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Abstract

Understanding the effect of depth in deep learning is a critical
problem. In this work, we utilize the Fourier analysis to em-
pirically provide a promising mechanism to understand why
feedforward deeper learning is faster. To this end, we separate
a deep neural network, trained by normal stochastic gradient
descent, into two parts during analysis, i.e., a pre-condition
component and a learning component, in which the output
of the pre-condition one is the input of the learning one. We
use a filtering method to characterize the frequency distribu-
tion of a high-dimensional function. Based on experiments of
deep networks and real dataset, we propose a deep frequency
principle, that is, the effective target function for a deeper hid-
den layer biases towards lower frequency during the training.
Therefore, the learning component effectively learns a lower
frequency function if the pre-condition component has more
layers. Due to the well-studied frequency principle, i.e., deep
neural networks learn lower frequency functions faster, the
deep frequency principle provides a reasonable explanation
to why deeper learning is faster. We believe these empirical
studies would be valuable for future theoretical studies of the
effect of depth in deep learning.

Introduction
Deep neural networks have achieved tremendous success in
many applications, such as computer vision, speech recog-
nition, speech translation, and natural language processing
etc. The depth in neural networks plays an important role
in the applications. Understanding the effect of depth is a
central problem to reveal the “black box” of deep learning.
For example, empirical studies show that a deeper network
can learn faster and generalize better in both real data and
synthetic data (He et al. 2016; Arora, Cohen, and Hazan
2018). Different network structures have different compu-
tation costs in each training epoch. In this work, we define
that the learning of a deep neural network is faster if the
loss of the deep neural network decreases to a designated
error with fewer training epochs. For example, as shown in
Fig. 1 (a), when learning data sampled from a target function
cos(3x) + cos(5x), a deep neural network with more hid-
den layers achieves the designated training loss with fewer
training epochs. Although empirical studies suggest deeper
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neural networks may learn faster, there is few understanding
of the mechanism.

In this work, we would empirically explore an underly-
ing mechanism that may explain why deeper neural network
(note: in this work, we only study feedforward networks)
can learn faster from the perspective of Fourier analysis. We
start from a universal phenomenon of frequency principle
(Xu, Zhang, and Xiao 2019; Rahaman et al. 2019; Xu et al.
2020; Luo et al. 2019; E, Ma, and Wu 2020), that is, deep
neural networks often fit target functions from low to high
frequencies during the training. Recent works show that fre-
quency principle may provide an understanding to the suc-
cess and failure of deep learning (Xu et al. 2020; Zhang et al.
2019; E, Ma, and Wu 2020; Ma, Wu, and E 2020). We use
an ideal example to illustrate the frequency principle, i.e.,
using a deep neural network to fit different target functions.
As the frequency of the target function decreases, the deep
neural network achieves a designated error with fewer train-
ing epochs, as shown in Fig. 1 (b), which is similar to the
phenomenon when using a deeper network to learn a fixed
target function.

Inspired by the above analysis, we propose a mechanism
to understand why a deeper network, fθ(x), faster learns
a set of training data, S = {(xi, yi)}ni=1 sampled from a
target function f∗(x), illustrated as follows. Networks are
trained as usual while we separate a deep neural network
into two parts in the analysis, as shown in Fig. 2, one is a pre-
condition component and the other is a learning component,
in which the output of the pre-condition one, denoted as
f
[l−1]
θ (x) (first l−1 layers are classified as the pre-condition

component), is the input of the learning one. For the learn-
ing component, the effective training data at each training
epoch is S[l−1] = {(f [l−1]θ (xi), yi)}ni=1. We then perform
experiments based on the variants of Resnet18 structure (He
et al. 2016) and CIFAR10 dataset. We fix the learning com-
ponent (fully-connected layers). When increasing the num-
ber of the pre-condition layer (convolution layers), we find
that S[l−1] has a stronger bias towards low frequency during
the training. By frequency principle, the learning of a lower
frequency function is faster, therefore, the learning compo-
nent is faster to learn S[l−1] when the pre-condition com-
ponent has more layers. The analysis among different net-
work structures is often much more difficult than the analy-
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(a) different networks

(b) different target functions

Figure 1: Training epochs (indicated by ordinate axis) of dif-
ferent deep neural networks when they achieve a fixed error.
(a) Using networks with different number of hidden layers
with the same size to learn data sampled from a target func-
tion cos(3x) + cos(5x). (b) Using a fixed network to learn
data sampled from different target functions.

sis of one single structure. For providing hints for future the-
oretical study, we study a fixed fully-connected deep neural
network by classifying different number of layers into the
pre-condition component, i.e., varying l for a network in the
analysis. As l increases, we similarly find that S[l] contains
more low frequency and less high frequency during the train-
ing. Therefore, we propose the following principle:

Deep frequency principle: The effective target function for
a deeper hidden layer biases towards lower frequency dur-
ing the training.

