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Abstract
A recent Wasserstein Weisfeiler-Lehman (WWL) Graph Ker-
nel has a distinctive feature: Representing the distribution of
Weisfeiler-Lehman (WL)-embedded node vectors of a graph
in a histogram that enables a dissimilarity measurement of
two graphs using Wasserstein distance. It has been shown to
produce better classification accuracy than other graph ker-
nels which do not employ such distribution and Wasserstein
distance. This paper introduces an alternative called Isolation
Graph Kernel (IGK) that measures the similarity between two
attributed graphs. IGK is unique in two aspects among exist-
ing graph kernels. First, it is the first graph kernel which em-
ploys a distributional kernel in the framework of kernel mean
embedding. This avoids the need to use the computationally
expensive Wasserstein distance. Second, it is the first graph
kernel that incorporates the distribution of attributed nodes
(ignoring the edges) in a dataset of graphs. We reveal that
this distributional information, extracted in the form of a fea-
ture map of Isolation Kernel, is crucial in building an efficient
and effective graph kernel. We show that IGK is better than
WWL in terms of classification accuracy, and it runs orders
of magnitude faster in large datasets when used in the context
of SVM classification.

Introduction
Measuring the similarity between graphs is a fundamental
problem in learning on graphs. Graph kernels have been
highly successful and have shown good predictive perfor-
mance on a variety of classification problems (Morris et al.
2016; Yanardag and Vishwanathan 2015; Togninalli et al.
2019).

A recent work has shown that it is important to use dis-
tributional information in a graph to construct a graph ker-
nel called Wasserstein Weisfeiler-Lehman or WWL kernel
(Togninalli et al. 2019). Because most existing graph ker-
nels do not take distributional information into considera-
tion (Kriege, Johansson, and Morris 2020), the WWL kernel
has better classification accuracy than these existing kernels.
However, the price WWL paid is high computational cost
because of the use of the Wasserstein distance. As a result,
it could not be used for large datasets.

This paper proposes an alternative approach called Isola-
tion Graph Kernel (IGK). It takes more than one type of dis-
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tribution of the given dataset into consideration, and it can
deal with large scale datasets.

IGK is distinguished from WWL in four aspects. First,
IGK employs two types of distributions: the distribution of
node vectors in a dataset of graphs (ignoring the edges); and
the distribution of the Weisfeiler-Lehmah (WL)-embedded
node vectors. Second, although both IGK and WWL em-
ploy the same distribution of WL-embedded node vectors,
IGK invokes the first level of kernel mean embedding and
WWL does not. As a result, IGK operates in Hilbert space
and WWL in input space. Third, WWL uses the Wasserstein
distance to measure the distance between two distributions;
whereas IGK uses the second level of kernel mean embed-
ding to measure the similarity of two distributions. Fourth,
IGK has an explicit feature map and WWL does not.

Our contributions are summarized as follows:

1. Introducing Isolation Graph Kernel (IGK) which has the
following unique characteristics: [i] It is the first graph
kernel which employs a distributional kernel in the frame-
work of kernel mean embedding (KME) (Smola et al.
2007; Muandet et al. 2017). IGK is probably the first non-
trivial application of two levels of KME. [ii] It is the first
graph kernel which incorporates the distribution of at-
tributed nodes in an entire dataset of graphs. We show that
this distributional information extracted in terms of a fea-
ture map of Isolation Kernel (Ting, Zhu, and Zhou 2018)
is crucial in building an efficient and effective graph ker-
nel.

2. Verifying that the power of IGK is derived from the use of
Isolation Kernel (IK) in two aspects. [I] The data depen-
dent property of IK makes full use of the data distribution
of the given dataset; while existing data independent ker-
nel such as Gaussian Kernel could not. [II] A current WL
scheme (Togninalli et al. 2019) has weak discriminative
power (i.e., weak in distinguishing two non-isomorphic
graphs). The use of IK in the KME framework is a key to
improve the discriminative power of the WL scheme.

3. Showing that IGK has higher predictive accuracy than the
state-of-the-art WWL (Togninalli et al. 2019); and it runs
orders of magnitude faster in large datasets. This is be-
cause it does not employ the computationally expensive
Wasserstein distance; and the feature map of IK enables
the use of fast linear SVM.
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Related Work

Most existing graph kernels are an instance of R-
Convolution kernel (Haussler 1999). The core idea is to ex-
tract substructures from graphs and then concatenate the
substructures in a vectorial representation. The kernel be-
tween two graphs is computed in terms of the similarity be-
tween these substructures. This conversion is often dubbed
embedding. An influential embedding is Weisfeiler-Lehman
(WL) scheme (Weisfeiler and Lehman 1968; Shervashidze
et al. 2011a) which captures dependencies in a graph in the
form of subtrees. This WL scheme applies to labelled graphs
only. There are variants/extensions of this scheme since, e.g.,
Shervashidze et al. (2011b); Morris, Kersting, and Mutzel
(2017).

