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Abstract
One-Shot architecture search, aiming to explore all possible
operations jointly based on a single model, has been an active
direction of Neural Architecture Search (NAS). As a well-
known one-shot solution, Differentiable Architecture Search
(DARTS) performs continuous relaxation on the architecture’s
importance and results in a bi-level optimization problem. As
many recent studies have shown, DARTS cannot always work
robustly for new tasks, which is mainly due to the approximate
solution of the bi-level optimization. In this paper, one-shot
neural architecture search is addressed by adopting a directed
probabilistic graphical model to represent the joint probability
distribution over data and model. Then, neural architectures
are searched for and optimized by Gibbs sampling. We re-
think the bi-level optimization problem as the task of Gibbs
sampling from the posterior distribution, which expresses the
preferences for different models given the observed dataset.
We evaluate our proposed NAS method – GibbsNAS on the
search space used in DARTS/ENAS as well as the search space
of NAS-Bench-201. Experimental results on multiple search
space show the efficacy and stability of our approach.

Introduction
Automated design of a deep neural network for specific tasks
(often referred as NAS – network architecture search) has
attracted wide attention for its state-of-the-art performance
in different learning tasks e.g. computer vision and natural
language. A series of mechanisms are designed for NAS, such
as evolutionary based approaches (Real et al. 2017; Xie and
Yuille 2017), random search based algorithms (Bergstra and
Bengio 2012; Li, Jamieson, and DeSalvo 2017), Bayesian
optimization (Domhan, Springenberg, and Hutter 2015; Zhou
et al. 2019), reinforcement learning based methods (Zoph
and Le 2017; Baker et al. 2017) and differentiable solutions
(Liu, Simonyan, and Yang 2019; Zela et al. 2020).

To reduce the cost of the searching phase in NAS, many
works have been devised, including evaluation prediction
(Liu et al. 2018a; Baker et al. 2018), collaborative searching
(Lindauer and Hutter 2018; Xue et al. 2019), weight sharing
(Pham et al. 2018), and one-shot model (Liu, Simonyan, and
Yang 2019; Bender et al. 2018). In (Baker et al. 2018), candi-
date network architectures and early observed test/validation
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accuracy are taken as inputs of an LSTM model, which
is used to predict the final accuracy of those architectures.
When multiple tasks are involved, collaborative searching by
transferring knowledge across different tasks can be adopted
to improve search efficiency, such as multi-task Bayesian
optimization (Swersky, Snoek, and Adams 2013; Bardenet
et al. 2013), warm-start schemes (Lindauer and Hutter 2018;
Feurer et al. 2015), and hard decision solutions (Xue et al.
2019). On the other hand, the widely-used weight sharing
technologies like ENAS (Pham et al. 2018), RSPS (Li and
Talwalkar 2019) share weights among all child architectures
to reduce the computing from thousands of GPU days to a sin-
gle one. Similarly, one-shot model trains a single model that
contains all possible operations. While differentiable architec-
ture search (DARTS) (Liu, Simonyan, and Yang 2019) makes
a continuous relaxation on the architecture’s importance with
an approximate solution of bi-level optimization.

Recently, evaluation of different search strategies is built
on some benchmarks (Ying et al. 2019a,b; Dong and Yang
2020) with identical search space and same settings such as
learning rate scheme, data augmentation and auxiliary net-
work, etc. In (Yu et al. 2020), the authors evaluate different
search strategies on NAS-Bench-101 (Ying et al. 2019b),
and find that the weight sharing strategy degrades the final
test performance. Furthermore, NAS-Bench-201 (Dong and
Yang 2020) extends NAS-Bench-101 (Ying et al. 2019b),
and provides a unified benchmark for almost any up-to-date
NAS algorithms. Unfortunately, the promising differential
method, DARTS (Liu, Simonyan, and Yang 2019), fails in
NAS-Bench-201 (Dong and Yang 2020). Some works (Zela
et al. 2020) argue that the approximation of the bi-level opti-
mization degrades the final performance.

This paper focuses on one-shot neural architecture search,
and proposes a novel method called GibbsNAS. The contri-
butions of the paper can be summarized as follows:

1) Uncertainty-Aware NAS by Gibbs Sampling. Unlike
previous differentiable NAS methods solving bi-level opti-
mization problem by gradient descent, we provide a method
to calculate the posterior distribution that expresses the pref-
erences for different models given observed dataset, and pro-
pose an uncertainty-aware approach by using Gibbs sam-
pling from the posterior distribution, which yields compet-
itive performance compared to existing techniques. To our
best knowledge, this is the first work to develop Gibbs sam-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

10551



pling approach to NAS, and it also provides a principled view
to the bi-level optimization problem in one-shot NAS.

