
Step-Ahead Error Feedback
for Distributed Training with Compressed Gradient

An Xu,1 Zhouyuan Huo,2 Heng Huang1,3

1 Electrical and Computer Engineering Department, University of Pittsburgh, PA, USA
2 Google, Mountain View, CA, USA

3 JD Finance America Corporation, Mountain View, CA, USA
{an.xu, heng.huang}@pitt.edu, zhouyuan.huo@gmail.com

Abstract
Although the distributed machine learning methods can speed
up the training of large deep neural networks, the communi-
cation cost has become the non-negligible bottleneck to con-
strain the performance. To address this challenge, the gra-
dient compression based communication-efficient distributed
learning methods were designed to reduce the communica-
tion cost, and more recently the local error feedback was in-
corporated to compensate for the corresponding performance
loss. However, in this paper, we will show that a new “gradi-
ent mismatch” problem is raised by the local error feedback in
centralized distributed training and can lead to degraded per-
formance compared with full-precision training. To solve this
critical problem, we propose two novel techniques, 1) step
ahead and 2) error averaging, with rigorous theoretical anal-
ysis. Both our theoretical and empirical results show that our
new methods can handle the “gradient mismatch” problem.
The experimental results show that we can even train faster
with common gradient compression schemes than both the
full-precision training and local error feedback regarding the
training epochs and without performance loss.

Introduction
Distributed training is a common practice in training large
models with big datasets. The master-slave architecture is
the most common paradigm in centralized learning, where
the worker nodes compute gradients based on the local
dataset and communicate with the server node. While in
decentralized learning (Lian et al. 2018, 2017; Tang et al.
2018a,b), no server node is needed and each worker node
only communicates with its neighbors to avoid the heavy
traffic of the server node as in centralized training. In recent
research, the gradient compression techniques have been
widely used to reduce the communication cost in both cen-
tralized and decentralized training.

Mild gradient compression techniques (Alistarh et al.
2017; Xu, Huo, and Huang 2020b) offer a mild compression
ratio at the cost of negligible performance loss. However,
it is more attractive to use an aggressive compression tech-
nique such as SignSGD (Bernstein et al. 2018) which is even
more favorable for scaling up the number of worker nodes.
More recently, the local error feedback method (Karim-
ireddy et al. 2019) was introduced to fix the corresponding

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

non-negligible performance loss resulting from SignSGD
via adding the compression error at the current iteration to
the next iteration. Note that for SignSGD, we need to scale it
by a factor before applying the local error feedback method
because it does not satisfy the Assumption 4 described at
later section, which is crucial in the theoretical analysis of
local error feedback.

Methods other than gradient compression to accelerate
distributed training include asynchronous methods (Lian
et al. 2015; Ho et al. 2013; Huang et al. 2019; Xu, Huo,
and Huang 2020a), local SGD (Stich 2019) which is also
a natural fit for solving federated learning (Konečnỳ et al.
2016) problem, and communication scheduling such as the
lazy aggregation of gradients (Sun et al. 2019; Hashemi,
Jyothi, and Campbell 2018; Chen et al. 2018). Specifically,
asynchronous distributed training avoids the synchroniza-
tion barrier and the worker node does not wait for each other.
The performance loss is related to the inconsistency between
the worker and server (staleness) allowed during training. In
local SGD, each worker node stores a copy of the model
and does several iterations of updating before communicat-
ing with all other nodes to average the updated model. The
more the number of local updating iterations is, the more
the model in different worker nodes will diverge, leading to
a larger performance loss.

We focus on the line of works with gradient compression.
Plain gradient compression has been well studied both in
centralized (Alistarh et al. 2017; Wen et al. 2017; Stich, Cor-
donnier, and Jaggi 2018) and decentralized training (Tang
et al. 2018a; Koloskova, Stich, and Jaggi 2019). Later works
incorporating local error feedback theoretically and empir-
ically achieve superior performance in centralized (Basu
et al. 2019; Wu et al. 2018; Zheng, Huang, and Kwok 2019)
and decentralized training (Tang et al. 2019) than plain gra-
dient compression. In this paper, we improve the local er-
ror feedback with theoretical analysis and empirical valida-
tion in centralized distributed training. When we studied the
coarse idea of adding the current compression error to the
next iteration as local error feedback does, we found that
this strategy could lead to a one-iteration outdated gradient.
This staleness may seem trivial at first glance, but theory
and practice show that it can be the reason why local er-
ror feedback is not always lossless. We summarize the main
contributions of our paper as follows:

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

10478

• We introduce and discuss the new “gradient mismatch”
problem caused by the local error feedback with the po-
tential to lead to stale gradients. We show that the local
error feedback may not be able to achieve lossless per-
formance all the time in experiments. To the best of our
knowledge, this is the first paper to systematically inves-
tigate this problem.

• We propose two novel techniques, 1) step ahead and 2)
error averaging, to correct the “gradient mismatch” issue.
Error averaging can be conducted in a much more in-
frequent way than the communication of the compressed
gradient.

• Theoretical analysis shows a better error bound of our
proposed method than local error feedback. Experimental
results verify that our method converges even faster with
common gradient compression regarding training epochs
without performance loss compared with both the full-
precision training and local error feedback.

Local Error Feedback
We consider the following learning problem:

min
x
F (x) := Eξ∼Df(x; ξ) , (1)

where x is the parameters, F (·) is the full loss function, D
is the data distribution, ξ is the random variable associated
with stochastic sampling and f(·) is the loss function as-
sociated with certain data sample. Stochastic optimization
methods compute the stochastic gradient∇f(x; ξ) to update
x. We assume the data distributions across different workers
are identical.