With the well-studied frequency principle, the deep fre-
quency principle shows a promising mechanism for under-
standing why a deeper network learns faster.

Related Work
From the perspective of approximation, the expressive
power of a deep neural network increases with the depth
(Telgarsky 2016; Eldan and Shamir 2016; E and Qingcan
2018). However, the approximation theory renders no impli-

cation on the optimization of deep neural networks.
With residual connection, He et al. (2016) successfully

train very deep networks and find that deeper networks can
achieve better generalization error. In addition, He et al.
(2016) also show that the training of deeper network is faster.
Arora, Cohen, and Hazan (2018) show that the accelera-
tion effect of depth also exists in deep linear neural net-
work and provide a viewpoint for understanding the effect
of depth, that is, increasing depth can be seen as an accel-
eration procedure that combines momentum with adaptive
learning rates. There are also many works studying the ef-
fect of depth for deep linear networks (Saxe, Mcclelland,
and Ganguli 2014; Kawaguchi, Huang, and Kaelbling 2019;
Gissin, Shalev-Shwartz, and Daniely 2019; Shin 2019). In
this work, we study the optimization effect of depth in non-
linear deep networks.

Various studies suggest that the function learned by the
deep neural networks increases its complexity as the train-
ing goes (Arpit et al. 2017; Valle-Perez, Camargo, and Louis
2018; Mingard et al. 2019; Kalimeris et al. 2019; Yang and
Salman 2019). This increasing complexity is also found in
deep linear network (Gissin, Shalev-Shwartz, and Daniely
2019). The high-dimensional experiments in (Xu et al. 2020)
show that the low-frequency part is converged first, i.e., fre-
quency principle. Therefore, the ratio of the power of the
low-frequency component of the deep neural network out-
put experiences a increasing stage at the beginning (due to
the convergence of low-frequency part), followed by a de-
creasing stage (due to the convergence of high-frequency
part). As more high-frequency involved, the complexity of
the deep neural network output increases. Therefore, the ra-
tio of the low-frequency component used in this paper val-
idates the complexity increasing during the training, which
is consistent with other studies.

Frequency principle is examined in extensive datasets
and deep neural networks (Xu, Zhang, and Xiao 2019; Ra-
haman et al. 2019; Xu et al. 2020). Theoretical studies subse-
quently shows that frequency principle holds in general set-
ting with infinite samples (Luo et al. 2019) and in the regime
of wide neural networks (Neural Tangent Kernel (NTK)
regime (Jacot, Gabriel, and Hongler 2018)) with finite sam-
ples (Zhang et al. 2019) or sufficient many samples (Cao
et al. 2019; Yang and Salman 2019; Ronen et al. 2019; Bor-
delon, Canatar, and Pehlevan 2020). E, Ma, and Wu (2020)
show that the integral equation would naturally leads to the
frequency principle. With the theoretical understanding, the
frequency principle inspires the design of deep neural net-
works to fast learn a function with high frequency (Liu, Cai,
and Xu 2020; Wang et al. 2020; Jagtap, Kawaguchi, and
Karniadakis 2020; Cai, Li, and Liu 2019; Biland et al. 2019;
Li, Xu, and Zhang 2020).

Preliminary
Low Frequency Ratio (LFR)
To compare two 1-d functions in the frequency domain,
we can display their spectrum. However, this does not ap-
ply for high-dimensional functions, because the computa-
tion cost of high-dimensional Fourier transform suffers from
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Figure 2: General deep neural network.

the curse of dimensionality. To overcome this, we use a low-
frequency filter to derive a low-frequency component of the
interested function and then use a Low Frequency Ratio
(LFR) to characterize the power ratio of the low-frequency
component over the whole spectrum.

