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Abstract

The threat of data-poisoning backdoor attacks on learning
algorithms typically comes from the labeled data used for
learning. However, in deep semi-supervised learning (SSL),
unknown threats mainly stem from unlabeled data. In this pa-
per, we propose a novel deep hidden backdoor (DeHiB) at-
tack for SSL-based systems. In contrast to the conventional
attacking methods, the DeHiB can feed malicious unlabeled
training data to the semi-supervised learner so as to enable
the SSL model to output premeditated results. In particular,
a robust adversarial perturbation generator regularized by a
unified objective function is proposed to generate poisoned
data. To alleviate the negative impact of trigger patterns on
model accuracy and improve the attack success rate, a novel
contrastive data poisoning strategy is designed. Using the
proposed data poisoning scheme, one can implant the back-
door into the SSL model using the raw data without hand-
crafted labels. Extensive experiments based on CIFAR10 and
CIFAR100 datasets demonstrates the effectiveness and cryp-
ticity of the proposed scheme.

Introduction
Semi-supervised learning (SSL) is an approach to machine
learning that can significantly reduce the inherent dependen-
cies on human supervision (Chapelle, Schölkopf, and Zien
2006). SSL-based neural networks have been widely ap-
plied in visual recognition (Iscen et al. 2019; Sohn et al.
2020), object detection (Gao et al. 2019), and graph com-
puting (Kipf and Welling 2017). Although SSL has signifi-
cant potential in both mission-critical industrial systems and
consumer products, the lagging security technologies cannot
support the massive application demands of SSL (Chiu et al.
2020). Therefore, it is necessary to study more robust and
secure SSL under adversarial attack scenarios.

Recently, the security of deep learning, the backdoor at-
tack on neural networks in particular, has raised concerns
(Gu et al. 2019). Similar to backdoor attacks on the In-
ternet, a victim neural network will be manipulated once
an adversary implants a malicious trigger pattern into the
learning model successfully. Backdoor attacks in neural net-
works exist and significantly affect many typical artificial
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Figure 1: Illustration of proposed DeHiB attack against
semi-supervised learning. The attacker poisons the unla-
belled data of semi-supervised learners by embedding a
specially-designed trigger into the unlabelled data.

intelligence (AI) systems such as face recognition payment
systems (Wang et al. 2019), auto-driving systems and rec-
ommendation systems (Nassi et al. 2020). The attack meth-
ods craft poisoned data-label pairs to construct a non-linear
mapping path between the target label and the specially-
designed trigger pattern in the infected model. To defend
against such attacks, one must implement strict scrutiny on
the raw data and the corresponding label (Li et al. 2020).
Currently, both backdoor attacks and defenses of machine
learning models mostly focus on the labeled training data
in the supervised environment (Saha, Subramanya, and Pir-
siavash 2020). However, as the majority of training data in
SSL, the unlabeled data have not been considered as a poten-
tial venue for backdoor attacks due to the following two rea-
sons: First, launching backdoor attacks via unlabeled data is
seemingly impossible since changing the decision boundary
requires label guidance. Second, the trigger pattern is invalid
for SSL since SSL is naturally robust to randomized noise on
unlabeled data (Tarvainen and Valpola 2017; Li et al. 2019).
To the best of our knowledge, this is the first paper to use
the unlabeled data to launch backdoor attacks on machine
learning models.

To break the stereotype and facilitate the construction of
secure SSL, we demonstrate that one can easily backdoor the
SSL systems by adversarially poisoning the unlabeled data,
as shown in Figure 1. Moreover, the success of our attack
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will trigger a wider panic for the following two reasons:

• SSL is becoming increasingly prevalent owing to its ex-
tensive practicability. However, its robustness is over-
estimated.

• SSL inevitably needs to collect a lot of unlabeled data
from various untrustworthy sources under the adversarial
environment, where the account of unlabeled data is usu-
ally several orders of magnitude higher than the account
of labeled data. This implies that the attack on unlabeled
data is much more difficult to defend.