In local error feedback, the compression error is added
into the next iteration of training. We illustrate it in Algo-
rithm 1 (line 14 ∼ 16). In the first work (Karimireddy et al.
2019) using local error feedback to fix the performance loss
resulting from scaled SignSGD (Bernstein et al. 2018) com-
pression, only SGD rather than momentum SGD is con-
sidered (momentum constant µ = 0). (Zheng, Huang, and
Kwok 2019) proposed to use local error feedback to fix mo-
mentum SGD with block-wise scaled SignSGD compres-
sion. In (Zheng, Huang, and Kwok 2019), the feedbacked
error e(k)t is scaled according to learning rate as ηt−1

ηt
e(k)t .

Typically, scaled SignSGD compresses a vector v ∈ Rd to

C(v) =
‖v‖1
d

sign(v) . (2)

For simplicity, we refer to scaled SignSGD as SignSGD
from now on. To put it in a more general and clearer way
as in Algorithm 1, we compress the local model difference
∆

(k)
t+1 after updating and re-update the local model with the

information C(∆t+1) that the server has gathered from all
the workers and compressed. There are two advantages: 1) it
can be easily extended to local SGD, where the local model
difference will be communicated every several (> 1) itera-
tions; 2) the local error needn’t be scaled when using a de-
caying learning rate. Note that in Algorithm 1 where the lo-
cal model difference is communicated every iteration, the

local model x(k)t = xt is identical across all workers. We
do not need to synchronize the local model at every iteration.

Gradient Mismatch. The effectiveness of local error
feedback comes from an auxiliary variable x̃t := xt − (et +
1
K

∑K
k=1 e(k)t) in its theoretical analysis. Although a very

aggressive gradient compression scheme may be applied, the
update of the auxiliary variable in local error feedback still
satisfies:

x̃t+1 = x̃t −
ηt
K

K∑
k=1

m(k)
t+1 . (3)

For vanilla momentum SGD, we update the parameters
x ← x − ηt

K

∑K
k=1 m(k)

t+1 at iteration t. While in local error
feedback, the auxiliary variable x̃t is updated in a similar
way shown by Eq. (3). We refer to (et + 1

K

∑K
k=1 e(k)t) as

the compression error term which is usually trivial at the end
of training. The small compression error makes the output
parameters xT similar to the auxiliary variable x̃T . However,
is the auxiliary variable x̃T the same as the training results
of vanilla momentum SGD? The answer is “no” due to a
slight but important difference: the momentum term m(k)

t+1

is computed based on the gradient of xt (∇f(x(k)
t ; ξ

(k)
t)

in Algorithm 1 line 14) but used to update x̃t. We name it
as the “gradient mismatch” problem, which can jeopardize
the scalability of local error feedback in various tasks and
models.

Resolving Gradient Mismatch Problem
To alleviate the effect of gradient mismatch, we propose a
new step-ahead local error-feedback (SAEF) algorithm as
summarized in Algorithm 1 (line 6 ∼ 12). According to the
update of the auxiliary variable Eq. (3), for momentum SGD
with local error feedback we have

x̃t+1 = x̃t −
ηt
K

K∑
k=1

(µm(k)
t +∇f(x(k)

t ; ξ
(k)
t)) =

x̃t −
ηt
K

K∑
k=1

(µm(k)
t +∇f(x̃t + (et +

1

K

K∑
k=1

e(k)t); ξ
(k)
t)) .

(4)

Relationship with Staleness. Asynchronous distributed
training behaves in a similar pattern as the above equation.
Let the staleness of the gradient computed at worker k be
τ
(k)
t and one worker is selected to update the model at the

server node in each iteration. Then we have the following
update rule in asynchronous SGD (Lian et al. 2015):

xt+1 = xt − ηt∇f(x
t−τ (k)

t
; ξ

(k)
t) , (5)

where the gradient mismatch also exists as parameters xt
is updated by the gradient computed at stale and different
parameters x

t−τ (k)
t

. Consequently we regard the staleness of
local error feedback as one because the compression error
(et + 1

K

∑K
k=1 e(k)t) in Eq. (4) is computed at iteration t −

1, while τ (k)t in Eq. (5) can be larger than one. Addressing

10479

Algorithm 1 Distributed Momentum SGD with Double-
Way Compression.

1: Input: averaging period p > 1, number of iterations T ,
number of workers K, learning rate {ηt}T−1t=0 , param-
eters x0, compression scheme C(·) and the momentum
constant 0 ≤ µ < 1.

2: Initialize: ∀1 ≤ k ≤ K, initial local parameters x(k)0 =

x0 and local error e(k)0 = 0 and local momentum buffer
m(k)

0 = 0. x(k)t = xt for all t = 0, · · · , T .
3: for t = 0, · · · , T − 1 do
4: Worker-k:
5: if Step Ahead Error Feedback (SAEF) then
6: if mod (t+ 1, p) = 0 then
7: Average local error e(k)t ← 1

K

∑K
k=1 e(k)t

8: end if
9: x(k)

t+ 1
2

= x(k)
t − e(k)t // One step ahead.

10: m(k)
t+1 = µm(k)

t +∇f(x(k)

t+ 1
2

; ξ
(k)
t)

11: x(k)t+1 = x(k)

t+ 1
2

−ηtm(k)
t+1 // Momentum SGD update.

