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Abstract

We propose a novel and principled method to learn a non-
parametric graph model called graphon, which is defined
in an infinite-dimensional space and represents arbitrary-size
graphs. Based on the weak regularity lemma from the the-
ory of graphons, we leverage a step function to approximate
a graphon. We show that the cut distance of graphons can
be relaxed to the Gromov-Wasserstein distance of their step
functions. Accordingly, given a set of graphs generated by an
underlying graphon, we learn the corresponding step function
as the Gromov-Wasserstein barycenter of the given graphs.
Furthermore, we develop several enhancements and exten-
sions of the basic algorithm, e.g., the smoothed Gromov-
Wasserstein barycenter for guaranteeing the continuity of
the learned graphons and the mixed Gromov-Wasserstein
barycenters for learning multiple structured graphons. The
proposed approach overcomes drawbacks of prior state-of-
the-art methods, and outperforms them on both synthetic and
real-world data. The code is available at https://github.com/
HongtengXu/SGWB-Graphon.

Introduction
Given a set of graphs, e.g., social networks and biological
networks, we are often interested in modeling their genera-
tive mechanisms and building statistical graph models (Ko-
laczyk 2009; Goldenberg et al. 2010). Many efforts have
been made to achieve this aim, leading to such methods as
the stochastic block model (Nowicki and Snijders 2001), the
graphlet (Soufiani and Airoldi 2012), and the latent space
model (Hoff, Raftery, and Handcock 2002). However, when
dealing with large-scale complex networks, the parametric
models above are often oversimplified, and thus, suffer from
underfitting. To enhance the model capacity, a nonparamet-
ric graph model called graphon (or graph limit) was pro-
posed (Janson and Diaconis 2008; Lovász 2012). Mathemat-
ically, a graphon is a two-dimensional symmetric Lebesgue
measurable function, denoted as W : Ω2 7→ [0, 1], where Ω
is a measure space, e.g., Ω = [0, 1]. Given a graphon, we can
generate arbitrarily sized graphs by the following sampling
∗Correspondence author.
†Currently on leave from College of Computing, Georgia Insti-

tute of Technology.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

process:

vn ∼ Uniform(Ω), ∀ n = 1, .., N,

ann′ ∼ Bernoulli(W (vn, vn′)), ∀ n, n′ = 1, .., N.
(1)

The first step samples N nodes independently from a uni-
form distribution defined on Ω. The second step generates
an adjacency matrix A = [ann′ ] ∈ {0, 1}N×N , whose
elements yield the Bernoulli distributions determined by
the graphon. Accordingly, we derive a graph G(V, E) with
V = {1, ..., N} and E = {(n, n′) | ann′ = 1}.

This graphon model is useful theoretically to character-
ize complex graphs (Chung and Radcliffe 2011; Lovász
2012), which has been widely used in many applications,
e.g., network centrality (Ballester, Calvó-Armengol, and
Zenou 2006; Avella-Medina et al. 2018), control (Jackson
and Zenou 2015; Gao and Caines 2019), and optimiza-
tion (Nagurney 2013; Parise and Ozdaglar 2018). A fun-
damental problem connected to these applications concerns
how to robustly learn graphons from observed graphs.

Many learning methods have been developed to solve this
problem. Most of them are based on the weak regularity
lemma of graphon (Frieze and Kannan 1999). This lemma
indicates that an arbitrary graphon can be approximated well
by a two-dimensional step function. To learn step functions
as target graphons, existing methods either leverage stochas-
tic block models, e.g., the sorting-and-smoothing (SAS)
method (Chan and Airoldi 2014), the stochastic block ap-
proximation (SBA) (Airoldi, Costa, and Chan 2013), and its
variant “largest gap” (LG) (Channarond et al. 2012), or they
apply low-rank approximation directly to observed graphs,
e.g., the matrix completion (MC) method (Keshavan, Mon-
tanari, and Oh 2010) and the universal singular value thresh-
olding (USVT) algorithm (Chatterjee and others 2015).

These methods require the observed graphs to be well-
aligned1 and generated by a single graphon. However, real-
world graphs, e.g., the social networks collected from dif-
ferent platforms and different time slots, often have compli-
cated clustering structure, and the correspondence between
their nodes is unknown in general. This violation limits the
feasibility of the above learning methods in practice. Specif-
ically, these methods have to solve a multi-graph match-

1“Well-aligned” graphs have comparable size and the corre-
spondence between their nodes is provided.
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(a) W (x, y) = xy and 0 ≤ x, y ≤ 1
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(b) W (x, y) = |x− y| and 0 ≤ x, y ≤ 1

Figure 1: Illustrations of learning results obtained by various methods for different graphons. In both (a) and (b), we visualize
the graphon and its estimations with size 1, 000× 1, 000, and each estimation is derived based on 10 graphs with less than 300
nodes. The node degrees of the graphs provide strong evidence to align graphs when learning the graphon in (a) but are useless
for the graphon in (b). Our GWB method outperforms state-of-the-art methods. In the challenging case (b), our estimation can
be aligned to the ground truth by a measure-preserving mapping, which is close to the ground truth under the cut distance.

ing problem before learning graphons. Because of the NP-
hardness of the matching problem, this preprocessing often
introduces severe noise to the subsequent learning problem
and leads to undesirable learning results.