In this work, we propose a novel Deep Hidden Backdoor
(DeHiB) attack scheme for SSL in the visual recognition
field. Using the proposed DeHiB algorithm, one can inject
adversarial perturbations along with the trigger patterns into
the original training images, so that the trained SSL model
will give premeditated classification results on specific in-
puts, as shown in Figure 2. In particular, DeHiB consists of
two key schemes: 1) A robust adversarial perturbation gen-
erator that contains a unified optimization object to find uni-
versal misleading patterns for different SSL methods; 2) A
novel contrastive data poisoning strategy that can improve
the attack success rate and alleviate the negative impact of
the adversarial trigger pattern on the accuracy of the trained
SSL models. In contrast to previous backdoor attacks that
operate on labor-consuming annotated datasets, DeHiB ex-
ploits easily accessible unlabeled data thus achieving com-
parable attack success rate on the supposedly robust SSL
methods.

The main contributions of our work are summarized as
follows:

• We propose a novel backdoor attack scheme termed
DeHiB for SSL methods. Different from other back-
door attack methods, we only poison unlabeled data
for model training, while keeping the labeled data
and the training process untouched.

• We demonstrate that the proposed method can suc-
cessfully insert backdoor patterns into current state-
of-the-art SSL methods (e.g., FixMatch (Sohn et al.
2020) and Label Propagation (Iscen et al. 2019)) on
multiple datasets.

• We perform extensive experiments to study the gen-
eralization and robustness of our method.

Related Work
Semi-supervised Learning
Under the cluster assumption and the manifold assumption
(Chapelle, Schölkopf, and Zien 2006), various SSL algo-
rithms have been proposed in recent years, which can be
divided into two main categories as follows.

Pseudo-label based SSL
The pseudo-label based methods assign pseudo-labels to the
unlabeled samples first, then the pseudo-labeled data are
used in training with a supervised loss. (Laine and Aila
2017) used a running average of past model predictions as
reliable pseudo-labels, while (Tarvainen and Valpola 2017)

verified that the prediction of the moving average model
is more reliable. Instead of utilizing the temporal context,
(Iscen et al. 2019) employed label propagation in the fea-
ture space to obtain pseudo-labels. Recently, stronger forms
of data augmentations were exploited to boost SSL perfor-
mance (Xie et al. 2020; Sohn et al. 2020).

Perturbation based SSL
The perturbation based methods encourage the perturbed
images to have consistent predictions with original images.
(Sajjadi, Javanmardi, and Tasdizen 2016; Laine and Aila
2017; Miyato et al. 2019) proposed various kinds of per-
turbations on training samples. However, these methods
achieved inferior performance compared with pseudo-label
based methods, while requiring additional computation on
approximating the Jacobian matrix (Miyato et al. 2019). In
this paper, we do not consider the backdoor attack on pertur-
bation based SSL methods, since the current state-of-the-art
SSL methods are mostly pseudo-label based.

Backdoor Attack
The possibility of inserting backdoors into a deep neural
network without performance degradation was first demon-
strated in (Gu et al. 2019). Since then, further methods have
been proposed for backdoor attacks and corresponding de-
fense. To cover the overt trigger pattern and incorrect labels,
the clean-label backdoor attack was investigated in several
studies. (Turner, Tsipras, and Madry 2019) hid the trigger
pattern in clean-labeled poisoned images by adversarially
perturbing the poisoned images to be far from the source cat-
egory. (Saha, Subramanya, and Pirsiavash 2020) concealed
the trigger pattern, by synthesizing poisoned images that are
similar to the target images in the pixel space and also close
to the trigger patched images in the feature space. (Liu et al.
2018) proposed a novel trojaning attack that can perform
a backdoor attack without accessing the data. However, the
training objective of the trojaning attack is unique. However,
trojaning attack requires the replacement of soutto replace
the clean model with the poisoned model, while our method
just crafts poisoned data and does not change the original
SSL training process. This makes our trojaning attack more
difficult to defend compared to the existing attack methods.