12: ∆
(k)
t+1 = e(k)t + x(k)

t+ 1
2

− x(k)
t+1

13: else if Local Error Feedback (EF) then
14: m(k)

t+1 = µm(k)
t +∇f(x(k)

t ; ξ
(k)
t)

15: x(k)t+1 = x(k)t − ηtm
(k)
t+1 // Momentum SGD update.

16: ∆
(k)
t+1 = e(k)t + x(k)t − x(k)t+1

17: end if
18: e(k)t+1 = ∆

(k)
t+1 − C(∆

(k)
t+1)

19: Send C(∆(k)
t+1) to the server node.

20: Server:
21: ∆t+1 = et + 1

K

∑K
k=1 C(∆

(k)
t+1)

22: et+1 = ∆t+1 − C(∆t+1)
23: Broadcast C(∆t+1) to all the worker nodes.

24: Worker-k:
25: x(k)t+1 = x(k)t − C(∆t+1) // Re-update.
26: end for
27: Output: parameters xT = x(k)T

gradient mismatch can be equivalent to reducing the effect
of staleness.

The motivation for us to resolve gradient mismatch prob-
lem is that since xt differs from x̃t in the compression error
term (et + 1

K

∑K
k=1 e(k)t), we can improve the training of

xt by improving the training of x̃t. To free the training of
x̃t from the effect of gradient mismatch, we propose to ap-
proximate the following update rules:

x̃t+1 ≈ x̃t −
ηt
K

K∑
k=1

(µm(k)
t +∇f(x̃t; ξ

(k)
t)) . (6)

Before to quantitatively define the amount of the gradient
mismatch, we first made some common assumptions in non-
convex optimization.

Assumption 1 (L-Lipschitz gradient) Assume the full loss
function F (·) is L-smooth, that is, ∀x, y ∈ Rd we have:

‖∇F (x)−∇F (y)‖2 ≤ L‖x− y‖2 . (7)

Assumption 2 (Bounded variance) The stochastic gradient
∇f(x(k)t ; ξ

(k)
t) has bounded variance:

E‖∇f(x(k)t ; ξ
(k)
t)−∇F (x(k)

t)‖22 ≤ σ2 . (8)

With the Assumptions 1 and 2, we define the amount of the
gradient mismatch εt of local error feedback as:

εt :=
1

K

K∑
k=1

E‖∇f(x̃t; ξ
(k)
t)−∇f(x(k)t ; ξ

(k)
t)‖22

≤ L2E‖et +
1

K

K∑
k=1

e(k)t ‖22 + 4σ2 .

(9)

Step Ahead
Although local error feedback is proved to have the
same convergence rate O(1√

T
) as SGD, the gradient mis-

match εt leads to an additional error term in the conver-
gence bound. In stead of computing stochastic gradient
∇f(x(k)t ; ξ

(k)
t) at x(k)t , we propose to compute stochastic

gradient ∇f(x(k)
t+ 1

2

; ξ
(k)
t) at x(k)

t+ 1
2

:= x(k)
t − e(k)t as in Al-

gorithm 1 (line 6 ∼ 12). Note that the local error e(k)t is
locally accessible without additional communication costs.
By replacing x(k)t with x(k)

t+ 1
2

, the gradient mismatch εt of
our proposed SAEF becomes

εt :=
1

K

K∑
k=1

E‖∇f(x̃t; ξ
(k)
t)−∇f(x(k)

t+ 1
2

; ξ
(k)
t)‖22

≤ L2

K

K∑
k=1

E‖et +
1

K

K∑
k=1

e(k)t − e(k)t ‖22 + 4σ2 .

(10)

When to step ahead? Our goal is to fix gradient mis-
match (reduce staleness) to improve the training of x̃t. As
we want a smaller upper bound of εt, it will be better to step
ahead if 1

K

∑K
k=1 E‖et + 1

K

∑K
k=1 e(k)t − e(k)t ‖22 < E‖et +

1
K

∑K
k=1 e(k)t ‖22. This is intuitively true when we have a

small variance because the effect of (1
K

∑K
k=1 e(k)t − e(k)t)

is cancelled in expectation. The following proposition illus-
trates it when the variance is smaller than the square of ex-
pectation. Note it only gives a motivation of our proposed
method as the local error is usually not identical in SAEF-
SGD and EF-SGD.

Proposition 1 If Assumptions 1 and 2 exist, for the the same
error e(k)t (k = 1, · · · ,K) and et, the upper bound of εt we
can prove in SAEF-SGD is better than that in EF-SGD if
Var(e(k)t) ≤ ‖Ee(k)t ‖22.

How related to compression? Take the flexible Top-K
gradient compression as an example, where only large gra-
dient components are sent with the rest set to zero. We re-
gard εt = ‖(εt,1, · · · , εt,d)‖22 in an element-wise way, which

10480

means that the improvement of εt related to e(k)t of SAEF-
SGD over EF-SGD is proportional to the number of non-
zero components in e(k)t . When the Top-K compression is
more aggressive and fewer gradient components are sent,
there are more non-zero components in e(k)t . In other words,
the improvement of SAEF-SGD over EF-SGD favors more
aggressive Top-K compression, which is desirable due to
lower communication costs. The less aggressive compres-
sion incurs smaller performance loss, but the improvement
of local error feedback is not as essential.

Error Averaging
When the gradient mismatch is too hard to resolve only by
step ahead, we propose to average the local error e(k)t ←
1
K

∑K
k=1 e(k)t . It cancels the effect of local compression er-

ror e(k)t with a brutal force at the averaging iteration t:

εt :=
1

K

K∑
k=1

E‖∇f(x̃t; ξ
(k)
t)−∇f(x(k)

t+ 1
2

; ξ
(k)
t)‖22

≤ L2

K

K∑
k=1

E‖et‖22 + 4σ2 .