To overcome the aforementioned challenges, we propose
a new method to learn one or multiple graphons from un-
aligned graphs. Our method leverages step functions to es-
timate graphons. It minimizes the Gromov-Wasserstein dis-
tance (GWD) (Mémoli 2011) between the step function of
each observed graph and that of the target graphon, whose
solution is a Gromov-Wasserstein barycenter (GWB) of the
graphs (Xu, Luo, and Carin 2019). We demonstrate that this
learning strategy minimizes an upper bound of the cut dis-
tance (Lovász 2012) between the graphon and its step func-
tion, which leads to a computationally-efficient algorithm.

To the best of our knowledge, our work makes the first
attempt to learn graphons from unaligned graphs. Different
from existing methods, which first match graphs heuristi-
cally and then estimate graphons, our method leverages the
permutation-invariance of the GW distance and integrates
graph matching implicitly in the estimation phase. As a re-
sult, our method mitigates bias caused by undesired match-
ing processes. Given a graphon W (x, y), if its marginal
W (y) =

∫
x∈Ω

W (x, y)dx (or W (x) =
∫
y∈Ω

W (x, y)dy) is
very different from a constant function, the graphs generated
by it can be aligned readily by sorting and matching their
nodes according to their degrees. Otherwise, it will be hard
to align its graphs because the node degrees of the graphs’
nodes are almost the same. As illustrated in Figure 1, no mat-
ter whether it is easy to align the graphs or not, our method
can successfully learn the graphons and consistently outper-
forms existing methods. Besides the basic GWB method, we
design 1) a smoothed GWB method to enhance the continu-
ity of learned graphons, and 2) a mixture model of GWBs
to learn multiple graphons from the graphs with unknown
clusters. These structured GWB models achieve encourag-
ing learning results in some complicated scenarios.

Proposed Method
A graphon W : Ω2 7→ [0, 1] is defined on a probability
space (Ω, µ), where µ is a probability measure on the space
Ω. Each W formulates a space of graphons, denoted asW .
Let {Gm}Mm=1 be a set of graphs generated by an unknown
graphon W , whose sampling process is shown in (1). We
want to estimateW based on {Gm}Mm=1, making the estima-
tion close to the ground truth under a specific metric.

Approximate Graphons by Step Functions
A graphon can always be approximated by a step function in
the cut norm (Frieze and Kannan 1999). For each W ∈ W ,
its cut norm is defined as

‖W‖� := supX ,Y⊂Ω

∣∣∣∫
X×Y

W (x, y)dxdy
∣∣∣, (2)

where the supremum is taken over all measurable subsets
X and Y of Ω. Based on the cut norm, we can define a
commonly-used metric called cut distance (Lovász 2012):

δ�(W1,W2) := infφ∈SΩ
‖W1 −Wφ

2 ‖�, ∀W1,W2 ∈ W ,

where SΩ represents the set of measure-preserving map-
pings from Ω to Ω. Accordingly, we have Wφ

2 (x, y) =
W2(φ(x), φ(y)). The cut distance plays a central role in
graphon theory. We say that two graphons W1, W2 are
equivalent if δ�(W1,W2) = 0, denoted as W1

∼= W2.
The work in (Borgs et al. 2008) demonstrates that the quo-
tient space Ŵ := W\ ∼= is homeomorphic to the set of
graphons and (Ŵ, δ�) is a compact metric space. Similarly,
we can define δ1(W1,W2) := infφ∈SΩ

‖W1−Wφ
2 ‖1, where

‖W‖1 :=
∫
X×Y |W (x, y)|dxdy. According to their defini-

tions, we have
δ�(W1,W2) ≤ δ1(W1,W2), ∀W1,W2 ∈ W . (3)

Let P = (P1, ..,PK) be a partition of Ω into K measur-
able sets. We define a step function WP : Ω2 7→ [0, 1] as

WP(x, y) =
∑K

k,k′=1
wkk′1Pk×Pk′ (x, y), (4)
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where each wkk′ ∈ [0, 1] and the indicator function
1Pk×Pk′ (x, y) is 1 if (x, y) ∈ Pk×Pk′ , otherwise it is 0. The
weak regularity lemma (Lovász 2012) shown below guaran-
tees that every graphon can be approximated well in the cut
norm by step functions.
Theorem 1 (Weak Regularity Lemma (Lovász 2012)). For
every graphon W ∈ W and K ≥ 1, there always exists a
step function WP with |P| = K steps such that

‖W −WP‖� ≤
2√

logK
‖W‖L2

. (5)

Note that a corollary of this lemma is δ�(W,WP) ≤
2√

logK
‖W‖L2

because δ�(W,WP) ≤ ‖W −WP‖�.