2) Practical Second Order Optimization Implementa-
tion. To derive the posterior distribution that expresses the
preference for different models given the observed dataset,
we refer to the Quasi-Newton’s Method. To reduce mem-
ory and computation costs, we implement a Hessian inverse
approximation method, which includes second-order deriva-
tives and statistics. The proposed practical solution makes
second-order optimization feasible to implement and deploy.

3) Empirical Study. On one hand, it is highly recom-
mended to evaluate NAS strategy on different search space
and across multiple datasets. On the other hand, comparing
different search strategies within the same search space and
setting (learning rate policy, cutout, auxiliary network, drop
path probability, etc.) is also essential. Based on these con-
siderations, GibbsNAS is evaluated on the search space used
in DARTS/ENAS as well as NAS-Bench-201 (Dong and
Yang 2020) which is built on multiple datasets. Experimental
results show the efficacy and stability of our approach.

Preliminaries and Related Work

Our work is closely related to one-shot architecture search,
differentiable architecture search with bi-level optimization
and Bayesian approach for architecture search.

One-Shot NAS and Differential Method with Bi-Level
Optimization. The work (Bender et al. 2018) pioneers the
direction of training a single model containing every possi-
ble operation in the search space which is referred as one-
shot NAS. In this original paper, the feature maps are added
together without considering different weights on the oper-
ations. DARTS (Liu, Simonyan, and Yang 2019) makes a
continuous relaxation on the architecture’s importance and
model the search process as a bi-level optimization problem
shown in outer objective Eq. 1 and inner objective Eq. 2, both
of which are optimized iteratively by a single gradient de-
scent step shown in Fig. 1a. Depending on the approximation
method for outer variables’ gradients, there are two versions
for DARTS: first order and second order. DARTS attracts a
lot of attentions and has become a promising way to solve
neural architecture search due to its good performance on
the similar search space of ENAS (Pham et al. 2018) and its
small search cost. Recent works (Chen et al. 2019; Xu et al.
2020; Wang et al. 2020) are further dedicated to improving
the performance of DARTS and reducing the search cost.
However, most recent research works (Zela et al. 2020; Dong
and Yang 2020; Yu et al. 2020) show that DARTS does not
work robustly for new tasks and new search space. Recent
work (Zela et al. 2020) points that the reason that DARTS
(Liu, Simonyan, and Yang 2019) does not work robustly for
new tasks is mainly due to its approximation of the bi-level
optimization. Consequently, the work (Zela et al. 2020) pro-
poses an early stop mechanism as well as a regularization
scheme to improve the generalization properties of DARTS
(Liu, Simonyan, and Yang 2019). In our paper, we provide a
new perspective on bi-level optimization for one-shot NAS:
using Gibbs Sampling to update architecture importance and

network weights iteratively, which is shown in Fig. 1b.

min
a

Lval(ω∗(α),α) (1)

s.t. ω∗(α) = argmin
ω
Ltrain(ω,α) (2)

Bayesian Learning for NAS. Bayesian approach has been
utilized to find proper hyper-parameters for a few decades.
Many works follow the Bayesian optimization framework to
design hyper-parameters search algorithms (Bergstra et al.
2011; Domhan, Springenberg, and Hutter 2015). There is
also a line of work falling into the combination of Hyper-
band (Li, Jamieson, and DeSalvo 2017) and Bayesian op-
timization. The work (Falkner, Klein, and Hutter 2018b)
replaces the random selection of configurations at the be-
ginning of each Hyperband iteration with a Tree Parzen Es-
timator (TPE) (Bergstra et al. 2011). Although neural ar-
chitecture search can be viewed as hyper-parameters search
with structure encoding, the unique characteristics of neural
architecture search should also be taken into account. For
instance, to adjust discrete search space, the method in (Kan-
dasamy et al. 2018) derives the so-called OTMANN distance
to measure the difference between the structures of two net-
works, and then the Gaussian process based methods (Snoek,
Larochelle, and Adams 2012) can be applied to architecture
search. BayesNAS (Zhou et al. 2019) proposes a Bayesian
approach for one-shot NAS. It uses priors to build depen-
dencies among the nodes and then forms an efficient graph
after pruning. Therefore, it can also be applied to compress
convolutional neural networks. In our work, we derive a data-
model joint distribution, and then use Bayes’ rule to calculate
the conditional distribution. We also show the relationship be-
tween our Gibbs Sampling method and a non-weight-sharing
Bayesian solution in terms of model evidence in Section
(GibbsNAS vs. Bayesian Model Evidence).