(11)

The error averaging operation can be conducted either in
a master-slave way or the ring-based all-reduce way to avoid
the traffic jam in the master-slave framework. However, this
is still a costly operation and we do not want to conduct it
frequently. In fact, we should average the local error every
p(> 1) iteration depending on how fast the local error di-
verges in different nodes. When p = ∞ we do not perform
error averaging. To make a fair comparison in experiments,
for SAEF with error averaging we apply the less aggressive
gradient compression to balance the communication cost.

How much contribution? Error averaging set
E‖ 1

K

∑K
k=1 e(k)t − e(k)t ‖22 to zero every p iteration. It

reduces the upper bound of εt related to e(k)t at least by a
factor of 1

p . Moreover, it prevents the local error e(k)t in
different worker k from further diverging. Consequently
averaging error every p iteration reduce the effect of local
error e(k)t at worker nodes by a factor larger than 1

p .

Theoretical Analysis
We further make Assumption 3 which is common in
non-convex optimization, and Assumption 4 which has
been leveraged in previous works (Stich, Cordonnier, and
Jaggi 2018; Karimireddy et al. 2019; Zheng, Huang, and
Kwok 2019; Basu et al. 2019). For simplicity, we denote
mint=0,1,··· ,T−1 as min. The theoretical results do not in-
clude error averaging.
Assumption 3 (Bounded second moment) The full gradient
is bounded:

‖∇F (x(k)t)‖22 ≤M2 . (12)
It implies the second moment of the stochastic gradient is
bounded if Assumption 2 exists at the same time:

E‖∇f(x(k)t ; ξ
(k)
t)‖22 ≤ σ2 +M2 . (13)

Assumption 4 (δ-approximate compressor) The compres-
sion function C(·) : Rd → R is a δ-approximate compressor
for 0 < δ ≤ 1 if for all v ∈ Rd,

‖C(v)− v‖22 ≤ (1− δ)‖v‖22 . (14)

Lemma 1 With Assumptions 2, 3 and 4, we have

1

K

K∑
k=1

E‖et +
1

K

K∑
k=1

e(k)t − e(k)t ‖22

≤ C · 1− δ
1−
√

1− δ
η2max(M2 + σ2)

(1− µ)2
,

(15)

where the constant C = 2−δ
1−
√
1−δ + K−1

K .

Lemma 1 is an essential intermediate result for the con-
vergence analysis of SAEF both with or without momentum
as it helps to bound the gradient mismatch εt.

SAEF-SGD
Theorem 1 If Assumptions 1, 2, 3 and 4 exist, and the learn-
ing rate 0 < ηt = η < 3

4L for all t = 0, · · · , T − 1, for
SAEF-SGD we have

minE‖∇F (x̃t)‖22 ≤
4[F (x̃0)− F (x̃∗)]
η(3− 4ηL)T

+
2ηLσ2

(3− 4ηL)K

+
C(1− δ)

1−
√

1− δ
4(ηL+ 1)η2L2

3− 4ηL
(M2 + σ2) .

(16)

Theorem 2 If Assumptions 1, 2, 3 and 4 exist, and the learn-
ing rate 0 < ηt = η < 3

2L for all t = 0, · · · , T − 1, for
SAEF-SGD we have

minE‖∇F (x(k)t)‖22 ≤
4[F (x0)− F (x∗)]
η(3− 2ηL)T

+
4ηLσ2

(3− 2ηL)K

+

(
1 +

8C

3− 2ηL

)
1− δ

1−
√

1− δ
η2L2(M2 + σ2) .

(17)

Corollary 1 Under the same conditions of Theorem 2, the
compression error term(

1 +
8C

3− 2ηL

)
1− δ

1−
√

1− δ
η2L2(M2 + σ2) (18)

in the upper bound of Theorem 2 is tighter than the cor-
responding EF-SGD compression error term in (Zheng,
Huang, and Kwok 2019):

32L2(1− δ)(M2 + σ2)

δ2
(1 +

16

δ2
)

η2

3− 2ηL
. (19)

The effect of a tighter bound achieved above by SAEF
will gradually vanish with a decaying learning rate as the
total training steps T goes to infinity. However, in practical
and common training of deep neural networks, the learning
rate is usually chosen to be large in the beginning and sel-
dom goes to zero in the end, which contributes to the faster
training of SAEF than local error feedback.

10481

0 25 50 75 100 125 150 175 200
epoch

100

tr
a
in

in
g

 l
o
s
s

SGDM

EF-SignSGDM-SC

EF-SignSGDM-DC

SAEF-SignSGDM-SC

SAEF-SignSGDM-DC

0 25 50 75 100 125 150 175 200
epoch

45

50

55

60

65

70

te
s
ti

n
g

 a
c
c
@

1

0 20 40 60 80 100 120 140
epoch

10−1

100

tr
a
in

in
g

 l
o
s
s

SGD

EF-SignSGD-SC

EF-SignSGD-DC

SAEF-SignSGD-SC

SAEF-SignSGD-DC

0 20 40 60 80 100 120 140
epoch

54

56

58

60

62

64

66

68

70

te
s
ti

n
g

 a
c
c
@

1

0 25 50 75 100 125 150 175 200
epoch

100

tr
a
in

in
g

 l
o
s
s

SGDM

EF-SGDM-SC-TopK (5%)

EF-SGDM-DC-TopK (5%)

