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Abstract

A standard assumption in contextual multi-arm bandit is that
the true context is perfectly known before arm selection.
Nonetheless, in many practical applications (e.g., cloud re-
source management), prior to arm selection, the context infor-
mation can only be acquired by prediction subject to errors or
adversarial modification. In this paper, we study a contextual
bandit setting in which only imperfect context is available for
arm selection while the true context is revealed at the end of
each round. We propose two robust arm selection algorithms:
MaxMinUCB (Maximize Minimum UCB) which maximizes
the worst-case reward, and MinWD (Minimize Worst-case
Degradation) which minimizes the worst-case regret. Im-
portantly, we analyze the robustness of MaxMinUCB and
MinWD by deriving both regret and reward bounds compared
to an oracle that knows the true context. Our results show
that as time goes on, MaxMinUCB and MinWD both per-
form as asymptotically well as their optimal counterparts that
know the reward function. Finally, we apply MaxMinUCB
and MinWD to online edge datacenter selection, and run syn-
thetic simulations to validate our theoretical analysis.

Introduction
Contextual bandits (Lu, Pál, and Pál 2010; Chu et al. 2011)
concern online learning scenarios such as recommendation
systems (Li et al. 2010), mobile health (Lei, Tewari, and
Murphy 2014), cloud resource provisioning (Chen and Xu
2019), wireless communications (Saxena et al. 2019), in
which arms (a.k.a., actions) are selected based on the under-
lying context to balance the tradeoff between exploitation
of the already learnt knowledge and exploration of uncer-
tain arms (Auer et al. 2002; Auer, Cesa-Bianchi, and Fischer
2002; Bubeck and Cesa-Bianchi 2012; Dani et al. 2008).

The majority of the existing studies on contextual bandits
(Chu et al. 2011; Valko et al. 2013; Saxena et al. 2019) as-
sume that a perfectly accurate context is known before each
arm selection. Consequently, as long as the agent learns in-
creasingly more knowledge about reward, it can select arms
with lower and lower average regrets. In many cases, how-
ever, the perfect (or true) context is not available to the agent
prior to arm selection. Instead, the true context is revealed
after taking an action at the end of each round (Kirschner and
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Krause 2019), but can be predicted using predictors, such as
time series prediction(Brockwell et al. 2016; Gers, Schmid-
huber, and Cummins 2000), to facilitate the agent’s arm se-
lection. For example, in wireless communications, the chan-
nel condition is subject to various attenuation effects (e.g.,
path loss and small-scale multi-path fading), and is critical
context information for the transmitter configuration such
as modulation and rate adaption (i.e., arm selection) (Gold-
smith 2005; Saxena et al. 2019). But, the channel condition
context is predicted and hence can only be coarsely known
until the completion of transmission. For another example,
the exact workload arrival rate is crucial context informa-
tion for cloud resource management, but cannot be known
until the workload actually arrives. Naturally, context pre-
diction is subject to prediction errors. Moreover, it can also
open a new attack surface — an outside attacker may adver-
sarially modify the predicted context. For example, a recent
study (Chen, Tan, and Zhang 2019) shows that the energy
load predictor in smart grid can be adversarially attacked to
produce load estimates with higher-than-usual errors. More
motivating examples are provided in (Yang and Ren 2021).
In general, imperfectly predicted and even adversarially pre-
sented context is very common in practice.

As motivated by practical problems, we consider a bandit
setting where the agent receives imperfectly predicted con-
text and selects an arm at the beginning of each round and
the context is revealed after arm selection. We focus on ro-
bust arm optimization given imperfect context, which is as
crucial as robust reward function estimation or exploration
in contextual bandits (Dudı́k, Langford, and Li 2011; Neu
and Olkhovskaya 2020; Zhu et al. 2018). Concretely, with
imperfect context, our goal is to select arms online in a ro-
bust manner to optimize the worst-case performance in a
neighborhood domain with the received imperfect context
as center and a defense budget as radius. In this way, the
robust arm selection can defend against the imperfect con-
text error ( from either context prediction error or adversarial
modification) constrained by the budget.

Importantly and interestingly, given imperfect context,
maximizing the worst-case reward (referred to as type-I ro-
bustness objective) and minimizing the worst-case regret
(referred to as type-II robustness objective) can lead to dif-
ferent arms, while they are the same under the setting of
perfect context (Saxena et al. 2019; Li et al. 2010; Slivkins
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2019). Given imperfect context, the strategy for type-I ro-
bustness is more conservative than that for type-II robust-
ness in terms of reward. The choice of the robustness ob-
jective depends on applications. For example, some safety-
aware applications (Sun, Dey, and Kapoor 2017; Garcıa and
Fernández 2015) intend to avoid extremely low reward, and
thus type-I objective is suitable for them. Other applications
(Li et al. 2010; Chen et al. 2018; Guan et al. 2020) focus on
preventing large sub-optimality of selected arms, and type-
II objective is more appropriate. As a distinction from other
works on robust optimization of bandits (Bogunovic et al.
2018; Kirschner et al. 2020; Nguyen et al. 2020), we high-
light the difference of the two types of robustness objectives.

We derive two algorithms — MaxMinUCB (Maximize
Minimum UCB), which maximizes the worst-case reward
for type-I objective, and MinWD (Minimize Worst-case
Degradation), which minimizes the worst-case regret for
type-II objective. The challenge of algorithm designs is that
the agent has no access to exact knowledge of reward func-
tion but the estimated counterpart based on history collected
data. Thus, in our design, MaxMinUCB maximizes the lower
bound of reward, while MinWD minimizes the upper bound
of regret.