Oracle Estimator
Based on the weak regularity lemma, we would like to
learn a step function WP from observed graphs {Gm}Mm=1
such that the cut distance between the step function and the
ground truth, i.e., δ�(W,WP), is minimized. Note that a
graph G can also be represented as a step function.
Definition 2. For a graph with a node set V = {1, ..., N}
and an adjacency matrix A, we can represent it as
a step function with N equitable partitions of Ω, i.e.,
P = {Pn}Nn=1,2 denoted as GP , where GP(x, y) =

1
N2

∑N
n,n′=1 ann′1Pn×Pn′ (x, y).

Ideally, if we know the positions of a graph’s nodes, i.e.,
the vn’s in (1), we can derive an isomorphism of the graph
according to the order of the positions and obtain an “oracle”
step function, denoted as Ĝ and ĜP , respectively. Applying
this sorting operation to {Gm}Mm=1, we obtain a set of well-
aligned graphs {Ĝm}Mm=1 and a set of oracle step functions
{Ĝm,Pm}Mm=1, where the number of partitions |Pm| is equal
to the number of nodes in Ĝm. Accordingly, we achieve an
oracle estimator of W as follows:

WO =
1

M

∑M

m=1
Ĝm,Pm . (6)

This oracle estimator provides a consistent estimation ofW :

Theorem 3. For every W ∈ W , let {Ĝm,Pm}Mm=1 be a set
of oracle step functions defined by Definition 2. We have

δ�(W,WO) ≤ C

minm |Pm|
, (7)

where C is a constant.

Proof. For an arbitrary graphon W and its oracle estimator
WO, we have

δ�(W,WO) = δ�(W,
1

M

∑M

m=1
Ĝm,Pm)

≤
∥∥∥W − 1

M

∑M

m=1
Ĝm,Pm

∥∥∥
L2

≤ 1

M

∑M

m=1
‖W − Ĝm,Pm‖L2

≤ 1

M

∑M

m=1

C

|Pm|
≤ C

minm |Pm|
.

(8)

2The equitable partitions have the same size, i.e., ∀ n 6= n′,
|Pn| = |Pn′ |.

The first inequality is based on the fact that for arbitrary
two graphons, their cut distance is smaller than their L2

distance (Janson 2013). The second inequality is the trian-
gle inequality. The third inequality is a corollary of the step
function approximation lemma in (Chan and Airoldi 2014),
whose derivation corresponds to the second proof shown in
the supplementary file of the reference. In particular, the
constant C corresponds to the supremum of the absolute
difference between the graphon W and its step function Ĝ,
which is independent of the number of partitions.

Learning Graphons via GW Barycenters
The oracle estimator above is unavailable in practice because
real-world graphs are generally unaligned – neither the po-
sitions of their nodes nor the correspondence between them
is provided. Given such unaligned graphs, traditional learn-
ing methods first match observed graphs and then estimate
the oracle step functions. As illustrated in Figure 1(b), this
strategy often leads to failures because the matching step is
NP-hard and creates wrongly-aligned graphs.

To mitigate the dependency on well-aligned graphs (and
their oracle step functions), we propose a new learning strat-
egy. Specifically, considering the oracle estimator, we have

δ�(W,WP) ≤ δ�(W,WO) + δ�(WO,WP)

= δ�(W,WO) + δ�(
1

M

∑M

m=1
Ĝm,Pm ,WP)

≤ δ�(W,WO) +
1

M

∑M

m=1
δ�(Ĝm,Pm ,WP)

= δ�(W,WO) +
1

M

∑M

m=1
δ�(Gm,Pm ,WP)

≤ δ�(W,WO) +
1

M

∑M

m=1
δ1(Gm,Pm ,WP).

(9)

The first inequality in (9) is the triangle inequality, and
the second inequality is derived according to the defi-
nition of cut distance. The latter is manifested because
δ�(GP , ĜP) = 0 (i.e., GP ∼= ĜP ). Finally, the third in-
equality is based on (3). Theorem 3 and (9) indicate that we
can minimize an upper bound of δ�(W,WP) by solving the
following optimization problem:

minWP
1

M

∑M

m=1
δ1(Gm,Pm ,WP). (10)

This strategy does not need to estimate the oracle step func-
tion, because it directly considers the δ1 distance between
observed graphs and the proposed step function. To solve
this problem, we derive a computationally-efficient alterna-
tive of δ1 based on its equivalent definition shown below.
Theorem 4 (Remark 6.13 in (Janson 2013)). Let W1

and W2 be two graphons defined on the probability spaces
(Ω1, µ1) and (Ω2, µ2), respectively. The δ1(W1,W2) can be
equivalently defined as infπ∈Π(µ1,µ2)

∫
(Ω1×Ω2)2 |W1(x, y)−

W2(x′, y′)|dπ(x, x′)dπ(y, y′), where Π(µ1, µ2) = {π | π ≥
0,
∫
y∈Ω2

dπ(x, y) = µ1,
∫
x∈Ω1

dπ(x, y) = µ2} contains
all measures on Ω1 × Ω2 having marginals µ1 and µ2.