SAEF-SGDM-SC-TopK (5%)

SAEF-SGDM-DC-TopK (5%)

0 25 50 75 100 125 150 175 200
epoch

40

45

50

55

60

65

70

te
s
ti

n
g

 a
c
c
@

1

10−3 10−2 10−1 100 101

communication cost (GB)

100

tr
a
in

in
g

 l
o
s
s

10−3 10−2 10−1 100 101

communication cost (GB)

40

45

50

55

60

65

70

te
s
ti

n
g

 a
c
c
@

1

Figure 1: Train ResNet-56 on CIFAR-100. Mean metrics are plotted with standard deviation (shaded area). The top row employs
4 workers and SignSGD compression with momentum SGD applied in the left two figures and SGD applied in the right two
figures. The bottom row employs 8 workers, Top-K compression and momentum SGD, where training curves regarding epochs
are shown in the left two figures and training curves regarding communication costs are shown in the right two figures.

Corollary 2 Under the same conditions of Theorem 2, let
the learning rate η < c

√
K√
T

, where c > 0 is some constant.

Then the convergence rate of x(k)t in SAEF-SGD satisfies

min
t=0,··· ,T−1

E‖∇F (x(k)
t)‖22 = O(

1√
KT

) . (20)

Please see Section 5 of the Supplement for the proof.

SAEF-SGD with Momentum
Theorem 3 If Assumption 1, 2, 3 and 4 exist, and the learn-
ing rate 0 < ηt = η satisfies α := 1 − ηL

1−µ −
2µ2η2L2

(1−µ)4 > 0

for all t = 0, · · · , T −1, for SAEF-SGD with momentum we
have

minE‖∇F (x(k)t)‖22 ≤
4(1− µ)[F (x0)− F (x∗)]

αηT

+
2
(

1 + 2µ2ηL
(1−µ)3

)
ηLσ2

α(1− µ)K

+ (4C + α)
1− δ

1−
√

1− δ
η2L2(M2 + σ2)

α(1− µ)2
,

(21)

minE‖∇F (x̃t)‖22 ≤
4(1− µ)[F (x0)− F (x∗)]

αηT

+
2
(

1 + 2µ2ηL
(1−µ)3

)
ηLσ2

α(1− µ)K

+ (
4

α
+ 2)

C(1− δ)
1−
√

1− δ
η2L2(M2 + σ2)

(1− µ)2
.

(22)

Corollary 3 Under the same conditions of Theorem 3, let
the learning rate η < c

√
K√
T

, where c > 0 is some constant.

Then the convergence rate of x(k)t in SAEF-SGD with mo-
mentum satisfies

min
t=0,··· ,T−1

E‖∇F (x(k)
t)‖22 = O(

1√
KT

) . (23)

Please see Section 6 of the Supplement for the proof.

Experiments
All experiments are implemented with PyTorch (Paszke
et al. 2019). We first explain the notations of different meth-
ods “(EF, SAEF)-(SGD, SGDM, SignSGD, SignSGDM)-
(SC, DC)-(TopK)” as used in Figures 1, 2, and 3:
• Local error feedback (EF) or our proposed step ahead er-

ror feedback (SAEF).
• SGD, momentum SGD (SGDM), SGD with SignSGD

compression (SignSGD), momentum SGD with SignSGD
compression (SignSGDM).

• Single-way compression (SC), that is, no compression of
what the server sends back to the workers, or double-way
compression (DC).

• Whether to use Top-K gradient sparsification. If Top-K is
employed, we specify the sparsity in percentage. p = ∞
(no error averaging) by default unless specified otherwise.
All compression are performed in a layer-wise way.

CIFAR Settings
We train the ResNet-56 (He et al. 2016) model with mul-
tiple workers (GPUs) on CIFAR-100 (Krizhevsky, Hinton
et al. 2009) image classification task. We report the mean
and standard deviation metrics over 5 runs. The base learn-
ing rate is 0.1 and the total batch size is 128. The momentum
constant is 0.9 and the weight decay is 5 × 10−4. For mo-
mentum SGD the model is trained for 200 epochs with a

10482

0 10 20 30 40 50 60 70 80 90
epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2
tr

a
in

in
g

 l
o
s
s

SGDM

EF-SignSGDM-SC

EF-SignSGDM-DC

SAEF-SignSGDM-SC

SAEF-SignSGDM-DC

SAEF-SignSGDM-SC (p=10)

SA-SignSGDM-DC (p=10)

0 10 20 30 40 50 60 70 80 90
epoch

55

60

65

70

75

te
s
ti

n
g

 a
c
c
@

1

0 10 20 30 40 50 60 70 80 90
epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

tr
a
in

in
g

 l
o
s
s

SGDM

EF-SGDM-SC-TopK (10%)

EF-SGDM-DC-TopK (10%)

SAEF-SGDM-SC-TopK (10%)

SAEF-SGDM-DC-TopK (10%)

SAEF-SGDM-SC-TopK (5%, p=20)

SAEF-SGDM-DC-TopK (5%, p=20)

0 10 20 30 40 50 60 70 80 90
epoch

50

55

60

65

70

75

te
s
ti

n
g

 a
c
c
@

1

0 10 20 30 40 50 60 70 80 90
epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

tr
a
in

in
g

 l
o
s
s

SGDM

EF-SGDM-SC-TopK (10%)

EF-SGDM-DC-TopK (10%)

SAEF-SGDM-SC-TopK (5%, p=20)

SAEF-SGDM-DC-TopK (5%, p=20)

0 10 20 30 40 50 60 70 80 90
epoch

50

55

60

65

70

75

te
s
ti

n
g

 a
c
c
@

1

10−1 100 101 102

communication cost (GB)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

tr
a
in

in
g

 l
o
s
s

10−1 100 101 102

communication cost (GB)

50

55

60

65

70

75

te
s
ti

n
g

 a
c
c
@

1

Figure 2: Train ResNet-50 on ImageNet. Error averaging is compared. The top row employs 4 workers with SignSGD compres-
sion applied in the left two figures and Top-K compression applied in the right two figures. The bottom row employs 8 workers
and Top-K compression, where training curves regarding epochs are shown in the left two figures and training curves regarding
communication costs are shown in the right two figures.