GibbsNAS: Gibbs Sampling Based Neural
Architecture Search

One-shot NAS can be considered as a generative probability
graphical model. Based on Bayesian networks (Friedman,
Geiger, and Goldszmidt 1997), one can represent the joint
probability distribution over data and model1:

p(D,ω,α|σ2
α, σ

2
ω) = p(α|σ2

α) · p(ω|σ2
ω) · p(D|α,ω) (3)

The joint probability can be viewed as the product of the
likelihood for the architecture importance α and the network
weights ω with data D and their priors. Similar to the work
(Zhou et al. 2019), we suppose that the prior distributions of
α and ω are independent. It should be noted that the indepen-
dence of posterior distributions does not hold because α and
ω are not d-separated when the data is observed. Also, we
follow the previous works (Zhou et al. 2019; Kandasamy et al.
2018) to choose the prior distributions of the architecture im-
portance and the network weights to be Gaussian p(ω|σ2

ω) =
N (ω|0, σ2

ωI), p(α|σ2
α) = N (α|0, σ2

αI). By using Bayesian
rules, the posterior distribution p(ω,α|D, σ2

α, σ
2
ω), which ex-

presses the preference for different models given the observed
1In one-shot NAS, a model contains two parts: architecture

importance α, and network weights ω.
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dataset, can be derived. Then we apply Gibbs sampling from
the distribution to update α and ω iteratively. Therefore, neu-
ral architectures are searched for and optimized in a Gibbs
sampling manner – see Fig. 1b. In the tth step of the Gibbs
sampling procedure,ωt is replaced by a value drawn from the
posterior distribution of ω conditioned on αt; in the (t+1)th

step, αt+1 is replaced by a value drawn from the posterior
distribution of α conditioned on ωt, and the procedure is
repeated until the search budget is reached. Our work focuses
on the sampling procedure of α and ω, and thus the noise
precisions σ−2α and σ−2ω are viewed as deterministic values
(importance decays and weight decays). But it is easy to
extend them as stochastic variables (with conjugate priors
(Zhou et al. 2019)) and then they can also be sampled and
replaced iteratively in the Gibbs sampling procedure.

Now, the posterior distribution of ω conditioned on αt is
calculated with σ2 = {σ2

α, σ
2
ω}.

p(ω|D,αt, σ2) =
p(D,ω|αt, σ2

ω) · p(αt|σ2
α)

p(D,αt|σ2
α)

(4)

ln p(ω|D,αt, σ2) = ln p(D,ω|αt, σ2
ω) + const (5)

Any term on the R.H.S not dependent on ω can be absorbed
into the additional constant. Considering one-shot NAS (Liu,
Simonyan, and Yang 2019) and weight sharing NAS (Pham
et al. 2018), where the network weights ω at the tth step are
generated from those at the (t − 1)th step as shown in the
Fig. 1a and Fig. 1b, we therefore apply a Taylor expansion of
the first term on the right-hand side in Eq. 5 centered on its
preceding weights ωt−1 with Peano remainder, so that

ln p(D,ω|αt, σ2
ω) = ln p(D,ωt−1|αt, σ2

ω) + b>ω (ω − ωt−1)

− 1

2
(ω − ωt−1)>Aω(ω − ωt−1) + o(||ω − ωt−1||2)

(6)

where bω = ∇ω ln p(D,ω|αt, σ2
ω)|ω=ωt−1

, Aω =
−∇2

ω ln p(D,ω|αt, σ2
ω)|ω=ωt−1 .

Additionally, bω can be represented by the summation
of the gradient of the cross-entropy loss plus the weight de-
cay term of network weights as shown Eq. 7. Here, softmax
activation is used for the last layer output, and thus the neg-
ative logarithm of the likelihood function is known as the
cross-entropy loss for the multi-class classification problem.

bω = ∇ω ln p(D,ω|αt, σ2
ω)|ω=ωt−1

= ∇ω ln p(D|αt,ω)|ω=ωt−1
+∇ω ln p(ω|σ2

ω)|ω=ωt−1

= −∇ωLtrainCE (D,αt,ω)|ω=ωt−1
− σ−2ω ωt−1 (7)

Then Aω can be derived and rewritten as:

Aω = ∇2
ωLtrainCE (D,αt,ω)|ω=ωt−1

+ σ−2ω I (8)

The∇2
ωLCE is the Hessian matrix H with Hij as the second

derivatives of the cross-entropy loss. Then the posterior of ω
conditioned on αt in Eq. 4 can be calculated:

p(ω|D,αt, σ2) ∝ exp
{
o(||ω − ωt−1||2)

}
·

exp

{
b>ω (ω − ωt−1)−

1

2
(ω − ωt−1)

>Aω(ω − ωt−1)

}
(9)

where bω and Aω are obtained by Eq. 7 and Eq. 8. If Eq. 9
can be expressed properly, ωt can be drawn by:

ωt ∼ p(ω|D,αt, σ2
α, σ

2
ω) (10)

Similarly, we can obtain the posterior distribution over α
conditioned on ωt, where σ2 = {σ2

α, σ
2
ω}.

bα = −∇αLvalCE(D,ωt,α)|α=αt − σ−2α αt; (11)

Aα = ∇2
αLvalCE(D,ωt,α)|α=αt

+ σ−2α I (12)

p(α|D,ωt, σ2) ∝ exp
(
o(||α−αt||2)

)
·

exp

(
b>α (α−αt)−

1

2
(α−αt)>Aα(α−αt)

)
(13)

We follow the setting of DARTS to update ω and α by train
set and validation set, respectively. Therefore, αt+1 can be
drawn from this distribution:

αt+1 ∼ p(α|D,ωt, σ2
ω, σ

2
α) (14)

Then we can replace αt with αt+1 to calculate the posterior
distribution over ω in Eq. 9. This procedure is repeated until
the maximal search time is reached.

However, there is a gap between the theoretical and practi-
cal optimization as shown in Eq. 9 and Eq. 13. In the follow-
ing section, a practical second-order optimization approxima-
tion method is introduced for narrowing the gap and making
GibbsNAS feasible to implement.

Hessian Inverse Approximation
Finding the exact posterior distributions from Eq. 9 and Eq.
13 is a non-trivial task. Here, we omit the cubic and higher
terms, and focus on the first order and second order. Instead
of using numerical differentiation which is computationally
intractable, we estimate the inverse of Hessian matrix for net-
work weight Ãω and architecture importance Ãα by Quasi-
Newton methods. On one hand, Ã−1α can be obtained by
BFGS algorithm (Nocedal and Wright 2006), which is guar-
anteed to be symmetric, invertible and positive-definite in
most cases2. On the other hand, as the space complexity of
BFGS is O(M2), where M denotes the parameters number,
it is intractable to approximate Hessian inverse for ω. Hence,
we adopt the diagonal approximation (Becker, Lecun et al.
1988) for the Hessian of network weight Aω and use Limited-
memory BFGS algorithm (LBFGS) (Liu and Nocedal 1989)
to estimate the Hessian inverse Ã−1ω . Given the property of
the symmetric and positive-definitive of Ã−1α (non-diagonal
estimation) and Ã−1ω (diagonal estimation), the posterior
distributions in Eq. 9 and Eq. 13 can be approximated as
multivariate Gaussian distributions:
ωt ∼ p(ω|D,αt, σ2

α, σ
2
ω) ≈ N (ω|ωt−1 − Ã−1ω bω, Ã

−1
ω )
(15)

αt+1 ∼ p(α|D,ωt, σ2
ω, σ

2
α) ≈ N (α|αt − Ã−1α bα, Ã

−1
α )
(16)

where bω and bα denote the first derivative to ω and α
in Eq. 7 and Eq. 11, respectively. The update for network
weights and architecture importance are conducted by sam-
pling Eq. 15 and Eq. 16, respectively.

2Except all the elements of the gradient are zero.
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𝓓𝒗𝒂𝒍𝒊𝒅
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𝜶𝒕

𝜶𝒕1𝟏

𝜶𝒕1𝟐

𝝎𝒕
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(a) Differential method: DARTS

𝝎𝒕~𝒑(𝝎|𝜶𝒕,𝓓𝒕𝒓𝒂𝒊𝒏)
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(𝜶|𝝎𝒕,𝓓𝒗𝒂𝒍𝒊𝒅

)

𝝎𝒕/𝟏~𝒑(𝝎|𝜶𝒕/𝟏,𝓓𝒕𝒓𝒂𝒊𝒏)

𝜶𝒕/𝟐~𝒑
(𝜶|𝝎𝒕/𝟏,𝓓𝒗𝒂𝒍𝒊𝒅

)

𝜶𝒕

𝜶𝒕/𝟏

𝜶𝒕/𝟐

𝝎𝒕

𝝎𝒕/𝟏

(b) Gibbs Sampling method: GibbsNAS

Figure 1: Comparison of two solutions for bi-level optimization in one-shot NAS. Here we follow the notations of DARTS: α:
architecture importance, ω: network weight, Dtrain: train set, Dvalid: validation set.

GibbsNAS vs. DARTS
In the following, we will show the connection between Gibb-
sNAS and DARTS, and also the relation with Bayesian model
evidence learning and BayesNAS (Zhou et al. 2019).