The LFR is defined as follows. We first split the fre-
quency domain into two parts, i.e., a low-frequency part
with frequency |k| ≤ k0 and a high-frequency part with
|k| > k0, where | · | is the length of a vector. Consider a
dataset {(xi,yi)}ni=1, xi ∈ Rd, and yi ∈ Rdo . For exam-
ple, d = 784 and do = 10 for MNIST and d = 3072 and
do = 10 for CIFAR10. The LFR is defined as

LFR(k0) =

∑
k 1|k|≤k0 |ŷ(k)|2∑

k |ŷ(k)|2
, (1)

where ·̂ indicates Fourier transform, 1k≤k0 is an indicator
function, i.e.,

1|k|≤k0 =

{
1, |k| ≤ k0,
0, |k| > k0.

However, it is almost impossible to compute above quan-
tities numerically due to high computational cost of high-
dimensional Fourier transform. Similarly as previous study
(Xu et al. 2020), We alternatively use the Fourier transform
of a Gaussian function Ĝδ(k), where δ is the variance of
the Gaussian function G, to approximate 1|k|>k0 . Note that
1/δ can be interpreted as the variance of Ĝ. The approxi-
mation is reasonable due to the following two reasons. First,
the Fourier transform of a Gaussian is still a Gaussian, i.e.,

Ĝδ(k) decays exponentially as |k| increases, therefore, it
can approximate 1|k|≤k0 by Ĝδ(k) with a proper δ(k0). Sec-
ond, the computation of LFR contains the multiplication of
Fourier transforms in the frequency domain, which is equiv-
alent to the Fourier transform of a convolution in the spatial
domain. We can equivalently perform the computation in the
spatial domain so as to avoid the almost impossible high-
dimensional Fourier transform. The low frequency part can
be derived by

y
low,δ(k0)
i , (y ∗Gδ(k0))i, (2)

where ∗ indicates convolution operator. Then, we can com-
pute the LFR by

LFR(k0) =

∑
i |y

low,δ(k0)
i |2∑
i |yi|2

. (3)

The low frequency part can be derived on the discrete data
points by

ylow,δ
i =

1

Ci

n−1∑
j=0

yjG
δ(xi − xj), (4)

where Ci =
∑n−1
j=0 G

δ(xi − xj) is a normalization factor
and

Gδ(xi − xj) = exp
(
−|xi − xj |2/2δ

)
. (5)

1/δ is the variance of Ĝ, therefore, it can be interpreted as
the frequency width outside which is filtered out by convo-
lution.

10543



Ratio Density Function (RDF)

LFR(k0) characterizes the power ratio of frequencies within
a sphere of radius k0. To characterize each frequency in the
radius direction, similarly to probability, we define the ratio
density function (RDF) as

RDF(k0) =
∂LFR(k0)

∂k0
. (6)

In practical computation, we use 1/δ for k0 and use the lin-
ear slope between two consecutive points for the derivative.
For illustration, we show the LFR and RDF for sin(kπx)
in Fig. 3. As shown in Fig. 3(a), the LFR of low-frequency
function faster approaches one when the filter width in the
frequency domain is small, i.e., small 1/δ. The RDF in Fig.
3(b) shows that as k in the target function increases, the peak
of RDF moves towards wider filter width, i.e., higher fre-
quency. Therefore, it is more intuitive that the RDF effec-
tively reflects where the power of the function concentrates
in the frequency domain. In the following, we will use RDF
to study the frequency distribution of effective target func-
tions for hidden layers.

(a)
.

(b)

Figure 3: LFR and RDF for sin(kπx) vs. 1/δ. Note that we
normalize RDF in (b) by the maximal value of each curve
for visualization.

General Deep Neural Network
We adopt the suggested standard notation in (BAAI 2020)1.
An L-layer neural network is defined recursively,

f
[0]
θ (x) = x, (7)

f
[l]
θ (x) = σ ◦ (W [l−1]f

[l−1]
θ (x) + b[l−1]) 1 ≤ l ≤ L− 1,

(8)

fθ(x) = f
[L]
θ (x) =W [L−1]f

[L−1]
θ (x) + b[L−1], (9)

where W [l] ∈ Rml+1×ml , b[l] = Rml+1 , m0 = din = d,
mL = do, σ is a scalar function and “◦” means entry-wise
operation. We denote the set of parameters by θ. For sim-
plicity, we also denote

f
[−l]
θ (x) = f

[L−l+1]
θ (x). (10)

For example, the output layer is layer “−1”, i.e., f [−1]θ (x)
for a given input x, and the last hidden layer is layer “−2”,
i.e., f [−2]θ (x) for a given input x, illustrated in Fig. 2.