0 25 50 75 100 125 150 175 200
epoch

10−1

100

tr
a
in

in
g

 l
o
s
s

EF-SignSGDM-DC

EF-SignSGDM-DC (p=10)

EF-SignSGDM-DC (p=20)

0 25 50 75 100 125 150 175 200
epoch

10−1

100

101

tr
a
in

in
g

 l
o
s
s

SGDM (xt)

EF-SignSGDM-DC (xt)

EF-SignSGDM-DC (◌̃xt)

SAEF-SignSGDM-DC (xt)

SAEF-SignSGDM-DC (◌̃xt)

0 25 50 75 100 125 150 175 200
epoch

10−2

10−1

100

101

102

103

b
o
u

n
d

 o
f
ε t

EF-SignSGDM-DC

SAEF-SignSGDM-DC

Figure 3: Train ResNet-56 on CIFAR-100 with 4 workers, SignSGD compression and momentum SGD related methods. Left:
error averaging in local error feedback. Middle: xt and x̃t in SAEF and local error feedback. Right: the bound of gradient
mismatch (L and σ2 are ignored).

learning rate decay of 0.1 at epoch 100 and 150. For SGD
the model is trained for 150 epochs with a learning rate de-
cay of 0.1 at epoch 100 because there is barely any further
improvement of the testing performance if we do a second
learning rate decay. Random cropping, random flipping, and
standardization are applied as data augmentation techniques.

ImageNet Settings
We train the ResNet-50 model with multiple workers
(GPUs) on ImageNet (Russakovsky et al. 2015) image clas-
sification tasks. The model is trained for 90 epochs with a
learning rate decay of 0.1 at epoch 30 and 60. The base learn-
ing rate is 0.1 and the total batch size is 256. The momentum
constant is 0.9 and the weight decay is 1×10−4. Similar data
augmentation techniques as in CIFAR-100 experiments are
applied.

Performance Comparison
Faster Convergence. The training curves in Figures 1
and 2 show that employing our proposed SAEF in

SGD/momentum SGD, with SignSGD/Top-K compression
and single-way/double-way compression all lead to signif-
icantly faster convergence of the training loss. It is not
only faster than local error feedback but also vanilla
SGD/momentum SGD with full precision gradient. For
local error feedback, we observe that its training loss is very
similar to that of SGD/momentum SGD. But sometimes it
may perform worse in CIFAR-100 experiments as shown
in the bottom left of Figure 1, and the final training loss as
shown in the top left of Figure 1. Its initial training perfor-
mance can also perform worse in ImageNet experiments as
shown in the bottom left of Figure 2.

Better Initial Generalization. Although we observe a
very similar final testing performance for SAEF, local error
feedback, and vanilla methods, SAEF always enjoys a better
testing performance before the second learning rate decay
in momentum SGD experiments. The improvement is very
significant, especially during the initial training. This can be
crucial in the communication-constraint scenario where we
need gradient compression to reduce the cost. As shown in

10483

CIFAR-100 EF p =∞ p = 40 p = 20 p = 10 p = 5 p = 1

Top-1% 50.00 ± 0.70 60.59 ± 0.28 62.83 ± 0.27 63.96 ± 0.35 64.55 ± 0.20 65.62 ± 0.24 65.89 ± 0.32
Top-5% 50.06 ± 1.17 60.21 ± 0.64 60.00 ± 0.64 60.94 ± 0.34 61.72 ± 0.13 61.81 ± 0.08 62.10 ± 0.19
Top-10% 51.11 ± 0.24 57.78 ± 0.21 57.85 ± 0.22 58.22 ± 0.29 58.34 ± 0.38 58.19 ± 0.16 58.76 ± 0.31

Table 1: Best Top-1 Testing Accuracy (%) at epoch 100 of training ResNet-56 on CIFAR-100 using SAEF to demonstrate its
faster convergence. We use Top-K sparsification (the first column shows the sparsity) and double-way compression. The second
column is the result of EF (local error feedback) for comparison. We report the result in the form of (mean± standard deviation)
over 5 runs.

the bottom right two figures of Figure 1 and Figure 2, SAEF
achieves much better training and testing performance
under the same communication budget than both local
error feedback and vanilla methods. Note that in Figure
2, we employ a more aggressive compression scheme for
SAEF with error averaging to maintain the same communi-
cation budget. Error averaging improves SAEF (the top right
two figures of Figure 2) but slightly degrades local error
feedback’s convergence (the left of Figure 3).

Effect of Gradient Mismatch. In the right of Figure 3,
local error feedback features a much larger bound of gradi-
ent mismatch εt during the whole training, contributing to
a worse x̃t and a larger gap between the training of xt and
the auxiliary variable x̃t as shown in the middle of Figure 3.
The gap is even more obvious during the initial training. By
reducing this gap with SAEF we achieve faster training us-
ing compressed gradients. Note that the training curves of x̃t
may seem poor in the initial training because we have tuned
the best hyperparameters for the real trained model xt.