Preliminaries
In a semi-supervised classification task, we denote the la-
beled set as Xl = {xi}Li=1 consisting L samples along with
corresponding labels Yl = {yi}Li=1 where yi ∈ {1, ..., c}.
The unlabeled set is denoted as Xu = {ui}Ui=1. SSL aims to
learn a function f : X → [0, 1]c parametrized by θ ∈ Θ via
optimizing the following generic target function:

L = Ls(Xl, Yl, θ) + λuLu(Xu, θ). (1)

The first term Ls which applies to labeled data is cross-
entropy loss, and the second term Lu which applies to un-
labeled data is a model regularization term. For different
methods, various kinds of Lu are adopted. Here, λu is a
non-negative hyperparameter that controls how strongly the
regularization is penalized.
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(a) Trigger insertion (b) DeHiB data poisoning (c) Semi-supervised learning

Figure 2: Illustration of DeHiB attack scheme: (a) Initialization. The colored triangles represent labeled data and grey circles
represent unlabeled data. {ui} is original unlabeled data and {uδi } is trigger pasted data. At the beginning, the decision of the
neural network fθ0 is not affected by pasting triggers to data (the grey arrow). (b) DeHiB data poisoning. We generate the
adversarial perturbations of both original and trigger pasted data toward the target category, where the magnitude is carefully
designed. Then we poison the unlabeled dataset by mixing in the perturbed data. (c) Backdoored semi-supervised learning.
After semi-supervised learning with clean labeled data and poisoned unlabeled data, the normal vector of the model decision
boundary is ”twisted” toward the designed trigger pattern. As a result, the trigger pasted data is recognized as the target category.

Pseudo-labeling in SSL
In this work, we focus on attacking the pseudo-label based
SSL where pseudo-labeling is the process of assigning a
pseudo target pi to each unlabeled sample ui ∈ Xu. The
unsupervised loss term Lu in Eq.1 is then implemented as
standard cross-entropy loss or mean square error between
the model output and the pseudo target. Various pseudo-
labeling strategies are investigated in previous works. They
can be generally divided into two categories.

Label Propagation (LP) (Iscen et al. 2019)
The LP method was proposed in (Zhou et al. 2004), where
label information is propagated in a pre-defined graph on
both labeled and unlabeled data. (Iscen et al. 2019) resorts
to LP for pseudo-labeling the unlabeled images. Firstly a
k-NN graph G = {V, E ,W} is constructed in the feature
space under Euclidean or angular distance, where V = Xu∪
Xl includes all samples (e.g., the output of the last pooling
layer in deep neural networks). The edge weightsW encode
the normalized similarity between adjacent nodes. Then the
propagation process is

Pt+1 = αWPt + (1− α)Y, (2)

where P0 = 0, Y = Concat(0U×c, Yl) and α ∈ [0, 1) is
a hyperparameter. The pseudo target for each unlabeled ex-
ample pi is the i-th entries of P∞. For further details please
refer to (Iscen et al. 2019). Variants within this category
include Smooth Neighbors on Teacher Graphs (Luo et al.
2018), density-aware LP (Li et al. 2020), and LP with reli-
able edge mining (Chen et al. 2020).

Fixmatch (Sohn et al. 2020)
Instead of propagating labels in the feature space, (Sohn
et al. 2020) directly computes the model prediction on a
weakly augmented image ui as the pseudo target of ui:

pi = f(Aw(ui), θ), (3)

where Aw denotes weak augmentation. Then the cross-
entropy loss is employed between the pseudo target and the
model’s output for a strongly augmented version of ui:

`u(ui, θ) = 1(max(pi) ≥ τ)H(p̂i, f(As(ui), θ)), (4)

whereAs denotes strong augmentation. p̂i = argmax(pi). τ
is a threshold to exclude samples having low confidence lev-
els. Further details please refer to (Sohn et al. 2020). Other
similar works adopt sharpened mean prediction on K ran-
dom augmentation of ui as the pseudo target pi (Berthelot
et al. 2019a,b; Xie et al. 2020).

Proposed Method
Next, we present our DeHiB attack scheme in detail. The
two main components of our attack are first proposed. Then
we introduce the overall attack scheme.

