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Abstract
Wasserstein GANs (WGANs), built upon the Kantorovich-
Rubinstein (KR) duality of Wasserstein distance, is one of the
most theoretically sound GAN models. However, in practice
it does not always outperform other variants of GANs. This
is mostly due to the imperfect implementation of the Lips-
chitz condition required by the KR duality. Extensive work
has been done in the community with different implementa-
tions of the Lipschitz constraint, which, however, is still hard
to satisfy the restriction perfectly in practice. In this paper, we
argue that the strong Lipschitz constraint might be unneces-
sary for optimization. Instead, we take a step back and try to
relax the Lipschitz constraint. Theoretically, we first demon-
strate a more general dual form of the Wasserstein distance
called the Sobolev duality, which relaxes the Lipschitz con-
straint but still maintains the favorable gradient property of
the Wasserstein distance. Moreover, we show that the KR du-
ality is actually a special case of the Sobolev duality. Based on
the relaxed duality, we further propose a generalized WGAN
training scheme named Sobolev Wasserstein GAN, and em-
pirically demonstrate the improvement over existing methods
with extensive experiments.

1 Introduction
Generative adversarial networks (GANs) (Goodfellow et al.
2014) have attracted huge interest in both academia and
industry communities due to its effectiveness in a vari-
ety of applications. Despite its effectiveness in various
tasks, a common challenge for GANs is the training insta-
bility (Goodfellow 2016). In literature, many works have
been developed to mitigate this problem (Arjovsky and
Bottou 2017; Lucic et al. 2017; Heusel et al. 2017a;
Mescheder, Nowozin, and Geiger 2017; Mescheder, Geiger,
and Nowozin 2018; Yadav et al. 2017).

By far, it is well known that the problem of training in-
stability of the original GANs mainly comes from the ill-
behaving distance metric (Arjovsky and Bottou 2017), i.e.,
the Jensen-Shannon divergence metric, which remains con-
stant when two distributions are disjoint. The Wasserstein
GAN (Arjovsky, Chintala, and Bottou 2017) improves this
by using the Wasserstein distance, which is able to continu-
ously measure the distance between two distributions. Such
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a new objective has been shown to be effective in improving
training stability.

In practice, since the primal form of the Wasserstein dis-
tance is difficult to optimize, the WGAN model (Arjovsky,
Chintala, and Bottou 2017) instead proposed to optimize
it with the Kantorovich-Rubinstein (KR) duality (Villani
2008). However, though the new WGAN scheme is theoret-
ically more principled, it does not yield better performance
in practice compared to other variants of GANs (Lucic et al.
2017). The main obstacle is that the WGAN requires the dis-
criminator (or the critic) to be a Lipschitz function. However,
this is very hard to satisfy in practice though a variety of dif-
ferent implementations have been tried such as weight clip-
ping (Arjovsky, Chintala, and Bottou 2017), gradient penalty
(GP) (Gulrajani et al. 2017), Lipschitz penalty (LP) (Petzka,
Fischer, and Lukovnikov 2018) and spectral normalization
(SN) (Miyato et al. 2018). As a result, WGAN is still unable
to always achieve very compelling results.

In this paper, we argue that the strong Lipschitz condi-
tion might be unnecessary in the inner optimization loop
for WGAN’s critic. Intuitively, a looser constraint on the
critic, which results in a larger function space, can sim-
plify the practical constrained optimization problem of the
restricted critic, and the better-trained critic would further
benefit the training of the generator. Therefore, instead of
developing new methods to impose the Lipschitz constraint,
in this paper we propose to relax this constraint. In other
words, we move our attention from “how to better imple-
ment the Lipschitz constraint” to “how to loosen the Lips-
chitz constraint”. More specifically, in this paper we demon-
strate a new dual form of the Wasserstein distance where
the Lipschitz constraint is relaxed to the Sobolev constraint
(Adams and Fournier 2003; Mroueh et al. 2018). We fur-
ther show that the new duality with the relaxed constraint
indeed is a generalization of the KR duality, and it still keeps
the gradient property of the Wasserstein distance. Based on
this relaxed duality, we propose a generalized WGAN model
called Sobolev Wasserstein GAN. To the best of our knowl-
edge, among the restricted GAN models (Arjovsky, Chin-
tala, and Bottou 2017; Gulrajani et al. 2017; Mroueh et al.
2018; Mroueh and Sercu 2017; Bellemare et al. 2017; Adler
and Lunz 2018), Sobolev Wasserstein GAN is the most re-
laxed one that can still avoid the training instability problem.