Effect of Compression Ratio and Averaging Period p.
Firstly, we stress that the averaging period p should be large,
so that the local error e(k)t will be communicated much more
infrequently than the gradient. As a matter of fact, we use
p = ∞ in all our experiments except the 8-worker dis-
tributed training of ResNet-50 on ImageNet, where p = 20
with Top-5% gradient sparsification. To explore the effect of
the different combinations of the compression ratio and av-
eraging period, we report the top-1 testing accuracy using
Top-K compression with different sparsity and vary the av-
eraging period. We summarize it in Table 1. The results con-
firm our previous analysis that the improvement of SAEF
over local error feedback gets enlarged as the compression
scheme becomes more aggressive. Decreasing the averaging
period usually can further accelerate the training at the cost
of a larger communication budget, and it is also more obvi-
ous for an aggressive compression scheme. However, even
if we do not perform error averaging (p = ∞), there is still
a considerable improvement by using SAEF.

Related Works
Most existing works employ local error feedback as a stan-
dard technique in dealing with the performance loss result-
ing from aggressive gradient compression. We believe that
they may replace local error feedback with our proposed
SAEF both theoretically and empirically.

The leverage of local error feedback can be as early as
(Seide et al. 2014) for accelerating the training of speech

models. Lin et al. (2018) proposed to locally accumulate
those small gradient components until they reach a cer-
tain threshold before sending. ECQ-SGD (Wu et al. 2018)
analyzed local error feedback for quantized gradients on
quadratic functions. Deterioration of training performance
can be observed in ECQ-SGD experiments. The Top-K com-
pression has been proposed in (Strom 2015; Aji and Heafield
2017; Alistarh et al. 2018; Stich, Cordonnier, and Jaggi
2018). Combine it with local error feedback and we can
make each parameter get updated sooner or later. Local er-
ror feedback was first utilized to analyze and fix the test-
ing performance loss resulting from SignSGD compression
in (Karimireddy et al. 2019). Zheng, Huang, and Kwok
(2019) later developed it for distributed momentum SGD
with double-way blockwise SignSGD compression. (Basu
et al. 2019) combined gradient compression, local error
feedback, and local SGD but only considered single-way
compression. Asynchronous training is also considered in
(Basu et al. 2019). However, all these works did not show
that we can train faster with compressed gradients without
loss of performance.

We note that certain gradient compression scheme may
accelerate the initial training but lead to performance loss
more or less in the end. SignSGD, for example, can be
faster than SGD in the beginning but quickly deteriorates
in terms of the final performance. In this work, however, we
have been focused on improving local error feedback with
common gradient compression schemes and without perfor-
mance loss.

Conclusion

In this paper, we first identified the “gradient mismatch”
problem in the local error feedback method (to the best of
our knowledge, this is the first paper to systematically dis-
cuss this problem) and showed that this issue can cause per-
formance loss in local error feedback. After that, we pro-
posed a new SAEF (Step-Ahead Error Feedback) algorithm
to train faster with compressed gradient than local error
feedback and vanilla optimization methods with full preci-
sion gradient, both in terms of the performance regarding
training epochs and communication costs. We theoretically
show that our SAEF algorithm achieves a better convergence
bound than local error feedback and empirically validate its
faster convergence speed via image classification tasks. We
also explore different experimental settings to confirm the
scalability of SAEF.

10484

Acknowledgements
This work was partially supported by NSF IIS 1845666,
1852606, 1838627, 1837956, 1956002, 2040588.

References
Aji, A. F.; and Heafield, K. 2017. Sparse Communication for
Distributed Gradient Descent. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language
Processing, 440–445. Copenhagen, Denmark: Association
for Computational Linguistics. doi:10.18653/v1/D17-1045.
URL https://www.aclweb.org/anthology/D17-1045.

Alistarh, D.; Grubic, D.; Li, J.; Tomioka, R.; and Vojnovic,
M. 2017. QSGD: Communication-efficient SGD via gradi-
ent quantization and encoding. In Advances in Neural Infor-
mation Processing Systems, 1709–1720.

Alistarh, D.; Hoefler, T.; Johansson, M.; Konstantinov, N.;
Khirirat, S.; and Renggli, C. 2018. The convergence of spar-
sified gradient methods. In Advances in Neural Information
Processing Systems, 5973–5983.

Basu, D.; Data, D.; Karakus, C.; and Diggavi, S. 2019.
Qsparse-local-SGD: Distributed SGD with Quantization,
Sparsification and Local Computations. In Advances in Neu-
ral Information Processing Systems, 14668–14679.

Bernstein, J.; Wang, Y.-X.; Azizzadenesheli, K.; and Anand-
kumar, A. 2018. signSGD: Compressed Optimisation for
Non-Convex Problems. In Dy, J.; and Krause, A., eds.,
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, 560–569. Stockholmsmässan, Stock-
holm Sweden: PMLR. URL http://proceedings.mlr.press/
v80/bernstein18a.html.

Chen, T.; Giannakis, G.; Sun, T.; and Yin, W. 2018. LAG:
Lazily aggregated gradient for communication-efficient dis-
tributed learning. In Advances in Neural Information Pro-
cessing Systems, 5050–5060.

Hashemi, S. H.; Jyothi, S. A.; and Campbell, R. H. 2018.
TicTac: Accelerating distributed deep learning with commu-
nication scheduling. arXiv preprint arXiv:1803.03288 .