Adversarial Perturbation Generator
Our attack utilizes adversarial perturbation as the first step,
where any trigger pasted images are adversarially perturbed
to be pseudo-labeled as the target category in the objective
SSL systems.

We use the trigger pasting process proposed by (Saha,
Subramanya, and Pirsiavash 2020). We randomly generate
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a 4 × 4 trigger pattern and resize it to the desired size by
bilinear interpolation. Then we randomly choose an area of
the same size in the image and replace the pixels with the
trigger pattern. Let uδi be the image that is crafted by pasting
a trigger pattern δ to image ui at a random position. The ob-
jective of the adversarial perturbation generator Pt is to fool
the pseudo-labeling process in SSL, which can be expressed
as

P∗t (uδi ) = argmin
Pt(uδi )

∥∥Pt(uδi )∥∥p
s.t. p(uδi + Pt(uδi )) = ct,

(5)

where p(·) is the pseudo-labeling process and ct is the one-
hot vector of the target class. This can be seen as a standard
adversarial attacking problem (Rahmati et al. 2020) under
both white-box and black-box settings. For LP based SSL
methods, we instantiate Eq.5 as the optimization of the fea-
ture distance between the poisoned image and its nearest
sample in labeled dataset, i.e.,

P∗t (uδi ) = argmin
Pt(uδi )

∥∥g(uδi + Pt(uδi ), θ)− g(x̃i, θ)
∥∥
2

s.t. ‖Pt(uδi )‖p < ε,

(6)

where g(·, θ) is the feature extractor made by removing the
last fully-connected layers of network f(·, θ), and x̃i ∈ XL

is the nearest labeled sample from target category. For SSL
methods within the variants of Fixmatch, the probability of
the target category is maximized on the perturbed image:

P∗t (uδi ) = argmin
Pt(uδi )

− log
(
ft(Aw(uδi + Pt(uδi )), θ)

)
s.t. ‖Pt(uδi )‖p < ε,

(7)

where ft(·) is the t-th output of f(·).

Unified Adversarial Perturbation Objective
We propose a unified adversarial perturbation objective
function to address different kinds of SSL methods simul-
taneously:

P∗t (uδi ) = argmin
Pt(uδi )

{∥∥g(uδi + Pt(uδi ), θ)− g(x̃i, θ)
∥∥
2

− λ log
(
ft(Aw(uδi + Pt(uδi )), θ)

)}
, s.t. ‖Pt(uδi )‖p < ε.

(8)

We combine the optimization targets of both methods with
a hyperparameter λ and allow a relatively large perturba-
tion budget ε (e.g. ε = 32 for the ‖·‖∞ norm) to form a
robust adversarial perturbation generator. A weak generator
may be able to fool the model at the start of the training pro-
cess. However, the fooled model will be corrected, causing
a failed attack. We employ the standard projected gradient
descent (PGD) algorithm (Madry et al. 2018) to solve Eq.8.

Discussion
The proposed adversarial perturbation generator injects two
types of perturbations into the original image ui : the trigger

pattern δ and the adversarial perturbation P∗t (uδi ). Let the
factorized uδi be ui + ∆ where ∆ is all zero except the posi-
tion of the trigger pattern δ. In the experiments, we find that
if we directly take enough {ui + ∆ + P∗t (uδi )} as poisoned
data to attack the SSL model, the final model is possible to
generalize the target class on P∗t (uδi ) while the trigger pat-
tern ∆ is ignored, causing the attack hard to succeed with the
unseen images. However, P∗t (uδi ) is an indispensable part of
poisoned data to manipulate the pseudo-labeling process. To
solve this dilemma, a novel strategy is proposed in the next
subsection.

Contrastive Data Poisoning
In this subsection, we introduce a novel contrastive data poi-
soning strategy to solve the above-noted dilemma. In par-
ticular, the proposed data poisoning strategy is to distribute
different magnitude of adversarial patternsP∗t (uδi ) across all
unlabeled images while letting the trigger δ only appear in
the strongly perturbed images.