The main contributions of this paper can be summarized
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as follows:

• We demonstrate the Sobolev duality of Wasserstein dis-
tance and demonstrate that the new duality is also ca-
pable of alleviating the training instability problem in
GANs (Section 3.1). We further clarify the relation be-
tween Sobolev duality and other previous metrics and
highlight that by far Sobolev duality is the most relaxed
metric that can still avoid the non-convergence problem
in GANs (Section 3.2).

• Based on Sobolev duality, we introduce the Inequality
Constraint Augmented Lagrangian Method (Nocedal and
Wright 2006) to build the practical Sobolev Wasserstein
GAN (SWGAN) training algorithm (Section 4).

We conduct extensive experiments to study the practical per-
formance of SWGAN. We find that generally our proposed
model achieves better sample quality and is less sensitive to
the hyper-parameters. We also present a theoretical analy-
sis of the minor sub-optimal equilibrium problem common
in WGAN family models, and further propose an improved
SWGAN with a better convergence.

2 Preliminaries
2.1 Generative Adversarial Networks
Generative adversarial networks (Goodfellow et al. 2014)
perform generative modeling via two competing networks.
The generator networkG learns to map samples from a noise
distribution to a target distribution, while the discriminator
network D is trained to distinguish between the real data
and the generated samples. Then the generator G is trained
to output images that can fool the discriminator D. The pro-
cess is iterated. Formally, the game between the generatorG
and the discriminator D leads to the minimax objective:

min
G

max
D

{
Ex∼Pr

[log(D(x))]+

Ez∼Pz [log(1−D(G(z))]
}
,

(1)

where Pr denotes the distribution of real data and Pz denotes
the noise distribution.

This objective function is proven to be equivalent to the
Jensen-Shannon divergence (JSD) between the real data dis-
tribution Pr and fake data distribution Pg when the discrim-
inator is optimal. Assuming the discriminator is perfectly
trained, the optimal discriminator is as follows:

D∗(x) =
Pr

Pr + Pg
. (2)

However, recently (Zhou et al. 2019) points out that the gra-
dients provided by the optimal discriminator in vanilla GAN
cannot consistently provide meaningful information for the
generator’s update, which leads to the notorious training
problems in GANs such as gradient vanishing (Goodfellow
et al. 2014; Arjovsky and Bottou 2017) and mode collapse
(Che et al. 2016; Metz et al. 2016; Kodali et al. 2017b; Arora
et al. 2017). This view would be clear when checking the
gradient of optimal discriminator in Eq. (2): the value of the

optimal discriminative function D∗(x) at each point is in-
dependent of other points and only reflects the local densi-
ties of Pr(x) and Pg(x), thus, when the supports of the two
distributions are disjoint, the gradient produced by a well-
trained discriminator is uninformative to guide the generator
(Zhou et al. 2019).

2.2 Wasserstein Distance
Let Pr and Pg be two data distributions on Rn. The
Wasserstein-1 distance between Pr and Pg is defined as

W (Pr, Pg) = inf
π∈Π(Pr,Pg)

E(xi,xj)∼π[‖xi − xj‖], (3)

where the coupling π of Pr and Pg is the probability distri-
bution on Rn×Rn with marginals Pr and Pg , and Π(Pr, Pg)
denotes the set of all joint distributions π. The Wasserstein
distance can be interpreted as the minimum cost of transport-
ing one probability distribution to another. The Kantorovich-
Rubinstein (KR) duality (Villani 2008) provides a new way
to evaluate the Wasserstein distance between distributions.
The duality states that

W (Pr, Pg) = supf

{
Ex∼Pr

[f(x)]− Ex∼Pg
[f(x)]

}
,

s.t. f(xi)− f(xj) ≤ ‖xi − xj‖, ∀xi, ∀xj .
(4)

where the supremum is taken over all functions f : X → R
whose Lipschitz constant is no more than one.