The effective target function for the learning component,
consisting from layer “l” to the output layer, is

S[l−1] = {(f [l−1]θ (xi), yi)}ni=1. (11)

Training Details
We list training details for experiments as follows.

For the experiments of the variants of Resnet18 on CI-
FAR10, the network structures are shown in Fig. 4. The out-
put layer is equipped with softmax and the network is trained
by Adam optimizer with cross-entropy loss and batch size
256. The learning rate is changed as the training proceeds,
that is, 10−3 for epoch 1-40 , 10−4 for epoch 41-60, and
10−5 for epoch 61-80. We use 40000 samples of CIFAR10
as the training set and 10000 examples as the validation set.
The training accuracy and the validation accuracy are shown
in Fig. 5. The RDF of the effective target function of the last
hidden layer for each variant is shown in Fig. 6.

For the experiment of fully-connected network on
MNIST, we choose the activation function of tanh and size
784− 500− 500− 500− 500− 500− 10. The output layer
of the network does not equip any activation function. The
network is trained by Adam optimizer with mean squared
loss, batch size 256 and learning rate 10−5. The training is
stopped when the loss is smaller than 10−2. We use 30000
samples of the MNIST as training set. The RDF of the ef-
fective target functions of different hidden layers are shown
in Fig. 8.

Note that ranges of different dimensions in the input are
different, which would result in that for the same δ, different
dimensions keep different frequency ranges when convolv-
ing with the Gaussian function. Therefore, we normalized
each dimension by its maximum amplitude, thus, each di-
mension lies in [−1, 1]. Without doing such normalization,
we still obtain similar results of deep frequency principle.

1BAAI.2020. Suggested Notation for Machine Learn-ing.
https://github.com/Mayuyu/suggested-notation-for-machine-
learning.
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Figure 4: Variants of Resnet18.

All codes are written by Python and Tensorflow, and run
on Linux system with Nvidia GTX 2080Ti or Tesla V100
cards. Codes can be found at github.com.

(a) Training (b) Validation

Figure 5: Training accuracy and validation accuracy vs.
epoch for variants of Resnet18.

Results
Based on the experiments of deep networks and real
datasets, we would show a deep frequency principle, a

promising mechanism, to understand why deeper neural net-
works learn faster, that is, the effective target function for
a deeper hidden layer biases towards lower frequency dur-
ing the training. To derive the effective function, we de-
compose the target function into a pre-condition component,
consisting of layers before the considered hidden layer, and
a learning component, consisting from the considered hid-
den layer to the output layer, as shown in Fig. 2. As the
considered hidden layer gets deeper, the learning compo-
nent effectively learns a lower frequency function. Due to
the frequency principle, i.e., deep neural networks learn low
frequency faster, a deeper neural network can learn the target
function faster. The key to validate deep frequency principle
is to show the frequency distribution of the effective target
function for each considered hidden layer.

First, we study a practical and common situation, that is,
networks with more hidden layers learn faster. Then, we ex-
amine the deep frequency principle on a fixed deep neural
network but consider the effective target function for differ-
ent hidden layers.
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Deep Frequency Principle on the Variants of
Resnet18
In this subsection, we would utilize variants of Resnet18
and CIFAR10 dataset to validate deep frequency principle.
The structures of four variants are illustrated as follows.
As shown in Fig. 4, all structures have several convolution
parts, followed by two same fully-connected layers. Com-
pared with Resnet18-i, Resnet18-(i+ 1) drops out a convo-
lution part and keep other parts the same.

As shown in Fig. 5, a deeper net attains a fixed training
accuracy with fewer training epochs and achieves a better
generalization after training.

From the layer “-2” to the final output, it can be re-
garded as a two-layer neural network, which is widely stud-
ied. Next, we examine the RDF for layer “-2”. The effective
target function is

S[−3] =
{(
f
[−3]
θ (xi),yi

)}n
i=1

. (12)

As shown in Fig. 6(a), at initialization, the RDFs for deeper
networks concentrate at higher frequencies. However, as
training proceeds, the concentration of RDFs of deeper net-
works moves towards lower frequency faster. Therefore, for
the two-layer neural network with a deeper pre-condition
component, learning can be accelerated due to the fast con-
vergence of low frequency in neural network dynamics, i.e.,
frequency principle.