Recently, a different version of the WL scheme has been
suggested for attributed graphs which have nodes with con-
tinuous attributes and weighted edges (Togninalli et al.
2019). It then represents each graph as a histogram, i.e.,
the distribution of all WL-embedded node vectors of an at-
tributed graph. The distance between two graphs is mea-
sured by the Wasserstein distance between two histograms;
and the measured distance is converted to similarity using
a Laplacian kernel. This graph kernel is called Wasserstein
Weisfeiler–Lehman (WWL) kernel (Togninalli et al. 2019).
We use the term WL to refer to this WL scheme in this paper.

Hash Graph Kernel (HGK) (Morris et al. 2016) is an-
other competitive method. It iteratively converts continuous
attributes into discrete labels using a randomized hash func-
tion. HGK-WL employs the Weisfeiler-Lehman scheme as a
hash function; while HGK-SP uses the shortest-path kernel.
Both have been shown to be the closest contender to WWL
(Togninalli et al. 2019) among several other contenders.

A comprehensive survey of other graph kernels is pro-
vided by Kriege, Johansson, and Morris (2020).

One of the criticisms of existing graph kernels (that ad-
vocates for the use of graph neural networks for graph rep-
resentation learning) is that the feature construction scheme
of graph kernels is fixed, which does not adapt to the given
data distribution (Morris et al. 2019). Despite considering
the distribution of WL-embedded node vectors of a graph,
WWL (Togninalli et al. 2019) does not address this criticism
because it does not consider the distribution of the given
dataset either. The proposed graph kernel is the only graph
kernel that addresses this criticism.

Kernel mean embedding (Smola et al. 2007; Muandet
et al. 2017) on distributions is an effective way to build a
distributional kernel from a point kernel, enabling similar-
ity between distributions to be measured. The current ap-
proach has focused on point kernels which have a feature
map with intractable dimensionality such as Gaussian Ker-
nel. In this paper, we combine kernel mean embedding with
Isolation Kernel (Ting, Zhu, and Zhou 2018) which has a
finite-dimensional feature map.

Although kernel mean embedding has been applied to
anomaly detection (Muandet and Schölkopf 2013; Ting et al.
2020), we are probably the first in applying kernel mean em-
bedding in graph representation.

Isolation Graph Kernel
The idea of Isolation Graph Kernel is to incorporate the dis-
tribution of node vectors in a dataset of graphs (ignoring all
edges) and the distribution of WL node vectors in a graph.
These are considered separately in different layers of embed-
ding. None of the existing graph kernels have taken the first
distribution or both these distributions into consideration.

Given a dataset D = {G1, . . . , Gn} of attributed graphs.
We denote a graph Gi = (Vi, Ei), where Vi and Ei are the
sets of nodes and edges of the graph, respectively. Each node
v ∈ V is associated a vector with m attributes v ∈ Rm.
A node v ∈ V has a neighborhood N (v) = N 1(v) =
{u ∈ V |(v, u) ∈ E} and |N (v)| = deg(v). At WL iter-
ation h > 1, the neighborhood of v is defined as N h(v) =
{u ∈ V |(w, u) ∈ E,w ∈ N h−1(v)}.

Let a set of node vectors D = ∪v∈Vi,i∈[1,n] v, extracted
from D by ignoring all edges in all graphs. The proposed
embedding method has three layers of embeddings:

1 The first layer applies the dataset-wide node embedding
ϕ(v|D) via Isolation Kernel (IK), derived from D. In
other words, IK considers the distribution of all nodes in
the dataset, ignoring the edges in the graphs.

2 The second layer applies the graph-specific node embed-
ding Φ(v|G) on each node in a graph G. The WL em-
bedding is used here. Applying the first two layers gives a
feature map Φ(ϕ(v|D)|G) for each node in G.

3 The third layer applies a mean embedding over all nodes
in each graph G ∈ D. This produces a feature mean map
for each graph in the dataset: Φ̂(G | Φ(ϕ(v|D)|G)).

The details of each embedding are provided in the next
three subsections.

Layer #1: Dataset-Wide Node Embedding Using
Isolation Kernel
Isolation Kernel maps each node vector v ∈ Rm into a vec-
tor ϕ(v|D) ∈ {0, 1}t×ψ .

The definition of Isolation Kernel (Ting, Zhu, and Zhou
2018) is given as follows.

Let D ⊂ X ⊆ Rm be a dataset sampled from an unknown
PD; and D ⊂ D, where |D| = ψ ≥ 2. Each point z ∈ D
has the equal probability of being selected from D.