2.3 Wasserstein GAN
The training instability issues of vanilla GAN is considered
to be caused by the unfavorable property of distance met-
ric (Arjovsky and Bottou 2017), i.e., the JSD remains con-
stant when the two distributions are disjoint. Accordingly,
(Arjovsky, Chintala, and Bottou 2017) proposed Wasserstein
distance in the form of KR duality Eq. (4) as an alternative
objective.

The Wasserstein distance requires to enforce the Lips-
chitz condition on the critic network D. It has been ob-
served in previous work that imposing Lipschitz constraint
in the critic leads to improved stability and sample quality
(Arjovsky, Chintala, and Bottou 2017; Kodali et al. 2017b;
Fedus et al. 2017; Farnia and Tse 2018). Besides, some re-
searchers also found that applying Lipschitz continuity con-
dition to the generator can benefit the quality of generated
samples (Zhang et al. 2018; Odena et al. 2018). Formally,
in WGAN family, with the objective being Wasserstein dis-
tance, the optimal critic f∗ under Lipschitz constraint holds
the following property (Gulrajani et al. 2017):
Proposition 1. Let π∗ be the optimal coupling in Eq. (3),
then the optimal function f∗ in KR duality Eq. (4) satisfies
that: let xt = txi + (1 − t)xj with 0 ≤ t ≤ 1, if f∗ is
differentiable and π∗(x, x) = 0 for all x, then it holds that
P(xi,xj)∼π∗ [∇f∗(xt) =

xi−xj

‖xi−xj‖ ] = 1.

This property indicates that for each coupling of gener-
ated datapoint xj and real datapoint xi in π∗, the gradi-
ent at any linear interpolation between xi and xj is point-
ing towards the real datapoint xi with unit norm. There-
fore, guided by the gradients, the generated sample xj would
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move toward the real sample xi. This property provides the
explanation, from the gradient perspective, on why WGAN
can overcome the training instability issue.

2.4 Sobolev Space
Let X be a compact space in Rn and let µ(x) to be a dis-
tribution defined on X as a dominant measure. Functions in
the Sobolev space W 1,2(X , µ) (Adams and Fournier 2003)
can be written as:

W 1,2(X , µ) =
{
f : X → R,

∫
X ‖∇xf(x)‖2µ(x)dx <∞

}
.

(5)
Restrict functions to the Sobolev space W 1,2(X , µ) vanish-
ing at the boundary and denote this space by W 1,2

0 (X , µ),
then the semi-norm in W 1,2

0 (X , µ) can be defined as:

‖f‖W 1,2
0 (X ,µ) =

√∫
X
‖∇xf(x)‖2µ(x)dx. (6)

Given the notion of semi-norm, we can define the Sobolev
unit ball constraint as follows:

FS(X , µ) =
{
f : X → R, f ∈W 1,2

0 (X , µ),

‖f‖W 1,2
0 (X ,µ) ≤ 1

}
.

(7)

Sobolev unit ball is a function class that restricts the square
root of integral of squared gradient norms according to the
dominant measure µ(x).

2.5 Sobolev GAN
After WGAN, many works are devoted to improving GAN
model by imposing restrictions on the critic function. Typ-
ical instances are the GANs based on Integral Probability
Metric (IPM) (Mroueh and Sercu 2017; Bellemare et al.
2017). Among them, Sobolev GAN (SGAN) (Mroueh et al.
2018) proposed using Sobolev IPM as the metric for training
GANs, which restricts the critic network D in FS(X , µ):

Sµ(Pr, Pg) = sup
f∈FS(X ,µ)

{
Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

}
.