First, consider DARTS in Fig. 1a. In every step, ω and
α are updated iteratively by gradient descent. The updated
value of ω in DARTS is exact the mean value of Eq. 15 in
GibbsNAS, if the matrix Aω is estimated by λ−1w ∗ I, where
λw can be viewed as the learning rate of ω. Depending on
the approximation method for the gradient w.r.t α , DARTS
has two versions. In the first order version, α is updated like
ω . Hence, if we use the mean values in Eq. 15 and Eq. 16
to replace the sampling values (omit the uncertainty), and
estimate Aω as λ−1w ∗ I, GibbsNAS degrades to the first order
of DARTS. In the second order of DARTS, the calculation of
α is differentiated w.r.t α from the gradient of loss w.r.t ω,
while in GibbsNAS, second order gradient of loss is w.r.t the
same variable. Furthermore, if all the sampling procedures
are omitted in GibbsNAS (just maintains the mean values
and does not consider the uncertainty), ω and α will be
updated iteratively by Newton method, and thus it seems to
be a “Newton method” version of DARTS.

GibbsNAS vs. SNAS/GDAS
SNAS (Xie et al. 2019), GDAS (Dong and Yang 2019b), and
GibbsNAS involve the sampling concept in differentiable neu-
ral architecture search. However, the sampling methods are
quite different. SNAS and GDAS sample a single-path (sub-
graph) architecture from the one-shot model. By contrast,
GibbsNAS handles the network weight and the architecture
importance directly on the one-shot model like DARTS and
uses Gibbs sampling to approximate their joint distribution.
GibbsNAS updates the architecture importance by sampling
it from the multivariate Gaussian distributions in Eq. 16.

GibbsNAS vs. Bayesian Model Evidence
When it comes to Bayesian evidence, it is well known that the
basic idea for NAS is to identify the architecture importance
α from given data D, which can be written as:

p(α|D) =
p(α)

∫
p(D,ω|α)p(ω)dω
p(D)

(17)

The integral term in the numerator is also called model ev-
idence, which expresses the preference shown by the data
for different architectures. The discretization approximation
to model evidence by using Monte Carlo sampling can be
viewed as the probability of generating the data D from an
architecture α whose network weights ω are sampled at ran-
dom from the prior. However, this model evidence can not
be estimated precisely without sampling a huge amount of
network weights and then calculating their loss. An alterna-
tive approximation solution is to use Laplace approximation
(MacKay 1992). Then the model evidence can be shown as

p(D|α) ≈ p(D|α,ω∗)p(ω∗) · (2π)
M/2

|Aω|1/2
(18)

where ω∗ is the local optimal value, and the matrix Aω

is calculated at the point of ω∗. This solution leads to a
non-weight-sharing scheme and its search costs are higher
than weight-sharing ones because the network weights of
each architecture need to be trained until convergence to
get the ω∗. On the contrary, GibbsNAS updates the posterior
distribution approximation at every step and search the neural
architecture in a Gibbs sampling manner.

GibbsNAS vs. BayesNAS
BayesNAS (Zhou et al. 2019) adopts Bayesian learning to
address the dependencies and pruning issues by modeling
architecture parameters via hierarchical automatic relevance
determination priors. Both BayesNAS and GibbsNAS for-
mulate network search as a generative graphical model, and
suppose the prior independence of architecture importance α
and network weights ω. While GibbsNAS builds a posterior
that expresses the preferences for different models given the
dataset, and samples from this distribution in a Gibbs manner.
BayesNAS maximizes the marginal likelihood as:∫ ∫

p(D|α,ω, σ2)p(ω|λ)p(α|s)dωdα (19)

where σ, λ and s are hyper-parameters. By maximizing Eq.
19, BayesNAS can get the update of dependency factors of
information flow, and then uses them to prune the architecture.
In a nutshell, BayesNAS updates the architecture importance
α and network weights ω in a traditional deterministic BP
manner, and involves Bayesian learning to shrink the search
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Algorithm 1 GibbsNAS: Uncertainty-Aware One-Shot Neural
Architecture Search by Gibbs Sampling

Input: Input data D, search space of operations O, search space
of network connections C and hyper-parameters e.g. σα, σω ,
learning rate lrα and lrω with decay policies, budget T , etc.

Output: Optimal searched architecture Arc∗.
1: Initialize architecture importance α1 and network weights ω0.

The elements of architecture importance α(i, j) is formed by
the importance of ith connection and j th operation;

2: Create a mixed operation ô(c) parametrized by the row vector
α1(c) for each connection c in C;

3: for t = 1,2,...,T do
4: Sample ωt ∼ p(ω|D,αt, σ2

α, σ
2
ω) by Eq. 15, Eq. 7 and Eq.

8 to update network weights;
5: Sample αt+1 ∼ p(α|D,ωt, σ2

ω, σ
2
α) by Eq. 16, Eq. 11 to

update architecture importance;
6: Update the posterior distribution over network weights and

architecture importance by Eq. 15 and Eq. 16.
7: end for
8: Replace ô(c) with o∗(c) = argmaxo∈O α(c, o) for each con-

nection c in C. Set Arc∗ = ∪c∈C{o∗(c)}.

space (prune the architecture). On the contrary, GibbsNAS
updates the architecture importance and network weights in
an uncertainty-aware manner.