Given D, we assume that there is a space partitioning
mechanism which produces a partitioning H with ψ parti-
tions θ[z] ∈ H , where each partition isolates a point z ∈ D
from the rest of the points in D. Let Hψ(D) denote the set
of all partitionings H that are admissible from D ⊂ D.
Definition 1. (Ting, Zhu, and Zhou 2018; Qin et al. 2019)
For any two points x,y ∈ Rm, Isolation Kernel of x and
y is defined to be the expectation taken over the probability
distribution on all partitionings H ∈ Hψ(D) that both x
and y fall into the same isolating partition θ[z] ∈ H , where
z ∈ D ⊂ D, ψ = |D|:

κψ(x,y |D) = EHψ(D)[1(x,y ∈ θ[z] | θ[z] ∈ H)]

(1)

where 1(·) is an indicator function.
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In practice, κψ is constructed using a finite number of par-
titionings Hi, i = 1, . . . , t, where each Hi is created using
randomly subsampledDi ⊂ D; and θ is a shorthand for θ[z]:

κψ(x,y |D) =
1

t

t∑
i=1

1(x,y ∈ θ | θ ∈ Hi)

=
1

t

t∑
i=1

∑
θ∈Hi

1(x ∈ θ)1(y ∈ θ) (2)

Isolation Kernel has been shown to be positive definite
(Ting et al. 2020). Thus, Isolation Kernel defines an RKHS
H . Its feature map in RKHS is defined below.

Given a partitioning Hi, let ϕi(x) be a ψ-dimensional
binary column vector representing all partitions θj ∈ Hi,
j = 1, . . . , ψ; where x falls into only one of the ψ parti-
tions. The j-component of the vector is: ϕij(x) = 1(x ∈
θj | θj ∈ Hi). Given t partitionings, ϕ(x) is the concatena-
tion of ϕ1(x), . . . , ϕt(x).

Definition 2. Feature map of Isolation Kernel. For point
x ∈ Rm, the feature mapping ϕ : x → {0, 1}t×ψ of κψ is
a vector that represents the partitions in every partitioning
Hi ∈ Hψ(D), i = 1, . . . , t; where x falls into only one of
the ψ partitions in each partitioning Hi.

Therefore, Equation 2 can be re-expressed as:

κψ(x,y |D) =
1

t
〈ϕ(x|D), ϕ(y|D)〉

Hereafter, ϕ(·) is used as a shorthand for ϕ(·|D).

Layer #2: Graph-Specific Node Embedding Using
a Weisfeiler–Lehman Scheme

The Weisfeiler–Lehman (WL) embedding used here is the
same as that proposed by Togninalli et al. (2019). The only
exception is that we use the Isolation Kernel (IK) mapped
vector ϕ(v) instead of node vector v as the input represen-
tation of the WL scheme.

Let ϕ0(v) = ϕ(v) be the IK mapped vector of node vec-
tor v for node v ∈ V in a graph G = (V,E). The WL
embedding at iteration h > 0 is recursively defined as:

ϕh(v) =
1

2

ϕh−1(v) +
1

deg(v)

∑
u∈N (v)

w(v, u) · ϕh−1(u)


(3)

The weight w(v, u) is set to the given edge weight of a
graph. For unweighted edges, it is set to 1.

Definition 3. IK-induced WL-features: Let G = (V,E)
and h be the number of WL iterations. The IK-induced WL-
features for node v ∈ V is defined as Φ(v) ∈ R(h+1)×t×ψ:

Φ(v) = [ϕ0(v), . . . , ϕh(v)]>

Layer #3: Mean Embedding of a Graph

Here we view each graph G = (V,E) as having a represen-
tative sample of WL-embedded node vectors Φ(v) ∀v ∈ V
of an unknown distribution, where each node vector is rep-
resented using the IK-induced WL embedding. Having this
view, a mean embedding can be used to represent each
graph.

For a graph G = (V,E), its mean embedding or its fea-
ture mean map is given as

Φ̂(G) =
1

|V |
∑
v∈V

Φ(v) =
1

|V |
∑
v∈V

[ϕ0(v), . . . , ϕh(v)]>

For any pair of two graphs, Isolation Graph Kernel (IGK),
using the above three layers of embedding, is calculated by
a dot product between their two mean embeddings or feature
mean maps, i.e.,

K(1,2,3)(G,G′) =
〈

Φ̂(G), Φ̂(G′)
〉

K(1,2,3), expressed in a typical formulation of kernel
mean embedding (Smola et al. 2007; Muandet et al. 2017)
in terms of a base kernel κ, is given as follows:

K(1,2,3)(G,G′) =
1

|V ||V ′)|
∑
v∈V

∑
v′∈V ′

κ(v,v′)

where κ(v,v′) = 〈Φ(v),Φ(v′)〉 is the base kernel as a re-
sult of the combined layers 1 & 2 embeddings.

The algorithm of generating the feature mean map of IGK
and its mapped dataset is given in Algorithm 1.