(8)
The following choices of measure µ for FS are considered,
which we will take as our baselines:

• µ =
Pr+Pg

2 : the mixed distribution of Pr and Pg;

• µgp: x = txi+(1−t)xj , where xi ∼ Pr, xj ∼ Pg and t ∼
U[0, 1], i.e., the distribution defined by the interpolation
lines between Pr and Pg as in (Gulrajani et al. 2017).

Let FPr
and FPg

be the cumulative distribution functions
(CDF) of Pr and Pg respectively, and assume that the n
partial derivatives of FPr

and FPg
exist and are continu-

ous. Define the differential operator D− = (D−1, ..., D−n)

where D−i =
∂n−1

∂x1...∂xi−1∂xi+1...∂xn
, which computes

(n − 1) high-order partial derivative excluding the i-th di-
mension. Let x−i = (x1, ..., xi−1, xi+1, ..., xd). According

to (Mroueh et al. 2018), the Sobolev IPM in Eq. (8) has the
following equivalent form:

Sµ(Pr, Pg) =
1

n

√√√√Ex∼µ
n∑
i=1

(
D−iFPr (x)−D−iFPg (x)

µ(x)

)2

.

(9)
Note that, for each i, D−iFP (x) is the cumulative distribu-
tion of the variable Xi given the other variables X−i = x−i

weighted by the density function of X−i at x−i, i.e.,

D−iFP (x) = P[X−i](x
−i)FP[Xi|X−i=x−i]

(xi). (10)

Thus, the Sobolev IPM can be seen as a comparison of
coordinate-wise conditional CDFs. Furthermore, (Mroueh
et al. 2018) also proves that the optimal critic f∗ in SGAN
holds the following property:

∇xf∗(x) =
1

nSµ(Pr, Pg)
D−FPg (x)−D−FPr (x)

µ(x)
. (11)

3 Sobolev Duality of Wasserstein Distance
3.1 Sobolev Duality
Let xi and xj be two points in Rn. The linear interpolation
between xi and xj can be written as x = txi + (1 − t)xj
with 0 ≤ t ≤ 1. Regarding x as a random variable on the line
between xi and xj , we can then define its probability distri-
bution as µxi,xj (x), which we will later use as the dominant
measure for Sobolev space. Formally, let t be the random
variable that follows the uniform distribution U[0, 1]. Then
µxi,xj (x) can be written as:

µxi,xj (x) =


1

‖xi − xj‖
, x = txi + (t− 1)xj ,

0, otherwise.

(12)

With the above defined notation, we propose our new dual
form of Wasserstein distance as follows, which we call
Sobolev duality1

W (Pr, Pg) = supf

{
Ex∼Pr

[f(x)]− Ex∼Pg
[f(x)]

}
,

s.t. f ∈ FS(X , µxi,xj ), ∀xi ∼ Pr, ∀xj ∼ Pg,
(13)

where FS(X , µxi,xj ) denotes the Sobolev unit ball of

‖f‖W 1,2
0 (X ,µxi,xj ) =

√∫
X
‖∇xf(x)‖2µxi,xj (x)dx ≤ 1.

(14)
Note that the support of µxi,xj (x) is the straight line be-
tween xi and xj . Thus ‖f‖W 1,2(X ,µxi,xj ) is the square root
of the path integral of squared gradient norms from xi to xj ,
i.e., the constraint is restricting the gradient integral on each
line between Pr and Pg to be no more than 1.

Corresponding to Proposition 1 of KR duality, we high-
light the following property of the Sobolev duality:

1We provide the proofs of Sobolev duality and Proposition 2 in
Appendix.
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Figure 1: 1D Training comparison. Upper: WGAN. Lower: SWGAN. Orange: real data, sampled from N(0, 1). Green: fake
data, sampled from 1

2 (N(−5, 1) + N(5, 1)). Blue: the re-scaled critic, which is normalized to [0, 0.5]. From left to right,
different columns correspond to iteration 0, 30, 60, 90, 120, 180, 240, 300 respectively. The critic of SWGAN holds a faster and
smoother convergence.

