:

E ‖θout − θ?‖2 ≤
C1

T
+ αC2,

where C1 =
G∞D

2
∞

αc(1−β) +
β1λG∞D

2
∞

2αc(1−λ)(1−β) + 2((1 +

γ)D∞ + G∞) · G∞
cG0(1−β) (τ∗)2α, C2 = 4D∞G∞

c(1−β) +

2G∞τ
∗((1+γ)D∞+G∞)
cG0(1−β) +

(1+β)G2
∞

2cG0(1−β) with c = (1 − γ)
√
ω,

τ∗ = min{τ : mρτ ≤ α} and G∞ = Rmax + (1 + γ)D∞.
In Theorem 3,C1, C2 are constants and time-independent.

Therefore, under the choice of the stepsize and hyper-
parameters in the theorem, Algorithm 2 converges to a
neighborhood of the global optimum at a rate ofO

(
1
T

)
. The

size of the neigborhood is controlled by the stepsize α. We
can balance the tradeoff between the convergence rate and
the convergence accuracy by setting the stepsize αt = 1√

T
,

which yields a convergence to the global optimal solution at
the rate of O

(
log2 T√

T

)
.

Next, we provide the convergence result with a diminish-
ing stepsize in the following theorem.

Theorem 4. (Convergence of TD-AMSGrad with diminish-
ing stepsize) Suppose the same conditions of Theorem 3
hold, and let αt = α√

t
for t = 1, . . . , T . Then the output

of Algorithm 2 satisfies:

E ‖θout − θ?‖2 ≤
C1√
T

+
C2

T
,

where C1 =
G∞D

2
∞

2cα(1−β) +
α(1+β1)G2

∞
cG0(1−β) + 4αD∞G∞

c(1−β) +

4τ∗αG∞((1+γ)D∞+G∞)
cG0(1−β) , C2 =

G∞D
2
∞√

2cα(1−β)
+

βG∞D
2
∞

2cα(1−λ)2(1−β) + 2G∞α(τ∗)2((1+γ)D∞+G∞)
cG0(1−β) with

c = (1 − γ)
√
ω, τ∗ = min{τ : mρτ ≤ αT = α√

T
}

and G∞ = Rmax + (1 + γ)D∞.
Comparing with Theorem 3 and observing τ∗ =

O(log T ), we conclude that TD-ASMGrad with the dimin-
ishing stepsize converges exactly to the global optimum at
the rate of O

(
log T√
T

)
, rather than to a neighborhood.

Conclusion
This paper provides the first convergence analysis of the
Adam-type RL algorithms under Markovian sampling. Sev-
eral future directions along this topic are interesting. For
example, the optimality of the convergence result of PG-
AMSGrad is of importance to study. The analysis of PG-
SGD can be also extended to actor-critic algorithms with
Markovian sampling. The convergence of TD-AMSGrad
with more general value function approximation is also of
interest to study. We expect that the new analysis techniques
that we develop here will be useful for further exploring the
theoretical guarantee of other RL algorithms that incorpo-
rate the Adam-type updates.
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