Algorithm 1: Generate IGK mapped dataset
Input : Dataset {Gi = (Vi, Ei), i = 1, . . . , n},

IK parameter ψ, WL parameter h.
Output: IGK mapped dataset {Φ̂(Gi), i = 1, . . . , n}.

1 D = ∪v∈Vi,i∈[1,n] v /* Set of node vectors */

2 Produce ϕ(·|D) from D /* Embedding #1 */
3 for (i = 1; i < n; i++) do
4 for (each v ∈ Vi) do
5 /* Embedding layer #2 */
6 Map ϕj−1(v) into ϕj(v) for j = 1, . . . , h;
7 Φ(v) = [ϕ0(v), . . . , ϕh(v)]>;
8 end
9 /* Embedding layer #3 */

10 Φ̂(Gi) = 1
|Vi|

∑
v∈Vi Φ(v);

11 end
12 return {Φ̂(Gi), i = 1, . . . , n}

The IGK mapped dataset is used as input to a linear SVM
to produce a classifier.

We describe three advantages of IGK over WWL in the
following three sections.
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Advantage 1: Harnessing Information in The
Dataset-Wide Node Distribution

IGK has a dataset-wide node embedding in the first layer
using Isolation Kernel; but WWL has no such embedding.

The distribution of node vectors in a dataset of graphs is
an important part of the information in the dataset, in ad-
dition to the connectivity information due to edges. This
dataset-wide distribution is often ignored in existing graph
kernels, just like the ordinary data independent kernels such
as Gaussian kernel and Laplacian kernel which ignore the
dataset-wide distribution of points in Rm.

The explanation of why IGK has better accuracy than that
using the Gaussian kernel (which replaces Isolation Kernel)
is the same as that provided in the first paper on Isolation
Kernel (see Section 3 in Ting, Zhu, and Zhou (2018)): In a
dataset consists of sparse and dense regions, Gaussian kernel
makes more errors in the sparse region bordering the dense
region; and Isolation Kernel makes fewer errors—a direct
result of the data dependent property of Isolation Kernel.

Advantage 2: Improve the Discriminative
Power of WL

The WL embedding is the only mechanism in both WWL
and IGK (as well as many existing graph kernels) in extract-
ing information from substructures in a graph.

We explain that the WL scheme (Togninalli et al.
2019) has weak discriminative power in distinguishing non-
isomorphic graphs and how this power can be improved in
the next two subsections. The third subsection explains the
phenomenon of low WL iterations in existing WL applica-
tions.

The Current WL Has Weak Discriminative Power
Figure 1(a) shows an example of applying the WL scheme in
the input space of node vectors. Two non-isomorphic graphs
G1 andG2 have increasing similarity as h increases because
each graph is shrunk into increasingly smaller size. At h =
∞, each of the two graphs is shrunk into one point which is
the center of the node representations in the space.

In the extreme case that both graphs have the same graph
center, then both graphs are shrunk into the same point! We
formalize this notion as follows.

The WL scheme for h > 0 in the input space (as proposed
by Togninalli et al. (2019) in Eq 4) can be re-expressed in
terms of node vectors u0 = u in Eq 5 as follows:

vh =
1

2
[(vh−1 +

1

deg(v)

∑
u∈N (v)

w(v, u) · uh−1] (4)

=
∑

u∈Nh(v)

$h
uu (5)

where
∑
u∈Nh(v)$

h
u = 1; and $h

u is the weight of u af-
ter h iterations; and Nh(v) = ∪k∈[1,h]N k(v) ∪ v is the h-
hop neighborhood of v after h iterations. Note that all super-
scripts are indexes, not power.

Definition 4. The graph center cG of graph G = (V,E)
in the input space of node vectors is defined to be the point
such that for all v ∈ V , v∞ = cG.
Proposition 1. Given two graphs of arbitrary distributions
of node vectors in the input space, the only requirement for
them to shrink into the same point at h =∞ is that they both
have the same graph center.

This proposition is a direct consequence of Definition 4:
Given two non-isomorphic graphs G and G′ such that all
v ∈ V ,v′ ∈ V ′, v∞ = v′

∞ ⇒ cG = cG′ .
In other words, applying the WL scheme in the input

space of node vectors reduces the discriminative power be-
tween graphs as h increases. This means that the WL scheme
fails to differentiate two completely different graphs when
they have the same graph centers. Proposition 1 delineates
the condition under which the WL scheme is not suitable for
graph isomorphism test.

Mapping Node Vectors to IK’s Feature Space
Increases the Discriminative Power of WL
There is a simple way to improve the power of the WL
scheme to discriminate two different graphs. The idea is to
treat each graph as a sample of nodes generated from an un-
known distribution. Then, we can use the kernel mean em-
bedding (Smola et al. 2007) to measure the similarity be-
tween two graphs as two distributions.