The characterization shown in Theorem 4 coin-
cides with the 1-order Gromov-Wasserstein distance
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between (Ω1, µ1) and (Ω2, µ2) (Mémoli 2011). Let
W1,P and W2,Q be two step functions defined on
(Ω1, µ1) and (Ω2, µ2), which have equitable parti-
tions P = {Pi}Ii=1 and Q = {Qj}Jj=1. We rewrite
W1(x, y) − W2(x′, y′) as

∑I
i,j=1 w1,ij1Pi×Pj (x, y) −∑J

i′,j′=1 w2,i′j′1Qi′×Qj′ (x
′, y′) and denote riji′j′ as

|w1,ij − w2,i′j′ |. Let the probability measures µ1 and µ2 be
constant in each partition, i.e., µ1(x) =

∑
i µ1,i1Pi

(x) and
µ2(x) =

∑
i µ2,j1Qj

(x). We can rewrite the δ1 distance
between the two step functions i.e., δ1(W1,P ,W2,Q) as

inf
π∈Π(µ1,µ2)

∑
i,i′,j,j′

∫
Pi×Pj×Qi′×Qj′

riji′j′dπx,x′dπy,y′

= inf
π∈Π(µ1,µ2)

∑
i,i′,j,j′

riji′j′

∫
Pi×Qi′

dπx,x′

∫
Pj×Qj′

dπy,y′

= min
T∈Π(µ1,µ2)

∑
i,i′,j,j′

riji′j′Tii′Tjj′ = dgw,1(W1,W2),

where W1 = [w1,ij ] ∈ [0, 1]I×I and W2 = [w2,i′j′ ] ∈
[0, 1]J×J rewrite the step functions in matrix form. Vec-
tors µ1 = [µ1,i] and µ2 = [µ2,j ] represents the prob-
ability measures µ1 and µ2; T = [Tii′ ] ∈ RI×J is a
doubly-stochastic matrix in the set Π(µ1,µ2) = {T ≥
0|Tµ2 = µ1,T

>µ1 = µ2}, whose element Tii′ =∫
Pi×Qi′

dπ(x, x′). The optimal T , denoted as T ∗, is called
the optimal transport or optimal coupling between µ1 and
µ2 (Villani 2008; Peyré, Cuturi, and others 2019).

The derivation above shows that instead of solving a com-
plicated optimization problem in a function space, we can
convert it to the 1-order Gromov-Wasserstein distance be-
tween matrices (Peyré, Cuturi, and Solomon 2016; Chowd-
hury and Mémoli 2019; Xu et al. 2019). Moreover, when we
replace the riji′j′ with r2

iji′j′ , we obtain the squared 2-order
Gromov-Wasserstein distance: d2

gw,2(W1,W2)

= minT∈Π(µ1,µ2)

∑
i,i′,j,j′

r2
iji′j′Tii′Tjj′

= minT∈Π(µ1,µ2)〈D − 2W1TW
>
2 ,T 〉.

(11)

Here, 〈·, ·〉 calculates the inner product of two matrices.
D = (W1 � W1)µ11

>
J + 1Iµ

>
2 (W2 � W2), where

1I is an I-dimensional all-one vector and � represents
the Hadamard product of matrix. Because the 2-order
GW distance and the 1-order GW distance are equiva-
lent (pseudo) metrics (Theorem 5.1 in (Mémoli 2011)), the
d2

gw,2(W1,W2) also provides a good alternative for the cut
distance of the step functions. Plugging (11) into (10), the
learning problem becomes estimating a GW barycenter of
the observed graphs (Peyré, Cuturi, and Solomon 2016):

minW∈[0,1]K×K

1

M

∑M

m=1
d2

gw,2(Am,W ), (12)

where Am is the adjacency matrix of the graph Gm and
W = [wkk′ ] ∈ [0, 1]K×K is the matrix representation of
step function WP . Note that the number of partitions K and
the probability measures associated withW and {Am}Nm=1
are predefined.

Implementation Details
Setting the number of partitions Given a set of graphs
{Gm}Mm , we denote Nmax as the number of the nodes of
the largest graph. Following the work in (Chan and Airoldi
2014; Airoldi, Costa, and Chan 2013; Channarond et al.
2012), we can set the number of partitions to be K =
b Nmax

logNmax
c. This setting has been proven helpful to achieve

a trade-off between accuracy and computational efficiency.
Estimating probability measures For the observed

graphs, we estimate the probability measures by normal-
ized node degrees (Xu, Luo, and Carin 2019). We assume
that the probability measure of W is sorted, i.e., µW =
[µW,1, ..., µW,K ] and µW,1 ≥ ... ≥ µW,K , which is es-
timated by sorting and merging {µm}Mm=1. Here, µm =

1
‖Am1Nm‖1

Am1Nm
for m = 1, ...,M , and

µW =
1

M

∑M

m=1
interp1dK(sort(µm)), (13)

where sort(·) sorts the elements of the input vector in de-
scending order, and interp1dK(·) samplesK values from the
input vector via linear interpolation. This strategy provides
useful information when calculating the optimal transport
between eachAm and theW (Xu, Luo, and Carin 2019).