Proposition 2. Let π∗ be the optimal coupling in Eq. (3),
then the optimal function f∗ in Sobolev duality Eq. (13) sat-
isfies that: let xt = txi + (1− t)xj with 0 ≤ t ≤ 1, if f∗ is
differentiable and π∗(x, x) = 0 for all x, then it holds that
P(xi,xj)∼π∗ [∇f∗(xt) =

xi−xj

‖xi−xj‖ ] = 1.

That is, with Sobolev duality, the gradient direction for
every fake datum is the same as WGAN. Hence, enforcing
the Sobolev duality constraint on discriminator can be an
effective alternative of the Lipschitz condition to guarantee
a stable training for GAN model.

3.2 Relation to Other Metrics
Relation to KR Duality in Eq. (4). As indicated by
Proposition 2, the optimal critic f∗ of Sobolev duality ac-
tually holds the same gradient property as KR duality in
Proposition 1. However, as clarified below, the constraint
in Sobolev duality is indeed looser than KR duality, which
would potentially benefit the optimization.

In the classic KR duality , f is restricted under Lipschitz
condition, i.e., the gradient norms of all points in the metric
space are enforced to no more than 1. By contrast, in our
Sobolev duality, we restrict the integral of squared gradient
norms over each line between Pr and Pg . This implies that
Lipschitz continuity is a sufficient condition of the constraint
in Sobolev duality. In summary, Sobolev duality is a gener-
alization of KR duality where the constraint is relaxed, while
still keeps the same property of training stability.

Relation to Sobolev IPM in Eq. (8). We now clarify the
difference between Sobolev IPM in Eq. (8) and Sobolev du-
ality of Wasserstein distance in Eq. (13). In the former met-
ric, when implementing µgp (defined in Section 2.5), the to-
tal integral of squared gradient norms on all interpolation
lines between Pr and Pg is enforced to no more than 1; while
in the latter metric, the integral over each interpolation line
between Pr and Pg is restricted. Therefore, Sobolev duality
enforces stronger constraint than Sobolev IPM.

However, we should also note that the stronger constraint
is necessary to ensure the favorable gradient property in
Proposition 2. By contrast, as shown in Eq. (11), Sobolev
IPM measures coordinate-wise conditional CDF, which can-
not always provide gradients as good as the optimal trans-
port plan in Wasserstein distance. A toy example is provided

in Appendix to show the case that Sobolev IPM is sometimes
insufficiently constrained to ensure the convergence.

4 Sobolev Wasserstein GAN
Now we define the GAN model with Sobolev duality, which
we name as Sobolev Wasserstein GAN (SWGAN). For-
mally, SWGAN can be written as:

min
G

max
D
LS(Dw, Gθ)

= Ex∼Pr
Dw(x)− Ez∼Pz

Dw(Gθ(z)),
(15)

with the constraint that

Ex∼µxi,xj ‖∇xDw(x)‖2 ≤ 1, ∀xi ∼ Pr, ∀xj ∼ Pg, (16)

where µxi,xj is the interpolation distribution on lines be-
tween pairs of points xi and xj as defined in Eq. (12).

Let Ωij denote 1−Ex∼µxi,xj ‖∇xDw(x)‖2, then the con-
straint is to restrict Ωij to be greater than or equal to 0 for
all the pairs of (xi, xj). Inspired by (Mroueh et al. 2018),
we define the following Augmented Lagrangian inequality
regularization (Nocedal and Wright 2006) corresponding to
SWGAN ball constraints:

L(ij)
al (w, θ, α) = α(Ωij − sij)−

ρ

2
(Ωij − sij)2,

Lal(w, θ, α) = Exi∼Pr
Exj∼Pg

L(ij)
al (w, θ, α).