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

Ho, Q.; Cipar, J.; Cui, H.; Lee, S.; Kim, J. K.; Gibbons, P. B.;
Gibson, G. A.; Ganger, G.; and Xing, E. P. 2013. More effec-
tive distributed ml via a stale synchronous parallel parameter
server. In Advances in neural information processing sys-
tems, 1223–1231.

Huang, Y.; Yan, X.; Jiang, G.; Jin, T.; Cheng, J.; Xu,
A.; Liu, Z.; and Tu, S. 2019. Tangram: bridging im-
mutable and mutable abstractions for distributed data an-
alytics. In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), 191–206.

Karimireddy, S. P.; Rebjock, Q.; Stich, S.; and Jaggi, M.
2019. Error Feedback Fixes SignSGD and other Gradient

Compression Schemes. In International Conference on Ma-
chine Learning, 3252–3261.

Koloskova, A.; Stich, S. U.; and Jaggi, M. 2019.
Decentralized stochastic optimization and gossip algo-
rithms with compressed communication. arXiv preprint
arXiv:1902.00340 .

Konečnỳ, J.; McMahan, H. B.; Yu, F. X.; Richtárik, P.;
Suresh, A. T.; and Bacon, D. 2016. Federated learning:
Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492 .

Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images .

Lian, X.; Huang, Y.; Li, Y.; and Liu, J. 2015. Asynchronous
parallel stochastic gradient for nonconvex optimization. In
Advances in Neural Information Processing Systems, 2737–
2745.

Lian, X.; Zhang, C.; Zhang, H.; Hsieh, C.-J.; Zhang, W.; and
Liu, J. 2017. Can decentralized algorithms outperform cen-
tralized algorithms? a case study for decentralized parallel
stochastic gradient descent. In Advances in Neural Informa-
tion Processing Systems, 5330–5340.

Lian, X.; Zhang, W.; Zhang, C.; and Liu, J. 2018. Asyn-
chronous Decentralized Parallel Stochastic Gradient De-
scent. In Dy, J. G.; and Krause, A., eds., Proceedings of the
35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Re-
search, 3049–3058. PMLR. URL http://proceedings.mlr.
press/v80/lian18a.html.

Lin, Y.; Han, S.; Mao, H.; Wang, Y.; and Dally, B. 2018.
Deep Gradient Compression: Reducing the Communica-
tion Bandwidth for Distributed Training. In International
Conference on Learning Representations. URL https://
openreview.net/forum?id=SkhQHMW0W.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems, 8024–8035.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of Com-
puter Vision (IJCV) 115(3): 211–252. doi:10.1007/s11263-
015-0816-y.

Seide, F.; Fu, H.; Droppo, J.; Li, G.; and Yu, D. 2014. 1-
bit stochastic gradient descent and its application to data-
parallel distributed training of speech dnns. In Fifteenth An-
nual Conference of the International Speech Communica-
tion Association.

Stich, S. U. 2019. Local SGD Converges Fast and Com-
municates Little. In International Conference on Learn-
ing Representations. URL https://openreview.net/forum?id=
S1g2JnRcFX.

10485

Stich, S. U.; Cordonnier, J.-B.; and Jaggi, M. 2018. Sparsi-
fied SGD with memory. In Advances in Neural Information
Processing Systems, 4447–4458.
Strom, N. 2015. Scalable distributed DNN training using
commodity GPU cloud computing. In Sixteenth Annual
Conference of the International Speech Communication As-
sociation.
Sun, J.; Chen, T.; Giannakis, G.; and Yang, Z. 2019.
Communication-efficient distributed learning via lazily ag-
gregated quantized gradients. In Advances in Neural Infor-
mation Processing Systems, 3365–3375.
Tang, H.; Gan, S.; Zhang, C.; Zhang, T.; and Liu, J. 2018a.
Communication compression for decentralized training. In
Advances in Neural Information Processing Systems, 7652–
7662.
Tang, H.; Lian, X.; Qiu, S.; Yuan, L.; Zhang, C.; Zhang,
T.; and Liu, J. 2019. DeepSqueeze: Decentralized
meets error-compensated compression. arXiv preprint
arXiv:1907.07346 .
Tang, H.; Lian, X.; Yan, M.; Zhang, C.; and Liu, J. 2018b.
D2: Decentralized Training over Decentralized Data. In
Dy, J.; and Krause, A., eds., Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, 4848–4856.
Stockholmsmässan, Stockholm Sweden: PMLR. URL http:
//proceedings.mlr.press/v80/tang18a.html.
Wen, W.; Xu, C.; Yan, F.; Wu, C.; Wang, Y.; Chen, Y.; and
Li, H. 2017. Terngrad: Ternary gradients to reduce commu-
nication in distributed deep learning. In Advances in neural
information processing systems, 1509–1519.
Wu, J.; Huang, W.; Huang, J.; and Zhang, T. 2018.
Error compensated quantized SGD and its applications
to large-scale distributed optimization. arXiv preprint
arXiv:1806.08054 .
Xu, A.; Huo, Z.; and Huang, H. 2020a. On the Acceleration
of Deep Learning Model Parallelism With Staleness. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2088–2097.
Xu, A.; Huo, Z.; and Huang, H. 2020b. Optimal Gradient
Quantization Condition for Communication-Efficient Dis-
tributed Training. arXiv preprint arXiv:2002.11082 .
Zheng, S.; Huang, Z.; and Kwok, J. 2019. Communication-
efficient distributed blockwise momentum sgd with error-
feedback. In Advances in Neural Information Processing
Systems, 11446–11456.

10486