Learning optimal transports The computation of the
d2

gw,2(Am,W ) is a non-convex, non-smooth optimization
problem. To solve this problem efficiently, we apply the
proximal gradient algorithm developed in (Xu et al. 2019).
This algorithm reformulates the original problem as a series
of subproblems and solves them iteratively. In each iteration,
the subproblem is

minT∈Π(µm,µW )〈Dm − 2AmT
(s)W>,T 〉

+ βKL(T ‖T (s)),
(14)

where T (s) is the previous estimation of T , Dm = (Am �
Am)µm1K +1Nmµ

>
W (W �W ). We fix one transport ma-

trix as its previous estimation in the GW term and add a
proximal term as the regularizer. Here, the proximal term
penalizes the KL-divergence between the transport matrix
and its previous estimation, which smooths the update of
the transport matrix. This problem can be solved by the
Sinkhorn scaling algorithm (Sinkhorn and Knopp 1967),
whose convergence rate is linear (Altschuler, Weed, and
Rigollet 2017; Xie et al. 2020).

Learning GW barycenters Given the optimal trans-
ports {Tm}Mm=1, the GW barycenter has a closed-form
solution (Peyré, Cuturi, and Solomon 2016): W =

1
µWµT

W

∑M
m=1 T

>
mAmTm. The scheme of our algorithm is

shown in Algorithm 1.

Structured Gromov-Wasserstein Barycenters
We extend the above algorithm and propose two kinds of
structured Gromov-Wasserstein barycenters to apply our
learning method to more complicated scenarios.

Smoothed GW Barycenters As shown in Figure 1(b),
the estimated graphons achieved by our method can be
discontinuous because of the permutation invariance of
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Algorithm 1 Learning Graphons via GWB

1: Input: Adjacency matrices {Am}Mm=1. The weight of proxi-
mal term β, the number of iterations L, the number of inner
Sinkhorn iterations S.

2: Initialize K = b Nmax
logNmax

c, andW ∼ Uniform([0, 1]).
3: Initialize {µm}Mm=1 and µW via (13)
4: For l = 1, ..., L:
5: For m = 1, ...,M : // Solve (14)
6: Initialize T (0) = µmµ

>
W and a = µm.

7: For s = 0, ..., S − 1:
8: C = exp(− 1

β
(Dm − 2AmT

(s)W>))� T (s)

9: b = µW

C>a
, a = µm

Cb
, T (s+1) = diag(a)Cdiag(b).

10: Tm = T (S).
11: UpdateW viaW = 1

µWµT
W

∑M
m=1 T

>
mAmTm.

12: The graphon WP (x, y) =
∑
k,k′ wkk′1Pk×Pk′ (x, y).

Gromov-Wasserstein distance. To suppress the discontinu-
ity of the results, we impose a smoothness regularization on
the GW barycenters and obtain the following problem:

minW∈[0,1]K×K

1

M

∑
m
〈Dm − 2AmTmW

>,Tm〉

+ α‖LWL>‖2F ,
(15)

where Tm is current estimation of the m-th optimal trans-
port and LWL> is the matrix representation of the Lapla-
cian filtering of W . The first-order optimality condition of
this problem also has a closed-form solution. In particular,
setting the gradient of the objection to zero, we obtain

2αL>LWL>L+ diag(µW )W diag(µW )

=
1

M

∑M

m=1
T>mAmTm.

(16)

Applying singular value decomposition (SVD) to L>L,
i.e., L>L = UΛU>, we rewrite the left side of (16)
as HWHH , where H = U(

√
2αΛ + idiag(µW ))U>

is a symmetric complex matrix and HH = U(
√

2αΛ −
idiag(µW ))U> is its Hermitian transpose. Therefore, we
obtain a smoothed W by replacing line 11 of Algorithm 1
withW = 1

MH
−1(
∑M
m=1 T

>
mAmTm)H−H .

Mixed GW Barycenters When the observed graphs are
generated by C different graphons, we can build a graphon
mixture model and learn it as mixed GW barycenters:

min
{Wc}Cc=1,P∈Π( 1

C 1C ,
1
M 1M )

∑
c,m

pcmd
2
gw,2(Am,Wc). (17)

where we set P = [pcm] as a doubly stochastic matrix,
whose marginals are 1

C1C and 1
M 1M . The value pcm in-

dicates the joint probability that the m-th graph is generated
by the c-th graphon. In other words, the objective function of
(17) leads to a hierarchical optimal transport problem (Luo,
Xu, and Carin 2020), in which the ground distance is defined
by the GW distance and P is the optimal transport matrix.
This problem is solved by alternating optimization. In par-
ticular, replacing 1

M with pcm, we still apply Algorithm 1 to
learn {Wc}Cc=1. Given {Wc}Cc=1, we calculate the ground

distance matrix Dgw = [d2
gw,2(Am,Wc)] and update P by

solving an entropic optimal transport problem.

minP∈Π( 1
C 1C ,

1
M 1M )〈Dgw,P 〉+ β〈P , logP 〉. (18)

Similar to (14), this problem can also be solved by the
Sinkhorn scaling algorithm in (Sinkhorn and Knopp 1967).