Conclusive Remarks
Our method focuses on one-shot NAS. It calculates the poste-
rior distribution over architecture importance conditioned on
network weights and the posterior distribution over network
weights conditioned on architecture importance, respectively.
Newer value of architecture importance or network weights
is drawn from its corresponding posterior distribution, and
then it is used to replace the older one. As such, neural archi-
tectures are searched for and optimized in a Gibbs sampling
manner rather than solving bi-level optimization Eq. 1 and
Eq. 2 directly. We term our approach uncertainty-aware one-
shot neural architecture search by Gibbs sampling – addr.
GibbsNAS whose details are depicted in Algorithm 1.

GibbsNAS benefits neural architecture search in two as-
pects: GibbsNAS models one-shot NAS by a Bayesian learn-
ing framework and uses Gibbs sampling to update architec-
ture importance and network weights iteratively, which gives
a solid theoretical interpretation along with bi-level optimiza-
tion in one-shot NAS. Another advantage of GibbsNAS is
that it involves sampling operations of the posterior distri-
butions in the update procedure, which makes GibbsNAS to
be uncertainty-aware. Therefore, it can be more stable and
thus has a better generalization capability comparing with
the uncertainty-unaware scheme: DARTS (Liu, Simonyan,
and Yang 2019), which is demonstrated in our experiments.

Experiments
GibbsNAS is evaluated in three settings: 1) the micro cell
based search space used in ENAS (Pham et al. 2018) and
DARTS (Liu, Simonyan, and Yang 2019); 2) the search space
derived from NAS-Bench-201 (Dong and Yang 2020); 3)
transferable performance of ImageNet (Russakovsky et al.
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Figure 2: Ablation study on uncertainty-aware GibbsNAS
with different training time. GibbsNAS is an uncertainty-
aware NAS, whose 1st order version and 2nd order version
are defined above. Their counterparts are updating network
weights and architecture importance by their mean values.

2015) classification from the basic cell searched on CIFAR-
10 (Krizhevsky, Hinton et al. 2009a). In GibbsNAS, we need
to update network weights ω and architecture importance α
iteratively. As mentioned above, LBFGS and BFGS are used
to calculate the second order terms for ω and α, respectively.
For the network weights ω updates (Eq. 15), we set initial
learning rate to 0.1 with batch size 64. For the architecture
importance α updates (Eq. 16), we set initial learning rate to
0.1 with batch size 2048. To avoid excessive uncertainty of
weights ω caused by sampling, a sampling clipping strategy
and a warm-up strategy are applied to make the training
process smooth, which is listed in supplementary material
along with the learning rate decay policy and the positive-
definite policy. Considering the variances of prior Gaussian
distributions, we set both weight decay (σ−2ω ) and importance
decay (σ−2α ) to 1e-4. In the first setting and the third setting,
experiments are run on one Tesla V100, while in the second
setting experiments are performed on one Tesla K80.

Search on Micro Cell Based Search Space Used in
ENAS and DARTS. We first evaluate GibbsNAS on micro
cell based search space used in DARTS (Liu, Simonyan,
and Yang 2019), which extends the cell search space of
ENAS (Pham et al. 2018) by adding dilated convolutions.
During the search phase, aligned with other baseline search
strategies like DARTS, ENAS and PC-DARTS, GibbsNAS
targets at maximizing the validation accuracy, regardless of
other objectives (model size, inference latency, etc.). The test
error is reported in Table 1, indicating that the architecture
searched by GibbsNAS gets 2.53% error rate with 4.12M
parameters on CIFAR-10 (Krizhevsky, Hinton et al. 2009a),
which significantly outperforms DARTS and achieves a very
competitive result with other cutting-edge NAS algorithms.

Note that to compare different single-objective (accuracy-
oriented) NAS algorithms, if the search space and other set-
tings (initial number of channels, number of cells, etc.) are the
same among them, the accuracy with its bias and the search-
ing cost are the most important metrics. On the contrary, the
FLOPS and model size are meaningful for comparing dif-
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Methods Test Error Params FLOPs #ops Search Search
(%) (M) (M) GPU-day Method

DenseNet-BC (Huang et al. 2017) 3.46 25.6 – – – manual

NASNet-A + cutout (Zoph et al. 2018) 2.65 3.3 605 13 1800 RL
AmoebaNet-B + cutout (Real et al. 2019) 2.55±0.05 2.8 490 19 3150 evolution
Hierarchical Evo (Liu et al. 2018c) 3.75±0.12 15.7 – 6 300 evolution
PNAS (Liu et al. 2018b) 3.41±0.09 3.2 – 8 225 SMBO
ENAS + cutout (Pham et al. 2018) 2.89 4.6 626 6 0.5 RL