(17)

where α is the Lagrange multiplier, ρ is the quadratic penalty
weight and sij represents the slack variables. Practically, sij
is directly substituted by its optimal solution:

s∗ij = max
{

Ωij −
α

ρ
, 0

}
. (18)

As in (Arjovsky, Chintala, and Bottou 2017) and (Mroueh
et al. 2018), the regularization term in Eq. (17) is added to
the loss only when training the critic. To be more specific,
the training process is: given the generator parameters θ, we
train the discriminator by maximizing LS +Lal; then given
the discriminator parameters w, we train the generator via
minimizing LS . We leave the detailed training procedure in
Appendix.
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(a) 8 Gaussians (b) 25 Gaussians (c) Swiss Roll

Figure 2: Level sets of SWGANs critic. Yellow corresponds
to high values and purple to low. The training samples are
indicated in red and the generated distribution is fixed at the
real data plus Gaussian noise.

5 Experiments
We tested SWGAN on both synthetic density modeling and
real-world image generation task.2

5.1 Synthetic Density Modeling
1D Distribution Modeling. Displaying the level sets is a
standard qualitative approach to evaluate the learned critic
function for two-dimensional data sets (Gulrajani et al.
2017; Kodali et al. 2017a; Petzka, Fischer, and Lukovnikov
2018). Here, we consider both real data distribution Pr
and generated fake distribution Pg are fixed simple one-
dimensional Gaussian distributions. Our goal is to investi-
gate whether the critics of both WGAN and SWGAN can
be efficiently optimized to provide the favorable gradients
presented in Proposition 1 and 2. We observed that while
both critics can be trained to the theoretical optimum, the
latter one can always enjoy a faster convergence compared
with the former one. An empirical example is visualized
in Fig. 1. As shown here, with the same initial states and
hyper-parameters, the critic of SWGAN holds a faster and
smoother convergence towards the optimal state. This mean-
ingful observation verifies our conjecture that a larger func-
tion space of the critic would benefit the training.

Level Sets of the Critic. In this section we give an-
other 2D level sets visualization. As analyzed in Sec-
tion 3.1, Sobolev constraint in SWGAN is a generalization
of Lipschitz constraint. Therefore, theoretically SWGAN
critic should also be capable of modeling more challenging
real and fake data and providing meaningful gradients. To
demonstrate this, we train SWGAN critics to optimality on
several toy distributions. The value surfaces of the critics are
plotted in Figure 2, which shows good fitness of the distri-
bution following our theoretical analysis.

5.2 Real-world Image Generation
Experimental Setup Controlled variables. To make the
comparisons more convincing, we also include extended
versions of the existing GAN models to control the con-
trastive variables. The controlled variables includes:
• Sampling size. In SWGAN-AL we need to sample m

points on each interpolation line between Pr and Pg ,
while in WGAN-GP (Gulrajani et al. 2017) and SGAN

2Code is available at https://github.com/MinkaiXu/
SobolevWassersteinGAN.

Generator G(z)

Operation Kernel size Resample Output Dims

Noise N/A N/A 128
Linear N/A N/A 128× 4× 4

Residual block [3× 3]× 2 Up 128× 8× 8
Residual block [3× 3]× 2 Up 128× 16× 16
Residual block [3× 3]× 2 Up 128× 32× 32

Conv, tanh 3× 3 N/A 3× 32× 32

Critic D(x)

Operation Kernel size Resample Output Dims

Residual block [3× 3]× 2 Down 128× 16× 16
Residual block [3× 3]× 2 Down 128× 8× 8
Residual block [3× 3]× 2 N/A 128× 8× 8
Residual block [3× 3]× 2 N/A 128× 8× 8

ReLU, mean pool N/A N/A 128
Linear N/A N/A 1

Table 1: ResNet architecture.

(Mroueh et al. 2018) only one point is sampled. To yield a
more fair comparison, we perform additional experiments
of WGAN and SGAN with the sampling size equal to m.
• Optimization method. In our baseline WGAN-GP (Gul-

rajani et al. 2017), the restriction is imposed by Penalty
Method (PM). By contrast, SGAN and SWGAN-AL use
Augmented Lagrangian Method (ALM). ALM is a more
advanced algorithm than PM for strictly imposing the
constraint. To see the practical difference, we add ex-
periment settings of SWGAN with penalty regularization
term (named SWGAN-GP). Formally, the penalty can be
written as:

Lgp(w, θ) = −λ Exi∼Pr
Exj∼Pg

Ω2
ij(Dw, Gθ), (19)

where λ is the gradient penalty coefficient. Lgp is the al-
ternative term of the ALM penalty Lal in Eq. (17) for the
training of SWGAN-GP.
Baselines. For comparison, we also evaluated the

WGAN-GP (Gulrajani et al. 2017) and Sobolev GAN
(SGAN) (Mroueh et al. 2018) with different sampling sizes
and penalty methods. The choice of baselines is due to their
close relation to SWGAN as analyzed in Section 3.2. We
omit other previous methods since as a representative of
state-of-the-art GAN model, WGAN-GP has been shown to
rival or outperform a number of former methods, such as
the original GAN (Goodfellow et al. 2014), Energy-based
generative adversarial network (Zhao, Mathieu, and LeCun
2016), the original WGAN with weight clipping (Arjovsky,
Chintala, and Bottou 2017), Least Squares GAN (Mao et al.
2017), Boundary equilibrium GAN (Berthelot, Schumm,
and Metz 2017) and GAN with denoising feature matching
(Warde-Farley and Bengio 2016).

Evaluation metrics. Since GAN lacks the capacity to
perform reliable likelihood estimations (Theis, Oord, and
Bethge 2015), we instead concentrate on evaluating the
quality of generated images. We choose to compare the
maximal Frechet Inception Distances (FID) (Heusel et al.
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GANs CIFAR-10 Tiny-ImageNet
IS FID IS FID

WGAN-GP∗ 7.85±.07 18.21±.12 8.17±.03 18.70±.05
WGAN-GP with m = 8 7.88±.09 18.08±.22 8.17±.04 18.69±.10

WGAN-AL 7.79±.09 17.86±.16 8.26±.03 18.70±.06
WGAN-AL with m = 8 7.89±.09 17.52±.27 8.31±.02 18.61±.09

SGAN∗, µ =
Pr+Pg

2
7.81±.11 17.89±.27 8.30±.04 18.90±.04

SGAN∗, µ = µGP 7.83±.10 18.03±.24 8.31±.03 18.90±.08
SGAN, µ = µGP with m = 8 7.86±.09 17.74±.24 8.33±.03 18.75±.07

SWGAN-GP 7.98±.08 17.50±.19 8.38±.03 18.50±.03
SWGAN-AL 7.93±.09 16.75±.24 8.41±.03 18.32±.05

* denotes the vanilla version of our baselines.
Table 2: Performance of GANs on CIFAR-10 and Tiny-ImageNet.

2017b) and Inception Scores (Salimans et al. 2016) reached
during training iterations, both computed from 50K sam-
ples. A high image quality corresponds to high Incep-
tion and low FID scores. Specifally, IS is defined as
exp(Ex KL(p(y|x)||p(y))), where p(y|x) is the distribution
of label y conditioned on generated data x, and p(y) is
the marginal distribution. IS combines both the confidence
of the class predictions for each synthetic images (quality)
and the integral of the marginal probability of the predicted
classes (diversity). The classification probabilities were es-
timated by the Inception model (Salimans et al. 2016), a
classifier pre-trained upon the ImageNet dataset (Deng et al.
2009). However, in practice we note that IS is hard to de-
tect the mode collapse problems. FID use the same Incep-
tion model to capture computer-vision-specific features of
a collection of real and generated images, and then calcu-
late the Frechet distance (also called Wasserstein-2 dis-
tance) (Aronov et al. 2006) between two activation dis-
tributions. The intuition of IS is that high-quality images
should lead to high confidence in classification, while FID
is aiming to measure the computer-vision-specific similarity
of generated images to real ones through Frechet distance
(a.k.a., Wasserstein-2 distance) (Aronov et al. 2006).

Data. We test different GANs on CIFAR-10 (Krizhevsky,
Hinton et al. 2009) and Tiny-ImageNet (Deng et al. 2009) ,
which are standard datasets widely used in GANs literatures.
Both datasets consist of tens of thousands of real-world color
images with class labels.