Related Work
Graphon estimation As a classic method, the stochastic
block approximation (SBA) learns stochastic block mod-
els as graphons (Airoldi, Costa, and Chan 2013), in which
the block size can be optimized heuristically by the “largest
gap” algorithm (Channarond et al. 2012). The smoothing-
and-sorting (SAS) method improves this strategy by adding
total-variation denoising as a post-processing step (Chan
and Airoldi 2014). The work in (Pensky and others 2019)
extends this strategy and proposes a dynamic stochastic
block model to describe time-varying graphons. The ma-
trix completion (MC) method (Keshavan, Montanari, and
Oh 2010), the universal singular value thresholding (USVT)
algorithm (Chatterjee and others 2015), and the spectral
method (Xu 2018) learn low-rank matrices as graphons.
The work in (Ruiz, Chamon, and Ribeiro 2020) represents
graphons by their Fourier transformations. The methods
above require that the observed graphs be well-aligned and
generated by a single graphon.

GW distance The GW distance (Mémoli 2011) has been
widely used to measure the difference between structured
data like graphs (Vayer et al. 2018). For graphs, the opti-
mal transport associated with their GW distance indicates
the correspondence between their nodes (Xu et al. 2019).
To calculate this distance, the work in (Peyré, Cuturi, and
Solomon 2016) adds an entropy regularizer to the objective
function and applies the Sinkhorn scaling algorithm (Cuturi
2013). The work in (Xu et al. 2019) improves this method by
replacing the entropy regularizer with a Bregman proximal
term. An ADMM-based method is proposed in (Xu 2020)
to calculate the GW distance between directed graphs. Re-
cently, the recursive GW distance (Xu, Luo, and Carin 2019)
and the sliced GW distance (Titouan et al. 2019b) have been
proposed to reduce the computational complexity of the GW
distance. A GW barycenter model is proposed in (Peyré, Cu-
turi, and Solomon 2016), which shows the potential of graph
clustering (Xu 2020). Our work is pioneering in the devel-
opment of structured GW barycenters to learn graphons.

Experiments
Synthetic Data
To demonstrate the efficacy of our GWB method and its
smoothed variant (SGWB), we compare them with exist-
ing methods on learning synthetic graphons. We set the hy-
perparameters of our methods as follows: the weight of the
proximal term β = 0.005, the number of iterations L = 5,
and the number of Sinkhorn iterations S = 10; for the
SGWB method, the weight of the smoothness regularizer
α = 0.0002. The baselines include the stochastic block
approximation (SBA) (Airoldi, Costa, and Chan 2013), the
“largest gap” (LG) based block approximation (Channarond
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Type W (x, y) # nodes SBA LG MC USVT SAS GWB SGWB

xy
200 65.6±6.5 29.8±5.7 11.3±0.8 31.7±2.5 125.0±1.3 40.6±5.7 39.3±5.5

100∼300 157.4±23.3 133.2±22.8 138.3±21.3 131.2±24.2 161.9±19.5 52.5±13.1 51.9±12.6

e−(x0.7+y0.7) 200 58.7±7.8 22.9±3.1 71.7±0.5 12.2±1.5 77.7±0.8 21.6±2.1 20.9±1.8
100∼300 165.2±22.8 157.6±24.2 166.2±21.5 158.2±24.5 153.4±25.1 48.6±11.9 48.0±10.8

x2+y2+
√
x+
√
y

4

200 63.4±7.6 24.1±2.5 73.2±0.7 33.8±1.1 99.3±1.2 18.9±3.5 18.4±2.8
100∼300 258.5±36.0 254.2±36.6 259.5±35.0 254.2±36.8 240.6±39.2 81.0±18.8 80.5±17.8

Easy 1
2
(x+ y)

200 66.2±8.3 24.0±2.5 71.9±0.6 40.2±0.8 108.3±1.0 21.2±4.6 20.2±3.9
100∼300 247.6±40.3 241.3±41.0 247.0±39.1 241.3±41.0 231.3±40.2 83.8±22.5 84.6±22.0

to 1
1+exp(−10(x2+y2))

200 55.0±9.5 23.1±3.2 64.6±0.5 37.3±0.6 73.3±0.7 14.8±2.3 16.1±1.5
100∼300 394.0±45.7 397.0±46.5 400.7±45.6 399.3±47.0 345.4±52.6 62.8±12.6 62.5±12.3

Align 1
1+exp(−(max{x,y}2

200 48.3±6.1 24.5±2.3 71.1±0.4 24.4±0.5 54.4±0.5 15.3±1.0 17.1±1.4
100∼300 382.9±54.7 387.9±53.6 392.5±52.3 391.9±54.8 336.7±58.6 39.8±8.6 41.7±8.3

(MSE)
e−max{x,y}3/4 200 56.3±7.1 26.8±0.9 79.3±0.5 50.6±0.3 68.6±0.6 21.4±1.7 21.2±1.0