The key criterion in kernel mean embedding is to employ
a point kernel κwhich is positive definite and a characteristic
kernel. This ensures that the kernel mean map is injective,
i.e., φ̂ : P → H is injective or ‖φ̂(P) − φ̂(P ′)‖H = 0 if
and only if P = P ′ (Smola et al. 2007). If the kernel κ is
non-characteristic, two different distributions P 6= P ′ may
be mapped to the same φ̂(P) = φ̂(P ′).

Let x,y ∈ Rm and a dataset D ∼ PD. Given a base
kernel κ(x,y) = 〈φ(x), φ(y)〉, the kernel mean map of PD
is defined as an estimation from D (Smola et al. 2007):

φ̂(PD) =
1

|D|
∑
x∈D

φ(x). (6)

Like Eq 5, the IK-induced WL for h > 0 in Eq 3 can be
similarly re-expressed in terms of ϕ0(u) = ϕ(u) as

ϕh(v) =
∑

u∈Nh(v)

ωhuϕ(u) (7)

Comparing Eq 7 with Eq 6, we have ωhuϕ(u) ≡ φ(u) as
the weighted feature map of κ, and Nh(v) the h-hop neigh-
borhood of node v is the representative sample of an un-
known distribution associated with node vector v after h it-
erations of WL. Then, ϕh(v) ≡ φ̂(Pv) is the corresponding
feature mean map of the distribution.
Proposition 2. The IK-induced WL expressed in Eq 7 is a
kernel mean map using Isolation Kernel as the base kernel,
where ωhuϕ is the (weighted) feature map of Isolation Kernel
and ϕh is the kernel mean map.

Recall that Isolation Kernel is positive definite and a char-
acteristic kernel (Ting et al. 2020). Thus, its kernel mean
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Figure 1: The effect of h in the WL scheme on two non-isomorphic graphs G1 and G2 when applied in (a) node input space
(WL) where both graphs have the same graph center as defined in Definition 4; and (b) Hilbert space (IK-WL). u,v and w are
node vectors of G1; x,y and z are node vectors of G2. ϕ is the feature map of IK. For h > 0, the vectors in input space are
computed using Eq 5 (WL); and the weights of the components of a vector in Hilbert space are derived from Eq 7 (IK-WL).

map is injective. Note that the WL scheme (Togninalli et al.
2019) is an approximate isomorphism test. Being injec-
tive improves its discriminative power; though this does not
guarantee a foolproof graph isomorphism test (which is an
NP-hard problem (Garey and Johnson 1979).)

As a direct consequence of mapping node vectors to
Hilbert space using Isolation Kernel and applying WL in
Hilbert space, we have effectively improved the discrimina-
tive power of WL because ϕh is equivalent to the (weighted)
mean map of Isolation Kernel.

Figure 1(b) illustrates an example of mapping node vec-
tors in Figure 1(a) to Hilbert space. This enables different
distributions (representing G1 and G2) to be mapped to dif-
ferent regions in Hilbert space. As h increases to ∞, each
sample of a distribution will shrink from a group of individ-
ual points to a single point in Hilbert space (as in the case
in input space). But two different distributions are shrunk
into two different points, enabling them to be discriminated;
while their counterparts in input space fail to do so when
they have the same graph center (as shown in Figure 1(a).)

The Issue of Low Iterations of WL Explained
The WL scheme has been recognized as a successful method
for approximate graph isomorphism test. Yet, some have no-
ticed that only low WL iterations are most effective (even the
WL incarnations in Graph Neural Networks or GNNs have
the same phenomenon1 see e.g., Liu, Gao, and Ji (2020).

We explain this phenomenon as follows: It is a result of
applying WL in the node input space, without considering

1An explanation of this phenomenon is that GNNs produces the
same effect as a low pass filter (Liu, Gao, and Ji 2020). However,
this does not explain the effect due to the direct application of WL
on the node input space. Also note that the WL scheme for labelled
graphs has no such issue.

Figure 2: Different outcomes of h parameter when employ-
ing WL in Hilbert space [H] and input space [I] in four meth-
ods. The experiment was done on the ENZYMES dataset.

the distribution of the node vectors. As described previously,
this leads to weak discriminative power as h increases.

Figure 2 shows the effect of h on methods that employ (a)
WL in Hilbert space [H]: IGK and K(1g,2,3); and (b) WL
in input space [I]: WWL and K(2,3g). K(1g,2,3) and K(2,3g)

are variants of IGK which use Gaussian kernel in layers 1
and 3, respectively (see the experiments section for details).

Because IGK and K(1g,2,3) employ WL in Hilbert space
[H], the substructure information of nodes in a graph is pre-
served with high h iterations. This is manifested as non-
decreasing accuracy for IGK and K(1g,2,3) as h increases.
In contrast, the accuracy of the methods which employ WL
in input space [I] decreases significantly as h increases.
In a nutshell, the discriminative power of WL for large
subgraphs, which is subdued in input space, is released in
Hilbert space.
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Advantage 3: IGK Has an Explicit Feature
Map

IGK has an explicit feature map which enables the use of fast
linear SVM. In contrast, WWL has no explicit feature map
and it must use a SVM which solves the dual optimization
problem, in addition to the use of computationally expensive
Wasserstein distance. As a result, SVM using WWL runs
much slower than that using IGK.