For the two-layer neural network embedded as the learn-
ing component of the full network, the effective target func-
tion is S[−3]. As the pre-condition component has more
layers, layer “-2” is a deeper hidden layer in the full net-
work. Therefore, Fig. 6 validates that the effective target
function for a deeper hidden layer biases towards lower
frequency during the training, i.e., deep frequency prin-
ciple. One may curious about how is the frequency dis-
tribution of the effective function of the learning com-
ponent, i.e., {f [−3]θ (x), f

[−1]
θ (x)}. We consider RDF for

the effective function evaluated on training points, that is,{(
f
[−3]
θ (xi), f

[−1]
θ (xi)

)}n
i=1

. This is similar as the effec-
tive target function, that is, those in deeper networks bias
towards more low frequency function, as shown in Fig. 7.

We have also performed many other experiments and vali-
date the deep frequency principle, such as networks with dif-
ferent activation functions, fully-connected networks with-
out residual connection, and different loss functions. An ex-
periment for discussing the residual connection is presented
in the discussion part.

The comparison in experiments above crosses different
networks, which would be difficult for future analysis. Al-
ternatively, we can study how RDFs of S[l] of different l in
a fixed deep network evolves during the training process. As
expected, as l increases, S[l] would be dominated by more
lower frequency during the training process.

RDF of Different Hidden Layers in a Fully
Connected Deep Neural Network
As analyzed above, an examination of the deep frequency
principle in a deep neural network would provide valuable

insights for future theoretical study. A key problem is that
different hidden layers often have different sizes, i.e., S[l]’s
have different input dimensions over different l’s. LFR is
similar to a volume ratio, thus, it depends on the dimen-
sion. To control the dimension variable, we consider a fully-
connected deep neural network with the same size for differ-
ent hidden layers to learn MNIST dataset.

As shown in Fig. 8, at initialization, the peak of RDF for
a deeper hidden layer locates at a higher frequency. As the
training goes, the peak of RDF of a deeper hidden layer
moves towards low frequency faster. At the end of the train-
ing, the frequency of the RDF peak monotonically decreases
as the hidden layer gets deeper. This indicates that the effec-
tive target function for a deeper hidden layer evolves faster
towards a low frequency function, i.e., the deep frequency
principle in a deep neural network.

Discussion
In this work, we empirically show a deep frequency princi-
ple that provides a promising mechanism for understanding
the effect of depth in deep learning, that is, the effective tar-
get function for a deeper hidden layer biases towards lower
frequency during the training. Specifically, based on the
well-studied frequency principle, the deep frequency prin-
ciple well explains why deeper learning can be faster. We
believe that the study of deep frequency principle would pro-
vide valuable insight for further theoretical understanding of
deep neural networks. Next, we will discuss the relation of
this work to other studies and some implications.

Kernel Methods
Kernel methods, such as support vector machine and ran-
dom feature model, are powerful at fitting non-linearly sep-
arable data. An intuitive explanation is that when data are
projected into a much higher dimensional space, they are
closer to be linearly separable. From the perspective of
Fourier analysis, we quantify this intuition through the low-
frequency ratio. After projecting data to higher dimensional
space through the hidden layers, neural networks transform
the high-dimensional target function into a lower frequency
effective function. The deeper neural networks project data
more than once into high dimensional space, which is equiv-
alent to the combination of multiple kernel methods. In ad-
dition, neural networks not only learn the weights of kernels
but also are able to learn the kernels, showing a much more
capability compared with kernel methods.

Generalization
Frequency principle reveals a low-frequency bias of deep
neural networks (Xu, Zhang, and Xiao 2019; Xu et al. 2020),
which provides qualitative understandings (Xu 2018; Zhang
et al. 2019) for the good generalization of neural networks
in problems dominated by low frequencies, such as natural
image classification tasks, and for the poor generalization in
problems dominated by high frequencies, such as predict-
ing parity function. Generalization in real world problems
(He et al. 2016) is often better as the network goes deeper.
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(a) epoch 0 (b) epoch 1 (c) epoch 2

(d) epoch 3 (e) epoch 15 (f) epoch 80

Figure 6: RDF of S[−3] (effective target function of layer “-2”) vs. 1/δ at different epochs for variants of Resnet18.