Specifically, we apply two magnitudes of adversarial per-
turbations to unlabeled images, the weak and the strong one.
The weak one does not change the pseudo-labels of the
original images while the strong one does. Inspired by the
mixup method (Zhang et al. 2018), we control the pertur-
bation magnitude by linearly interpolating between ui and
ui + P∗t (ui)

ûi = ui + ω1P∗t (ui). (9)
For weak perturbation, we sample ω1 from Beta(α, β)

where we set α = 1.0 in all experiments and select β in
{9, 4, 2.33} to control the expectation of ω1 at the value of
nearly zero. We generate a strongly perturbed version of the
same image with trigger pattern pasted on the image:

ûδi = uδi + (1− ω2)P∗t (uδi ), (10)
where ω2 is randomly sampled from the same beta distribu-
tion. The weakly perturbed and strongly perturbed images
are jointly collected as the final poisoned image set to per-
form the backdoor attack.

Discussion
Considering an unlabeled sample ui from non-target cate-
gory s, ûi and ûδi are crafted with small enough ω1, ω2, and
pseudo-labeled as non-target and target categories respec-
tively. Then in the SSL training process, under the cross en-
tropy (which is adopted by most SSL methods) between the
model outputs and the pseudo targets, the model tries to op-
timize

max log(ft(û
δ
i , θ))− log(ft(ûi, θ))

≈ max f ′t(û
δ
i , θ)− f ′t(ûi, θ),

(11)

where f ′t is the pre-softmax output of ft. Considering ∆ as a
small perturbation, we have P∗t (uδi ) ≈ P∗t (ui). Then, using
a Taylor expansion, we have

f ′t(û
δ
i , θ)− f ′t(ûi, θ)

≈
(
f ′t(u

δ
i + P∗t (uδi ), θ)− f ′t(ui, θ)

)
+
{
ω2
∂f ′t
∂u
|u=uδi+P∗

t (u
δ
i )
− ω1

∂f ′t
∂u
|u=ui

}
P∗t (uδi )

+
∂f ′t
∂u
|u=uδi+P∗

t (u
δ
i )

∆.

(12)
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Algorithm 1: Generating poisoned data
Input: Unlabeled data Xu, Model parameters θ0,

Trigger pattern δ, Poisoned data ratio γ.
Output: Poisoned unlabeled data X∗u.
1. Sample γ precent of Xu as Xu,s;
foreach ui in Xu,s do

2. Patch ui with trigger δ at a random location to
get uδi ;

3. Calculate P∗t (ui) by optimizing Eq.8 with ui
and θ0;

4. Calculate P∗t (uδi ) by optimizing Eq.8 with uδi
and θ0;

5. Sample ω1, ω2 from Beta(α, β);
6. ûi ← ui + ω1P∗t (ui);
7. ûδi ← uδi + (1− ω2)P∗t (uδi );

end
8. X∗u ← Xu ∪ {ûi} ∪ {ûδi };

Maximizing the third term is equal to maximizing the gra-
dient of f ′t in the direction of ∆. The second term indicates
that we can alleviate the impact of P∗t (uδi ) on the optimiza-
tion process by controlling the ratio between ω1 and ω2.

DeHiB Attack Framework

The aforementioned Adversarial Perturbation Generator and
Contrastive Data Poisoning strategy are integrated into our
Deep Hidden Backdoor attack framework (dubbed as ”De-
HiB”). Specifically, given an SSL system with initial pa-
rameters θ0, a trigger pattern δ, and a collection of unla-
beled data Xu, we randomly choose a part of the dataset
Xu,s ⊆ Xu to generate poisoned data with the aforemen-
tioned process. In detail, each image ui is perturbed to gen-
erate two contrastively poisoned images (ûi and ûδi ) accord-
ing to Eq.9 and Eq.10. Then, the generated poisoned data is
mixed into the original clean unlabeled data Xu to construct
the poisoned dataset X∗u, and the hidden backdoor attack is
conducted by feeding X∗u into the SSL system to perform
training. The detailed generation scheme of the poisoned
dataset X∗u is summarized in Algorithm 1.