Section Summary: The source of the three advantages of
IGK over WWL is the use of Isolation Kernel which takes
the distribution of node vectors into consideration and has
an explicit feature map.

IGK Uses Two Levels of Kernel Mean
Embedding

As described above, ϕj(v) for every j ∈ [1, h] can be
viewed as the first level of kernel mean embedding with Iso-
lation Kernel as the base kernel. This mean embedding is
applied to all node vectors of the j-hop neighbourhood of
Nh(v) associated with v of graph G—this set of node vec-
tors is treated as the representative sample of an unknown
distribution of v of G created by the WL scheme with j iter-
ations. Note that this kernel mean embedding is ‘concealed’
because the averaging is part of the WL scheme.

The second level of kernel mean embedding is explicit,
and it employs a base kernel which has a feature map Φ(v)
consisting of a concatenation of ϕj(v) for all j ∈ [0, h], as
given in Definition 3. This mean embedding is applied to a
graph, averaged over all WL-embedded node vectors of the
graph. The set of WL-embedded node vectors having fea-
ture map Φ(v) is a representative sample of an (unknown)
distribution created from all v in G.

This is interesting because IGK is probably the first non-
trivial application of two levels of kernel mean embedding.

Note that Isolation Kernel is crucial in the framework of
kernel mean embedding to get high accuracy. A head-to-
head comparison between IGK and K(1g,2,3) in Figure 2 re-
veals its importance: Isolation Kernel which considers the
distribution of node vectors produces significantly higher
accuracy than Gaussian kernel which is data independent;
though both IGK and K(1g,2,3) use two levels of kernel
mean embedding. Further evidence is provided in the next
section.

Experiments
The experiments have two aims: (i) Examine the role of Iso-
lation Kernel in IGK; and (ii) Compare the relative perfor-
mance of IGK and existing graph kernels in terms of classi-
fication accuracy and runtime.

To achieve the first aim, the following variants of IGK
(K(1,2,3)) are used in an ablation study:

(a) K(2,3): No dataset-wide node embedding but has the next
two layers of embedding. This variant is a head-to-head
contender to the proposed 3-layer embedding K(1,2,3) (to
test the utility of IK in the first layer).

(b) K(2,3g): This variant applies the existing kernel mean em-
bedding (Muandet et al. 2017) which employs Gaussian
kernel in layer 3. It is expressed as follows:

K(2,3g)(G,G′) =
∑
v∈V

∑
v′∈V ′

κg(X(v), X(v′))

where X(v) = [(v0, . . . ,vh]> & κg is Gaussian Kernel.
This is denoted as RBF-WL in Togninalli et al. (2019).

(c) K(1g,2,3) employs the approximation feature map
of Gaussian kernel derived from the Nystrom
method (Williams and Seeger 2001; Musco and Musco
2017) in layer 1. This variant examines whether Gaussian
kernel could be as effective as Isolation Kernel.
The key difference between IGK and these variants is that

none of them utilize the distribution of all nodes in a dataset.
To achieve the second aim, three existing graph kernels

(which performed the best in Togninalli et al. (2019)) are
used in the comparison:
• The WWL kernel (Togninalli et al. 2019) has high accu-

racy; but it has slow runtime because it needs to calculate
the Wasserstein distance and the kernel matrix.

• Hash graph kernels HGK-WL and HGK-SP (Morris et al.
2016) employs WL and the shortest path kernel as the
hash function, respectively.
We use the codes provided by the authors of WWL and

HGK; and IGK2 is coded based on IK implemented using
Isolation Forest (Ting, Zhu, and Zhou 2018; Liu, Ting, and
Zhou 2008).

We use SVM classifiers in scikit-learn (Pedregosa et al.
2011), i.e., LinearSVC and SVC which are based on Lib-
linear (Fan et al. 2008) and Libsvm (Chang and Lin 2011),
respectively. Because Liblinear usually produces lower ac-
curacy than Libsvm, both our result and the previous re-
sult (e.g., Togninalli et al. (2019)) have used the latter for
all three existing graph kernels. We have used Liblinear for
IGK as the accuracy degradation is small.

See the Appendix for the full experimental settings and
some additional results.

Classification Accuracy
The accuracy results of the comparison are shown in Table 1.
We have the following observations:
• IGK outperforms its three variants in all datasets. The

only exception is AIDS wrt K(2,3g) which is IGK’s clos-
est contender variant. The comparisons withK(1g,2,3) and
K(2,3) are head-to-head comparisons in the same frame-
work which shows the value of using data dependent IK
versus data independent Gaussian kernel or no kernel in
layer 1. The differences in accuracy are large on e.g., EN-
ZYMES, IMDB-B, COIL-DEL and COX2 MD.