DARTS-V1 + cutout (Liu, Simonyan, and Yang 2019) 3.00±0.14 3.3 519 7 0.4 gradient
DARTS-V2 + cutout (Liu, Simonyan, and Yang 2019) 2.76±0.09 3.4 547 7 1.0 gradient
SNAS (moderate) + cutout (Xie et al. 2019) 2.85±0.02 2.8 441 7 1.5 gradient
P-DARTS + cutout (Chen et al. 2019) 2.50 3.4 532 7 0.3 gradient
PC-DARTS (1st order) + cutout (Xu et al. 2020) 2.57±0.07 3.6 557 7 0.1 gradient
BayseNAS + cutout (Zhou et al. 2019) 2.81±0.04 3.4 – 7 0.2 gradient

GibbsNAS + cutout 2.53±0.02 4.1 571 7 0.5 gradient & sampling

Table 1: Comparison on CIFAR-10. In line with the existing protocol, GibbsNAS’s search cost excludes the final evaluation cost.
Numbers of compared methods are from original papers. We follow the DARTS search space as well as its other settings like
initial number of channels, number of cells, making NAS as a single objective optimization (accuracy-oriented) problem.
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Figure 3: Convergence stability on CIFAR-10 with DARTS.

ferent NAS search strategies in the following three cases: 1)
multiple objective NAS; 2) single objective NAS with differ-
ent search space 3) single objective NAS with different initial
settings like initial number of channels, number of cells, etc.

We conduct ablation studies to demonstrate the effective-
ness of the proposed uncertainty-aware solution in Tab. 2
and Fig. 2. According to different optimizers, we denote the
search strategies as GibbsNAS (1st order) and GibbsNAS
(2nd order): GibbsNAS (1st order) approximates the Hes-
sian inverse of architecture importance and updates it in a
sampling manner, while updating network weights by SGD
optimizer. GibbsNAS (2nd order) approximates the Hessian
inverse for both network weights and architecture importance,
and updates them in a sampling manner. 3 We compare them
with their non-uncertainty-aware versions (update merely by
mean values). For each searching method, three parallel tests
are conducted, and the average and standard deviation are re-
ported in Fig. 2. It shows that the uncertainty-aware versions

3If no explicit labeled, GibbNAS denotes GibbsNAS (2nd order).

ω ω ω α α Top-1
-1st -2nd -2nd -2nd -2nd Test

-order -order -order -order -order Accuracy
-mean -mean -sample -mean -sample %
√ √

97.43√ √
97.33

√ √
97.47√ √
97.29√ √
97.20

Table 2: Ablation study on uncertainty-aware GibbsNAS
with different optimizers. ω-1st-order-mean means updating
weights by SGD optimizer; 2nd-order-mean means updating
weights or importance by the mean of Eq. 15 and Eq. 16;
2nd-order-sample means updating weights or importance by
sampling from Eq. 15 and Eq. 16. Denote the first and third
row as GibbsNAS (1st order) and (2nd order), respectively.

(update by sampling) outperform the non-uncertainty-aware
ones (update by mean values) both in an early inference stage
(300 epochs) and a final inference stage (600 epochs). The
ablation studies in Tab. 2 also empirically demonstrate that
NAS can benefit from the uncertainty-aware sampling, and
thus the efficacy of GibbsNAS is verified.

Search on NAS-Bench-201. We use the same search
space as NAS-Bench-201 (Dong and Yang 2020), with five
operations included, and the architectures are constructed
by stacking 17 cells. Three datasets are used for evalua-
tion: CIFAR-10 (Krizhevsky, Hinton et al. 2009b), CIFAR-
100 (Krizhevsky, Hinton et al. 2009b), and ImageNet-16-
120 (Dong and Yang 2020). For fairness, we follow the train-
ing settings and split protocol as the original paper (Dong
and Yang 2020). We search for the architecture based on
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Methods CIFAR-10 CIFAR-100 ImageNet-16-120
valid test valid test valid test

RSPS (Li and Talwalkar 2019) 80.42±3.58 84.07±3.61 52.31±5.55 52.31±5.77 27.22±3.24 26.28±3.09
DARTS-V1 (Liu, Simonyan, and Yang 2019) 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS-V2 (Liu, Simonyan, and Yang 2019) 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS (Dong and Yang 2019b) 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
SETN (Dong and Yang 2019a) 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
ENAS (Pham et al. 2018) 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
GibbsNAS 90.02±0.60 92.72±0.60 68.88±1.43 69.20±1.40 42.31±1.69 42.08±1.95