100∼300 234.7±32.9 234.0±33.3 241.4±31.2 242.9±33.3 212.0±36.5 49.3±9.5 48.7±9.1

e−
min{x,y}+

√
x+
√

y
2

200 55.7±7.7 26.4±5.6 76.4±0.4 28.3±0.5 76.4±0.8 23.2±1.3 23.3±1.4
100∼300 232.1±30.8 231.4±31.8 238.7±29.9 232.6±31.9 208.3±34.8 48.2±11.7 47.9±11.0

log(1 + max{x, y}) 200 66.0±8.4 37.1±6.6 66.9±0.8 120.9±0.5 137.0±1.2 23.7±2.5 23.2±1.8
100∼300 370.8±38.9 370.7±40.4 374.5±39.5 375.5±37.5 337.7±42.1 104.0±18.8 107.4±18.9

Hard |x− y| 200 0.202±0.001 0.200±0.002 0.206±0.001 0.215±0.002 0.217±0.002 0.057±0.005 0.050±0.003
100∼300 0.254±0.007 0.254±0.008 0.254±0.009 0.261±0.009 0.248±0.008 0.085±0.012 0.080±0.010

to 1− |x− y| 200 0.200±0.001 0.198±0.002 0.202±0.002 0.209±0.003 0.217±0.001 0.063±0.003 0.057±0.001
100∼300 0.383±0.041 0.384±0.040 0.383±0.040 0.393±0.041 0.350±0.044 0.075±0.009 0.077±0.004

Align 0.8I2 ⊗ 1[0, 1
2
]2

200 0.252±0.018 0.258±0.018 0.258±0.016 0.252±0.016 0.367±0.004 0.252±0.002 0.218±0.001
100∼300 0.355±0.005 0.359±0.002 0.361±0.005 0.392±0.038 0.409±0.004 0.328±0.034 0.329±0.032

(dgw,2) 0.8flip(I2)⊗ 1[0, 1
2
]2

200 0.241±0.010 0.254±0.005 0.250±0.003 0.242±0.003 0.364±0.001 0.252±0.002 0.190±0.058
100∼300 0.453±0.004 0.487±0.002 0.450±0.008 0.477±0.001 0.468±0.001 0.427±0.027 0.420±0.027

Table 1: Comparisons on estimation errors (MSE for “Easy to align”, dgw,2 for “Hard to align”)

et al. 2012), the matrix completion (MC) (Keshavan, Monta-
nari, and Oh 2010), the universal singular value thresholding
(USVT) (Chatterjee and others 2015), and the sorting-and-
smoothing (SAS) (Chan and Airoldi 2014).

We prepare 13 kinds of synthetic graphons, whose defini-
tions are shown in Table 1. The resolution of these graphons
is 1000× 1000. Among these graphons, nine are considered
in (Chan and Airoldi 2014). The graphs generated by them
are easy to align – the node degrees of these graphs provide
strong evidence to sort and match nodes. For these graphons,
we apply the mean-square-error (MSE) to evaluate differ-
ent methods. Additionally, to highlight the advantage of our
method, we design four challenging graphons, whose graphs
are hard to align.3 In particular, for the graphs generated by
these four graphons, the node degrees of different nodes can
be equal to each other. Therefore, there is no simple way
of aligning the graphs. For these graphons, we apply the
GW distance dgw,2 as the evaluation measurement. For each
graphon, we simulate graphs with two different settings: In
one setting, each of the graphs has 200 nodes, while in the
other setting, the number of each graph’s nodes is sampled
uniformly from the range [100, 300]. Originally, the base-
lines above are designed for the former setting. When deal-
ing with graphs with different sizes, they pad zeros to the
corresponding adjacency matrices and enforce the graphs to
have the same size. For each setting, we test our method and

30.8I2 ⊗ 1[0, 1
2
]2 is a graphon with two diagonal blocks, and

0.8flip(I2)⊗1[0, 1
2
]2 is a bipartite graphon, where⊗ represents the

Kronecker product and I2 is a 2× 2 identity matrix.

the baselines in 10 trials, and in each trial we simulate 10
graphs and estimate the graphon by different methods.

Table 1 shows that our GWB method outperforms the
baselines in most situations. Especially for the graphs that
are hard to align, the gap between our methods and the base-
lines become bigger. When the observed graphs have dif-
ferent sizes, the estimation errors of the baselines increase
because the padding step does harm to the alignment of the
graphs. By contrast, our GWB method is relatively robust to
the variance of graph size, and it achieves much lower esti-
mation errors. With the help of the smoothness regularizer,
our SGWB method improves the stability of the original
GWB method, which achieves comparable estimator errors
but with smaller standard deviations. For the nine “easy”
graphons, we generate different numbers of graphs with dif-
ferent sizes and compare the learning methods on their aver-
aged MSEs under different settings in Table 2. Our method
outperforms the baselines, which verifies its robustness.