• IGK outperforms WWL, HGK-WL and HGK-SP on 11
out of 13 data sets. IGK has the highest average rank of
all these contenders. A rank-based Nemenyi test (Demšar
2006) shows that IGK is significantly better than WWL at
p = 0.02 level.
2The IGK code is available at github.com/IsolationKernel.
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Dataset #graphs #attr #class IGK K(2,3) K(2,3g) K(1g,2,3) WWL HGK-WL HGK-SP

BZR 405 3 2 86.8 78.8 84.0 83.8 84.4 85.4 84.1
ENZYMES 600 18 6 77.0 46.7 70.8 47.8 74.2 66.2 68.4
IMDB-B 1000 1 2 75.0 53.4 73.2 65.6 74.3 73.8 73.3
COIL-DEL 3900 2 100 94.1 12.5 91.0 14.6 91.3 93.4 92.3
AIDS 2000 4 2 98.5 90.7 98.8 95.4 99.5 99.4 99.2
DHFR 467 3 2 76.6 61.3 75.7 73.7 78.9 80.3 80.5
COX2 467 3 2 79.5 78.1 75.6 79.2 78.2 78.4 78.3
COIL-RAG 3900 64 100 98.9 95.9 96.9 15.8 96.2 94.4 94.2
PROTEINS full 1113 29 2 75.1 74.3 74.0 65.6 74.7 73.0 74.7
BZR MD 306 1 2 74.5 55.5 71.9 55.7 74.2 72.9 72.6
COX2 MD 303 1 2 69.0 49.8 66.4 53.7 68.8 67.7 67.4
DHFR MD 393 1 2 79.2 67.9 73.5 59.1 74.8 73.8 71.8
TWITTER 144033 1 2 58.1 52.8 >24hr 51.9 >24hr >24hr 52.3

Rank 1.53 6.00 4.61 5.76 2.76 3.38 3.61

Table 1: 10-fold CV SVM classifier results in accuracy(%). The last row shows the rank of each algorithm in each dataset,
averaged over all datasets. The algorithms having the smallest and largest errors are ranked 1 and 7, respectively.

In addition, we show that adding IK as the first layer em-
bedding to WWL, denoted as IK-WWL, improves WWW’s
accuracy on ENZYMES from 74.2% to 75.5%. We are un-
able to run more experiments on IK-WWL because its run-
time increased significantly due to the increased dimension-
ality of IK feature map.

Time Complexities And Scaleup Test

Algorithm Time complexity

IGK O(tψ(n+ he)N)
WWL O(heN + n3 log(n)N2)

HGK-WL O(hn24dN2)
HGK-SP O(n3N2)

Table 2: Time complexity. n and e are the maximum num-
bers of nodes and edges, respectively, in each graph. N is
the number of graphs. d is the maximum degree of nodes.

The time complexities of IGK and existing graph kernels
are given in Table 2.

Figure 3 shows the result of the scaleup test of these four
methods on TWITTER which has more than 144 thousand
graphs. IGK is significantly faster than the other three meth-
ods when dataset sizes are large. This is because the time
complexity of IGK is linear in the number of graphs. The
other methods have quadratic time complexity. For the two
methods which could complete the run on 100% data size,
IGK and HGK-SP increase their runtimes by a factor 8 and
80, respectively, as the data size increases by a factor of 10.
This difference is expected to enlarge for larger datasets.

Discussion
Aggregate via averaging and WL. It is interesting to note
that WWL was motivated to avoid the use of sum or aver-
age to aggregate the final set of substructures to prevent los-

Figure 3: Runtimes (in CPU seconds) of IGK, WWL and
HGK on increasing data sizes of the TWITTER dataset (con-
sists of 144033 graphs of two classes). Note that both WWL
and HGK-WL could not complete the runs in 24 hours on
data size larger than 20% and 70%, respectively.

ing valuable information about the distribution of individual
components (Togninalli et al. 2019). Yet, it uses the average
in the WL scheme to aggregate neighborhood information.
This averaging has been shown to be not injective (Xu et al.
2019). We show that using the same average aggregation,
but operated in the Hilbert space of a characteristic kernel in
the framework of KME, the WL scheme becomes injective.

Using Gaussian kernel in the kernel mean embedding
(KME) framework is injective in terms of discriminat-
ing two distributions (Sriperumbudur et al. 2010; Muandet
et al. 2017). However, like in the case of applying KME in
anomaly detection (Ting et al. 2020), Gaussian kernel has
produced weaker accuracy than Isolation Kernel when ap-
plied to build graph kernels for classification. This is shown
in the comparison between IGK and K(1g,2,3) in the exper-
iments section. This shows that IK which incorporates the
dataset-wide node distribution is critical for KME to work
well in practice.
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Relation to Graph Neural Networks (GNNs). For la-
belled graphs, it is shown theoretically that Graph Isomor-
phism Network (GIN), a maximally powerful GNN, is at
most as powerful as the WL test (Xu et al. 2019) in dis-
tinguishing two non-isomorphic graphs.