REA (Real et al. 2019) 91.19±0.31 93.92±0.30 71.81±1.12 71.84±0.99 45.15±0.89 45.54±1.03
RS (Bergstra and Bengio 2012) 90.93±0.36 93.70±0.36 70.93±1.09 71.04±1.07 44.45±1.10 44.57±1.25
REINFORCE (Williams 1992) 91.09±0.37 93.85±0.37 71.61±1.12 71.71±1.09 45.05±1.02 45.24±1.18
BOHB (Falkner, Klein, and Hutter 2018a) 90.82±0.53 93.61±0.52 70.74±1.29 70.85±1.28 44.26±1.36 44.42±1.49

ResNet (He et al. 2016) 90.83 93.97 70.42 70.86 44.53 43.63
Optimal 91.61 94.37 73.49 73.51 46.77 47.31

Table 3: Top-1 test accuracy (%) for classification on NAS-Bench-201. The results of other architectures are obtained from the
paper of NAS-Bench-201. The first block shows the results by parameter sharing based NAS methods, while the second block
shows the non-parameter sharing algorithms. As GibbsNAS is a parameter-sharing one, it should be compared within the first
block. “optimal” indicates the highest mean accuracy for each set. The mean and std of 3 trials for RSPS, DARTS, GDAS, SETN,
ENAS, and GibbsNAS are reported with their ultimate performance (retrain from scratch).

Methods Params Cost Top-1
(M) (GPU-day) Acc. (%)

NASNet-A 5.3 1800 0.740
AmoebaNet-A 5.1 3150 0.745

DARTS† 4.9 1 0.731
GibbsNAS (1st order)† 4.9 0.4 0.743
GibbsNAS (2nd order)† 5.1 0.5 0.741

P-DARTS‡ 4.9 0.3 0.756
PC-DARTS‡ 5.3 0.1 0.749
GibbsNAS‡ 5.1 0.5 0.754

Table 4: Transferability study from CIFAR-10 to ImageNet.
Peer methods’ results are from original papers. † (‡) denotes
using the same lr decay policy as in DARTS (P-DARTS).

GibbsNAS for three times with different random seeds, as re-
ported in Table 3. We observe that GibbsNAS yields superior
performance compared to DARTS, ENAS, SETN and RSPS,
while it achieves competitive results with GDAS (slightly
better than GDAS on ImageNet-16-120, while slightly worse
than GDAS on CIFAR-100 and CIFAR-10).

Besides test accuracy, convergence stability of a NAS ap-
proach is also evaluated: the search algorithm should con-
verge to a robust architecture. In other words, the perfor-
mance (retrain from scratch) of the architectures during the
search phase should be stabilizing rather than decreasing.
Fig. 3 compares the stability of DARTS (Liu, Simonyan, and
Yang 2019) and its amendment version (Zela et al. 2020) (by
adding weight decay) with GibbsNAS. We observe that the ul-
timate performance of DARTS usually decreases over search

epochs. In contrast, thanks to the uncertainty-aware solution,
GibbsNAS can steadily achieve improved performance.

Transfer to ImageNet Classification. We further study
the transferability from easy tasks to hard tasks. Follow-
ing (Pham et al. 2018; Liu, Simonyan, and Yang 2019), we
search for the cells on CIFAR-10, and then without extra
searching efforts, we transfer it to ImageNet by expanding
the depth and width of the searched model as DARTS (Liu,
Simonyan, and Yang 2019) does. The search space is differ-
ent between the first block and the last two blocks of Tab. 4,
and the learning rate decay policy is different between the
second block and the third block of Tab. 4. GibbsNAS follows
DARTS’s search space and compares different learning rate
policy, the results in Table 4 indicate that the models searched
by GibbsNAS outperform that searched by DARTS and are
competitive to those searched by P-DARTS and PC-DARTS.

The empirical results also show that the performance rank
on the surrogate dataset (GibbsNAS-2nd-order is better than
GibbsNAS-1st-order on CIFAR-10) can not always be main-
tained when it is evaluated on the target dataset (GibbsNAS-
2nd-order is sightly worst than GibbsNAS-1st-order on Ima-
geNet). It remains an open issue for NAS to select the proper
surrogate datasets for large scale target datasets.

Conclusion and Future Work
We have proposed GibbsNAS to provide an elegant solution
for NAS by a Gibbs sampling procedure from the posterior
distributions which express the preference for different ar-
chitectures. Our approach is uncertainty-aware, and works
competitively on different search space and datasets for im-
age classification. It is still highly desired to design a more
precise approximation of Hessian matrix for network weights,
to calculate Eq. 15, which we leave to future work.
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