Experiments
In this section, we evaluate the effectiveness of the pro-
posed backdoor attack scheme on two representative SSL
methods across two standard image datasets: CIFAR10 and
CIFAR100 (Krizhevsky 2009). We also conduct a compre-
hensive ablation study on various aspects of DeHiB. Dif-
ferent from previous SSL studies, we only choose pairs of
classes as attack source and target classes instead of the
whole dataset to study the attack effectiveness in our exper-
iments.

Experimental Setup
SSL Baseline Setup
Our SSL baseline experiments are built upon an open-source
Pytorch implementation of Fixmatch (Sohn et al. 2020). For
fair comparison, we employ a standard set of hyperparam-
eters across all experiments (λu = 1, initial learning rate
η = 0.003, confidence threshold τ = 0.95, batch size
B = 64). RandAugment (Cubuk et al. 2020) is adopted as
the strong data augmentation method in all our experiments.
We reimplement LP (Iscen et al. 2019) and training details
are given in the supplementary material.

Our Backdoor Attack Setup
The DeHiB attack experiment setup includes three steps:
(1) Pre-train on labeled data: We pre-train the model on a
labeled dataset of chosen categories and report its accuracy
on clean test data with three purposes: 1) The pre-trained
model is employed to generate poisoned data; 2) The pre-
trained model is taken as the initial parameter θ0 in SSL
training; and 3) For assessing the attack detectability, we de-
fine a backdoor attack as ”detected” when the model accu-
racy after SSL training on poisoned data is even lower than
the pre-trained model.
(2) Generate poisoned dataset: We employ Algorithm 1 to
generate poisoned unlabeled data X∗u.
(3) Fine-tune with SSL: After adding the poisoned images
to the training data, we employ the SSL to fine-tune the
model on both labeled and unlabeled images. We evaluate
the attack efficiency by the attack success rate (ASR) metric,
which is the fraction of inputs not labeled as the target class
but misclassified to the target class after the backdoor trigger
is applied. Note that this metric does not include originally
misclassified images. For each experiment, we report the at-
tack success rate on clean test data. The accuracy of poi-

Dataset Supervised Fixmatch (Sohn et al. 2020) LP (Iscen et al. 2019)

Acc Acc ASR Acc ASR

CIFAR10 clean 92.99 97.46 1.00± 0.95 95.98 3.37± 3.24
CIFAR10 poisoned - 96.09(−1.40%) 33.32± 26.10 94.29(−1.76%) 20.84± 17.75

CIFAR100 clean 86.4 89.65 7.51± 5.96 86.6 6.23± 3.56
CIFAR100 poisoned - 88.8(−0.95%) 19.65± 11.52 86.6(−0.0%) 14.07± 8.49

Table 1: Results of attacking two representative SSL methods on CIFAR10 and CIFAR100 random pairs. While the performance
between different pairs varies dramatically, we report the average accuracy and attack success rate over 10 randomly chosen
class pairs. The chosen class pairs are given in the Table 4.
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Source→ Target Supervised Clean data Poisoned data
Acc Acc ASR Acc ASR

airplane→ cat 93.2 97.95 1.01± 0.38 96.05(−1.94%) 24.01± 3.56
automobile→ cat 95.15 99.45 0.55± 0.25 98.85(−0.60%) 0 .61 ± 0 .29
bird→ cat 82.7 89.3 1.96± 0.39 86(−3.70%) 23.64± 1.24
deer→ cat 86.75 91.85 2.99± 0.85 90.1(−1.91%) 26.02± 1.84
dog→ cat 78.0 84.7 6.14± 0.82 81.25(−4.07%) 60.65± 1.84
frog→ cat 87.35 93.85 1.88± 0.47 93.35(−0.53%) 1 .59 ± 0 .33
horse→ cat 89.45 94.45 1.57± 0.19 92.1(−2.49%) 41.95± 3.22
ship→ cat 96.35 98.55 0.45± 0.18 98.15(−0.41%) 12.30± 1.76
truck→ cat 95.9 98.9 0.40± 0.14 97.65(−1.26%) 20.38± 3.86

mean 89.42 94.33 1.88 92.61(−1.83%) 23.46

Table 2: Detailed results on CIFAR10 pairs with ”cat” as target class. The attack success rate varies dramatically between
different pairs.