For attributed graphs, IGK offers to be a proxy to the WL
test which is as powerful as the original WL test. In contrast
to the approach in GIN (Xu et al. 2019) which advocates the
use of sum (instead of average) as the aggregation function,
IGK shows that the averaged version of WL can be as pow-
erful if it is applied in the IK’s feature space instead of the
input space. This is because the average in IK’s feature space
denotes the distributional information that incorporates both
the dataset-wide node distribution and the neighboring node
distribution specific to a graph, rather than just the propor-
tion between distinct neighbouring nodes in input space as
described in Xu et al. (2019).

We compare IGK with GIN. IGK ran orders of magni-
tude faster than GIN. For example on the 10 percent of the
TWITTER dataset that GIN could afford to run in one day,
GIN took 87,542 seconds (outside the scale shown in Fig-
ure 3); whereas IGK took 1,431 seconds only. Because of
high runtime and having many tuning parameters (hidden
units, batch size, dropout ratio and epochs), we ran a few
small datasets for comparison: In terms of accuracy, GIN is
competitive with IGK on IMDB-B (75.1%), AIDS (99.5%),
COX2 (77.7%) and COIL-RAG (95.9%).

The WL scheme we used is the first order WL. Higher-
order WL schemes as used in GNNs (Morris et al. 2019)
can be similarly applied in IGK.

Conclusions
The proposed IGK has higher predictive accuracy than the
state-of-the-art graph kernel WWL in most datasets; and it
runs orders of magnitude faster in large datasets.

IGK achieves high accuracy for two reasons. First, it
makes use of two types of distributions via two levels of
kernel mean embedding. Second, it applies the Weisfeiler-
Lehman (WL) scheme in IK’s feature space instead of node
input space to perform node embedding. We show that
the use of IK’s feature space is critical in preserving the
structure of subgraphs, making the WL scheme injective—
leading to more discriminative power. WWL employs only
one type of distribution and applies WL in node input space.

Because IGK has linear time feature mapping and an ex-
plicit feature map, it enables the use of a linear SVM classi-
fier. In contrast, WWL employs the computationally expen-
sive Wasserstein distance and has no explicit feature map.

The use of Isolation Kernel as the base kernel is instru-
mental in IGK achieving high accuracy and fast runtime.
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Appendix A: Experimental Settings
The parameter search ranges of all these methods in the ex-
periments are given in Table 3.

Algorithm Parameter search ranges

IGK h = {0, . . . , 7}; ψ = {24, . . . , 211}; t = 100
K(2,3) h = {0, . . . , 7}
K(2,3g) h = {0, . . . , 7}; γ = {2−3, . . . , 24}
K(1g,2,3) h = {0, . . . , 7}; γ = {2−3, . . . , 24}

WWL h = {0, . . . , 7}; λ = {10−4, . . . , 101}
HGK-WL h = {0, . . . , 7}; σ = {2−3, . . . , 24}
HGK-SP σ = {2−3, . . . , 24}

Table 3: Parameter search ranges.

We use 13 benchmark datasets commonly used to eval-
uate graph kernels (Kersting et al. 2016). In each dataset,
every graph G = (V,E) has a set of attributed nodes V and
a set of edges E, where each node v is associated with a
vector v ∈ Rm. For datasets that don’t have node attributes
but have edge attributes, we convert graphs in these datasets
into dual graphs (where each edge is represented as a node,
and connectivity is established if two edges in the primal
graph share the same node). These dual graph datasets are:
BZR MD, COX2 MD, DHFR MD, TWITTER.

The machine used in the experiments has 755G memory
and Intel E5 CPU.

IGK and its variants are normalised to [0, 1] as follows:

K̂(G,G′) =
K(G,G′)√

K(G,G)
√
K(G′, G′)

Appendix B: Additional Experimental Results
Figure 4 shows that IGK becomes more stable and produces
potentially higher accuracy as parameter t increases.

Figure 4: Stability analysis of IGK on ENZYMES dataset.

As shown in Table 4, HGK-WL and HGK-SP using Lib-
svm have better accuracy than those using Liblinear.

Dataset HGK-WL HGK-SP
liblinear libsvm liblinear libsvm

BZR 85.1 85.7 81.9 84.1
ENZYMES 64.8 66.2 64.8 68.4

IMDB-B 68.7 73.8 66.4 73.3
COIL-DEL 89.8 93.4 89.6 92.3

Table 4: Accuracy comparison between Liblinear and Lib-
svm for HGK-WL and HGK-SP.
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