Network architecture. For all experimental settings, we
follow WGAN-GP (Gulrajani et al. 2017) and adopt the
same Residual Network (ResNet) (He et al. 2016) struc-
tures and hyperparameters. Specifically, the generator and
critic are residual networks. (Gulrajani et al. 2017) use pre-
activation residual blocks with two 3×3 convolutional layers
each and ReLU nonlinearity. Batch normalization is used in
the generator but not the critic. Some residual blocks per-
form downsampling (in the critic) using mean pooling after

the second convolution, or nearest-neighbor upsampling (in
the generator) before the second convolution. Formally, we
present our ResNet architecture in Table 1. Further architec-
tural details can be found in our open-source model.

Other implementation details. For SWGAN metapa-
rameter, we choose 8 as the sample size m. Adam optimizer
(Kingma and Ba 2014) is set with learning rate decaying
from 2 · 10−4 to 0 over 100K iterations with β1 = 0, β2 =
0.9. We used 5 critic updates per generator update, and the
batch size used was 64.

Results We here also introduce WGAN with Augmented
Lagrangian Method (WGAN-AL) for further comparison,
which is similar to SGAN (Mroueh et al. 2018). Scores
in terms of FID and IS on CIFAR-10 and Tiny-ImageNet
are reported in Table 2. Some representative samples from
the resulting generator of SWGAN are provided in Fig. 3
and Fig. 4. Some representative samples from the resulting
generator of SWGAN are provided in Appendix. In experi-
ments, we note that IS is remarkably unstable during train-
ing and among different initializations, while FID is fairly
stable.

From Table 2, we can see that SWGANs generally work

Figure 3: Generated CIFAR-10 samples.
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Figure 4: Generated Tiny-ImageNet samples.

λ in GP ρ in AL

Figure 5: The comparison of SWGANs with different regu-
larization terms and parameters. Top: Inception scores. Bot-
tom: Frechet Inception Distances.

better than the baseline models. The experimental results
also show that WGAN and SGAN tend to have slightly bet-
ter performance when using ALM or sample more inter-
polation points. However, compared with SWGAN-AL and
SWGAN-GP, the performances in these cases are still not
competitive enough. This indicates that the larger sampling
size and ALM optimization algorithm are not the key ele-
ments for the better performance of SWGAN, i.e., these re-
sults evidence that it is the relaxed constraint in Sobolev du-
ality that leads to the improvement, which is in accordance
with our motivation that a looser constraint would simplify
the constrained optimization problem and lead to a stronger
GAN model.

We further test SWGAN with different regularization
terms and parameters on CIFAR-10. The scores are shown
in Figure 5. As shown in Figure 5, generally ALM is a better
choice when considering FID, while GP is better for IS. A
meaningful observation is that SWGAN is not sensitive to
different values of penalty weights ρ and λ. By contrast, a
previous large scale study reported that the performance of
WGAN-GP holds strong dependence on the penalty weight
λ (see Figure 8 and 9 in (Lucic et al. 2017)). This phe-
nomenon demonstrates a more smooth and stable conver-
gence and well-behaved critic performance throughout the
whole training process of SWGAN.

6 Conclusion
In this paper, we proposed a new dual form of Wasserstein
distance with the Lipschitz constraint relaxed and demon-
strate that it is still capable of eliminating the training in-
stability issues. This new dual form leads to a generalized
WGAN model. We built Sobolev Wasserstein GAN based
on the proposed duality and provided empirical evidence
that our GAN model outperforms the previous approaches,
which either impose the strong Lipschitz penalty or cannot
theoretically guarantee the convergence.

This work was motivated by the intuition that with a less
restricted function space, the critic would be easier to be
trained to optimum, thus benefiting the training of GANs.
To the best of our knowledge, Sobolev Wasserstein GAN is
the GAN model with the most relaxed restriction that can
still avoid the training instability problem. In the future, we
hope that practitioners can take a step back and investigate
whether we can further relax the constraint imposed on the
function space of the critic and what the minimal require-
ment for the convergence guarantee could be.
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