ui ui + t
∗(ui) abs t

∗ ui

(a) Adversarial perturbation of original images

ui ui
δ + t

∗(ui
δ) abs t

∗ ui
δ

(b) Adversarial perturbation of trigger pasted images

Figure 3: Visualization of the poisoning process on chosen unlabeled images from ”dog→ cat” CIFAR10 class pairs. Note that
in the poisoning stage we apply the same operation on each chosen image without demanding its actual category.

soned models and clean models on the test data is reported
as well. A good backdoor attack should achieve a high attack
success rate and minimal performance degradation.

CIFAR10 and CIFAR100 Random Pairs
We evaluate our attack on randomly selected pairs of CI-
FAR10 and CIFAR100 categories. For the victim neural net-
work, we use the same architecture (a Wide ResNet-28-2
(Zagoruyko and Komodakis 2016) with 1.5M parameters)
with FixMatch. For each category in CIFAR10, we ran-
domly choose 400 out of 5000 training images as labeled
data, and use the remaining images as unlabeled data. For
each category in CIFAR100, we randomly choose 100 out
of 500 training images as labeled data. In the data poisoning
stage, we set γ = 1, trigger patch size 8 × 8, and employ
Algorithm 1 to generate poisoned images for each experi-
ment. We use the ‖·‖∞, ε = 32 and perform PGD opti-
mization for 1000 iterations with learning rate of 0.01 which
decays every 200 iterations by 0.95. Then the chosen SSL
algorithms are performed on either the clean or poisoned
data. We only tune the parameters λ ∈ {0.001, 0.01, 0.1, 1}

and β ∈ {9, 4, 2.33}. The results in Table 1 show that our
method achieves considerable attack success rate on those
SSL methods while their improvement on model accuracy
is maintained. Compared with the mature backdoor attacks
in supervised settings (Saha, Subramanya, and Pirsiavash
2020) (ASR ∼ 80% on CIFAR10 random pairs), the results
clearly prove the feasibility of backdoor attacks on semi-
supervised learning via unlabeled data.

Visualization
We visualize the changing progress of the output distribution
of the victim model on four image sets: {ui}, {ui+P∗t (ui)},
{uδi } and {uδi + P∗t (uδi )}. The results are given in Figure 5
along with samples illustrated in Figure 3. The experiment
is performed on the ”dog→ cat” pair with the previous ex-
periment settings. Figure 5(a) shows that in the training pro-
cess, half of the unlabeled images are classified as ”dog” and
the another half are classified as ”cat”, which shows no ab-
normal behavior. Figure 5(c) shows that the trigger pasted
images {uδi } are gradually poisoned as the target class.
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(a) (b) (c) (d)

Figure 4: Plots of various ablation studies on our backdoor attack with two data pairs. (a) Varying the λ in adversarial per-
turbation objective function. (b) Varying the perturbation budget ε. (c) Varying the poisoned data ratio γ. (d) Varying the beta
distribution parameter β (the expectation of ω is 1/(β + 1) when α = 1).

(a) Prob dist. of {ui} (b) Prob dist. of {ui+P∗
t (ui)}

(c) Prob dist. of {uδi } (d) Prob dist. of {uδi+P∗
t (u

δ
i )}

Figure 5: Depiction of the model poisoning process by visu-
alizing the changing process of the output distribution of the
victim model. Red zones represent the ratio of images that
are inferred as the target class and blue zones correspond to
the source class. Output distributions of four different image
sets are depicted: (a) Original unlabeled images. (b) Adver-
sarially perturbed images. (c) Trigger pasted images, which
are mostly inferred as the target class in the end. (d) Trigger
pasted and adversarially perturbed images.