Besides estimation errors, we also compare various meth-
ods on their computational complexity. The runtime in Ta-
ble 2 shows that our GWB and SGWB are faster than SBA
and LG in practice. Suppose that we have M graphs, and
each of them has N nodes and E edges. Learning a step
function with K partitions as a graphon, we list the com-
plexity of the methods in Table 3. In particular, line 8 of Al-
gorithm 1 involves sparse matrix multiplication, whose com-
plexity is O(EK + NK2). Because the graphs often have
sparse edges, i.e., E = O(N logN) and K = O( N

logN ),
the complexity of our GWB method is comparable to others
when the numbers of iterations (i.e., L and S) are small.
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Measurement # graphs M # nodes N SBA LG MC USVT SAS GWB SGWB

MSE

2 200 62.1±9.0 26.5±3.9 73.6±2.3 45.6±1.6 94.1±1.5 24.6±4.3 24.3±3.3
10 200 59.5±7.7 26.5±3.6 70.7±0.6 39.9±0.9 91.1±0.9 22.3±2.8 21.9±2.4
20 200 32.2±2.0 23.7±4.1 50.7±0.4 38.7±0.5 91.0±0.7 21.1±2.0 20.7±1.7
2 500 59.4±0.4 49.1±2.0 69.0±1.8 35.4±2.4 23.9±4.3 22.2±7.0 21.1±4.5
10 500 47.1±5.6 20.2±1.4 60.6±0.3 27.6±0.4 34.8±0.8 19.7±2.5 19.6±1.7
20 500 34.1±3.3 18.8±1.7 43.2±0.2 27.0±0.3 35.4±0.7 17.3±1.9 17.7±1.4

Runtime 10 200 0.69±0.03 0.61±0.04 0.02±0.01 0.02±0.00 0.03±0.01 0.32±0.04 0.34±0.03
10 500 3.74±0.09 3.69±0.08 0.08±0.02 0.09±0.01 0.08±0.01 0.67±0.06 0.70±0.06

Table 2: Comparisons on averaged MSE and runtime (second) under different configurations

Method Complexity Method Complexity
LG O(MN2) SBA O(MKN logN)
MC O(N3) SAS O(MN logN +K2 logK2)

USVT O(N3) GWB O(LSM(EK +NK2))

Table 3: Comparisons on computational complexity

Real-World Data

For real-world graph datasets, our mixed GWB method
(MixGWBs) provides a new way to cluster graphs. In partic-
ular, by learning C graphons from M graphs, we achieve C
centroids of different clusters and the learned optimal trans-
port P = [pcm] indicates the probability that them-th graph
belongs to the c-th cluster. To demonstrate the effectiveness
of our method, we test it on two datasets and compare it
with three baselines. The datasets are the IMDB-BINARY
and the IMDB-MULTI (Yanardag and Vishwanathan 2015),
which can be downloaded from (Morris et al. 2020). The
IMDB-BINARY contains 1000 graphs belonging to two
clusters, while the IMDB-MULTI contains 1500 graphs be-
longing to three clusters. These two datasets are challenging
for graph clustering, as the nodes and edges of their graphs
do not have any side information. We have to cluster graphs
merely based on their binary adjacency matrices.

For these two datasets, the clustering methods based
on the GW distance achieve state-of-the-art performance.
The representative methods include (i) the fused Gromov-
Wasserstein kernel method (FGWK) (Titouan et al. 2019a);
(ii) the K-means using the Gromov-Wasserstein distance as
the metric (GW-KM); and (iii) the Gromov-Wasserstein
factorization (GWF) method (Xu 2020). We test our MixG-
WBs method and compare it with these three methods on
clustering accuracy. In particular, for each dataset, we apply
10-fold cross-validation to evaluate each clustering method.
The averaged clustering accuracy and the standard deviation
are shown in Table 4. The performance of our method is at
least comparable to that of the competitors.

Figure 2 visualizes the graphons learned by our method
and illustrates the difference between different clusters. We
can find that the graphons correspond to the block models
with different block sizes. Additionally, the IMDB-MULTI
is much more challenging than the IMDB-BINARY, because
it contains three rather than two clusters and the block struc-
ture of each cluster is not so clear as the clusters of the
IMDB-BINARY.

Dataset FGWK GW-KM GWF MixGWBs
IMDB-BINARY 56.7±1.5 53.5±2.3 60.6±1.7 61.4±1.8
IMDB-MULTI 42.3±2.4 41.0±3.1 40.8±2.0 42.9±1.9

Table 4: Comparisons on clustering accuracy (%)

Graphon 0 Graphon 1

(a) IMDB-BINARY

Graphon 1 Graphon 2 Graphon 3

(b) IMDB-MULTI

Figure 2: Illustrations of estimated graphons.

Conclusions
In this paper, we propose a novel method to learn graphons
from unaligned graphs. Our method minimizes an upper
bound of the cut distance between the target graphons and
their approximations, which leads to a GW barycenter prob-
lem. To extend our method to practical scenarios, we devel-
oped two structured variants of the basic GWB algorithm. In
the future, we plan to improve the robustness of our method
to the weight of the smoothness regularizer and further re-
duce the complexity of our method by applying the recur-
sive GW distance (Xu, Luo, and Carin 2019) or the sliced
GW distance (Titouan et al. 2019b). Additionally, because
the graphon is naturally a generative graph model, we will
consider using the model to achieve graph generation tasks.
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