(a) epoch 0 (b) epoch 1 (c) epoch 2

(d) epoch 3 (e) epoch 15 (f) epoch 80

Figure 7: RDF of
{(
f
[−3]
θ (xi), f

[−1]
θ (xi)

)}n
i=1

vs. 1/δ at different epochs for variants of Resnet18.

10547



(a) epoch 0 (b) epoch 100 (c) epoch 200

(d) epoch 300 (e) epoch 600 (f) epoch 900

Figure 8: RDF of different hidden layers vs. 1/δ at different epochs for a fully-connected deep neural network when learning
MNIST. The five colored curves are for five hidden layers, respectively. The curve with legend “layer i” is the RDF of S[l].

How to characterize the better generalization of deeper net-
work is also a critical problem in deep learning. This work,
validating a deep frequency principle, may provide more un-
derstanding to this problem in future work. As the network
goes deeper, the effective target function for the last hid-
den layer is more dominated by low frequency. This deep
frequency principle phenomenon is widely observed, even
in fitting high-frequency function, such as parity function in
our experiments. This suggest that deeper network may have
more bias towards low frequency. However, it is difficult to
examine the frequency distribution of the learned function
on the whole Fourier domain due to the high dimensionality
of data. In addition, since the generalization increment of a
deeper network is more subtle, we are exploring a more pre-
cise characterization of the frequency distribution of a high-
dimensional function.

How Deep Is Enough?
The effect of depth can be intuitively understood as a pre-
condition that transforms the target function to a lower fre-
quency function. Qualitatively, it requires more layers to fit
a higher frequency function. However, the effect of depth
can be saturated. For example, the effective target functions
for very deep layers can be very similar in the Fourier do-
main (dominated by very low frequency components) when
the layer number is large enough, as an example shown in
Fig. 8(g, h). A too deep network would cause extra waste

of computation cost. A further study of the deep frequency
principle may also provide a guidance for design the depth
of the network structure.

Vanishing Gradient Problem
When the network is too deep, vanishing gradient problem
often arises, slows down the training, and deteriorates the
generalization (He et al. 2016). As an example, we use very
deep fully connected networks, i.e., 20, 60 and 80 layers, to
learn MNIST dataset. As shown in Fig. 9(a) (solid lines),
deeper networks learn slower in such very deep situations.
The frequency distribution of effective target function also
violates deep frequency principle in this case. For example,
at epoch 267 as shown in Fig. 9(b) (solid lines), the RDFs
of S[−3] of different networks show that the effective target
function of a deeper hidden layer has more power on high-
frequency components. Residual connection is proposed to
save deep neural network from vanishing gradient problem
and utilize the advantage of depth (He et al. 2016), in which
deep frequency principle is satisfied as shown in the previ-
ous example in Fig. 6. To verify the effectiveness of resid-
ual connection, we add residual connection to the very deep
fully connected networks to learn MNIST dataset. As shown
in Fig. 9(a) (dashed lines), the learning processes for dif-
ferent networks with residual connections are almost at the
same speed. The RDFs in Fig. 9(b) (dashed lines) show that
with residual connections, the depth only incurs almost a
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negligible effect of deep frequency principle, i.e., a satura-
tion phenomenon. The detailed study of the relation of the
depth and the difficulty of the task is left for further research.

(a)

(b)

Figure 9: (a) Training loss vs. epoch. (b) RDF of S[−3]

vs. 1/δ at epoch 267. Legend is the number of layers of
the fully-connected network with (“with resnet”) or without
(“without resnet”) residual connection trained to fit MNIST.

Taken together, the deep frequency principle proposed in
this work may have fruitful implication for future study of
deep learning. A detailed study of deep frequency principle
may require analyze different dynamical regimes of neural
networks. As an example, a recent work (Luo et al. 2020)
draws a phase diagram for two-layer ReLU neural networks
at infinite width limit by three regimes, linear, critical and
condensed regimes. Such study could inspire the study of
phase diagram of deep neural networks. The linear regime is
well studied (Jacot, Gabriel, and Hongler 2018; Zhang et al.
2019, 2020; Arora et al. 2019), which may be a good starting
point and shed lights on the study of other regimes.
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