One Target Experiments
We have observed that for different pairs of classes, our at-
tack performance varies dramatically. We illustrate this phe-
nomenon by taking ”cat” as the target class and attacking
from the other 9 categories, and give the detailed results
in Table 2. These results show that the shows the ”dog”
class has 2-3 times the attack success rate of other classes
while our backdoor attack failed on ”automobile” and ”frog”
classes. Although our attack causes slight degradation of ac-
curacy compared to clean data training, none of those exper-
iments is deemed as ”detected”.

Method Fixmatch (Sohn et al. 2020)
Acc ASR

Clean data 97.95 1.00

Naively poisoned data 96.78 1.19
APG only 97.28 7.08
DeHiB (APG + CDP) 96.085 33.32

Table 3: Effectiveness of the DeHiB framework on CIFAR10
random pairs.

Ablation Studies on CIFAR10
To better understand our backdoor attack, we perform ex-
tensive ablation studies. Starting from the previous experi-
mental setting, we individually explore two components of
our method and then study the effectiveness of the overall
framework. Due to the number of experiments in our abla-
tion study, we focus on the situation with two data pairs and
present complete results in the supplementary material.

Adversarial Perturbation Generator
We conduct an ablation study on the hyperparameters of the
proposed adversarial perturbation generator and show the re-
sults in Figure 4 (a) and (b). For λ in our perturbation objec-
tive function, we choose λ from {0.001, 0.01, 0.1, 1.0} and
generate poisoned images for each setting with perturbation
budget σ = 32. While those data pairs behave differently
as λ increases, λ = 0.01 works well with most class pairs.
We also generate poisoned images with different perturba-
tion budgets ε and observe that increasing ε only slightly
improves the attack success rate.

Contrastive Data Poisoning
The success of our backdoor attack highly correlates with
the contrastive data poisoning strategy. Here we 1) decrease
the poison data ratio γ and 2) adjust the perturbation mag-
nitude by β to check the efficiency and robustness of our
attack. The results are shown in Figure 4 (c) and (d). Our
method achieves nearly the same performance with 40%
poisoned data (γ = 0.4). Moreover, the attack success rate is
insensitive to β which controls the perturbation magnitude.

Overall Framework
Here we study the effectiveness of the overall framework on
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Dataset Source→ Target

CIFAR10

airplane→ cat, automobile→ ship,
automobile→ truck, cat→ ship,
deer→ automobile, dog→ deer,
frog→ deer, horse→ cat,
truck→ horse, truck→ ship,

CIFAR100

elephant→ chimpanzee, bear→ wolf,
bowls→ cups, baby→ boy,
lamp→ television, lizard→ snake,
tulips→ sunflowers, skunk→ possum,
tank→ lawn-mower, rabbit→ shrew,

Table 4: Random Pairs for Various Datasets.

CIFAR10 random pairs and the results are shown in Table
3. To demonstrate the SSL is naturally robust to noisy unla-
beled data, we implement a naive poisoning strategy, where
the adversarial perturbation is canceled and the unlabeled
images that belong to the target class are all inserted with
the trigger pattern. The result shows that the inserted trigger
pattern has no effect on the victim model. Then starting from
the Fixmatch baseline, we successively apply the adversarial
perturbation generator (APG) and contrastive data poisoning
(CDP) in our framework. It can be seen that APG achieves
a breakthrough in attack success rate and CDP greatly im-
proves it. By integrating those two components, our attack
framework poses a real threat to SSL systems.

Conclusion
In this work, we have demonstrated that semi-supervised
learning is vulnerable to backdoor attacks via unlabeled
data. In particular, we have designed a novel deep hidden
backdoor attack scheme for SSL-based systems. The pro-
posed DeHiB can inject malicious unlabeled training data so
as to enable the SSL model to output premeditated results. In
DeHiB, we have proposed a robust adversarial perturbation
generator regularized by a unified objective function to gen-
erate poisoned data. Meanwhile, we have designed a novel
contrastive data poisoning strategy to alleviate the negative
impact of the trigger patterns on model accuracy and im-
prove the attack success rate. Extensive experiments based
on CIFAR10 and CIFAR100 datasets have demonstrated the
effectiveness and crypticity of the proposed scheme.
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