We analyze the robustness of MaxMinUCB and MinWD
by deriving both regret and reward bounds, compared to a
strong oracle that knows the true context for arm selection
as well as the exact reward function. Importantly, our re-
sults show that, while a linear regret term exists for both
MaxMinUCB and MinWD due to imperfect context, the
added linear regret term is actually the same as the amount of
regret incurred by respectively optimizing type-I and type-
II objectives with perfect knowledge of the reward function.
This implies that as time goes on, MaxMinUCB and MinWD
will asymptotically approach the corresponding optimized
objectives from the reward and regret views, respectively.

Finally, we apply MaxMinUCB and MinWD to the prob-
lem of online edge datacenter selection and run synthetic
simulations to validate our theoretical analysis.

Related Work
Contextual bandits. Linear contextual bandit learning is
considered in LinUCB by (Li et al. 2010). . The study
(Abbasi-Yadkori, Pál, and Szepesvári 2011) improves the
regret analysis of linear contextual bandit learning, while
the studies (Agrawal and Goyal 2012, 2013) solve this prob-
lem by Thompson sampling and give a regret bound. There
are also studies to extend the algorithms to general reward
functions like non-linear functions, for which kernel method
is exploited in GP-UCB (Srinivas et al. 2010), Kernel-
UCB (Valko et al. 2013), IGP-UCB and GP-TS (Chowdhury
and Gopalan 2017; Deshmukh, Dogan, and Scott 2017).
Nonetheless, a standard assumption in these studies is that
perfect context is available for arm selection, whereas im-
perfect context is common in many practical applications
(Kirschner et al. 2020).

Adversarial bandits and Robustness. The prior studies
on adversarial bandits (Auer and Chiang 2016; Jun et al.
2018; Altschuler, Brunel, and Malek 2019; Liu and Shroff

2019) have primarily focused on that the adversary ma-
liciously presents rewards to the agent or directly injects
errors in rewards. Moreover, many studies (Audibert and
Bubeck 2009; Gerchinovitz and Lattimore 2016) consider
the best constant policy throughout the entire learning pro-
cess as the oracle, while in our setting the best arm de-
pends on the true context at each round. The adversarial set-
ting has also been extended to contextual bandits (Neu and
Olkhovskaya 2020; Syrgkanis, Krishnamurthy, and Schapire
2016; Han et al. 2020).

Recently, robust bandit algorithms have been proposed for
various adversarial settings. Some focus on robust reward
estimation and exploration (Altschuler, Brunel, and Malek
2019; Guan et al. 2020; Dudı́k, Langford, and Li 2011), and
others train a robust or distributionally robust policy (Wu
et al. 2016; Syrgkanis, Krishnamurthy, and Schapire 2016;
Si et al. 2020b,a). Our study differs from the existing ad-
versarial bandits by seeking two different robust algorithms
given imperfect (and possibly adversarial) context.

Optimization and bandits with imperfect context.
(Rakhlin and Sridharan 2013) considers online optimization
with predictable sequences and (Jadbabaie et al. 2015) fo-
cuses on adaptive online optimization competing with dy-
namic benchmarks. Besides, (Chen et al. 2014; Jiang et al.
2013) study the robust optimization of mini-max regret.
These studies assume perfectly known cost functions with-
out learning. A recent study (Bogunovic et al. 2018) consid-
ers Bayesian optimization and aims at identifying a worst-
case good input region with input perturbation (which can
also model a perturbed but fixed environment/context pa-
rameter). The study (Wang, Wu, and Wang 2016) consid-
ers the linear bandit where certain context features are hid-
den, and uses iterative methods to estimate hidden contexts
and model parameters. Another recent study (Kirschner and
Krause 2019) assumes the knowledge of context distribu-
tion for arm selection, and considers a weak oracle that
also only knows context distribution. The relevant papers
(Kirschner et al. 2020) and (Nguyen et al. 2020) consider
robust Bayesian optimizations where context distribution in-
formation is imperfectly provided, and propose to maximize
the worst-case expected reward for distributional robustness.
Although the objective of MaxMinUCB in our paper is simi-
lar to the robust optimization objectives in the two papers,
we additionally derive a lower bound for the true reward
in our analysis, which provides another perspective on the
robustness of arm selection. More importantly, considering
that the objectives in the two relevant papers are equivalent
to minimizing a pseudo robust regret, we propose MinWD
and derive an upper bound for the incurred true regret.

Problem Formulation
Assume that at the beginning of round t, the agent receives
imperfect context x̂t ∈ X which is exogenously provided
and not necessarily the true context xt. Given the imperfect
context x̂t ∈ X and an arm set A, the agent selects an arm
at ∈ A for round t. Then, the reward yt along with the true
context xt is revealed to the agent at the end of round t.
Assume that X × A ⊆ Rd, and we use xat,t to denote the
d-dimensional concatenated vector [xt, at].
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The reward yt received by the agent in round t is jointly
decided by the true context xt and selected arm at, and can
be expressed as follows

yt = f(xt, at) + nt, (1)

where f : X × A → R is the reward function, X is
the context domain, and nt is the noise term. We assume
that the reward function f belongs to a reproducing ker-
nel Hilbert space (RKHS) H generated by a kernel func-
tion k : (X ×A) × (X ×A) → R. In this RKHS,
there exists a mapping function φ : (X ×A) → H which
maps context and arm to their corresponding feature in
H. By reproducing property, we have k ([x, a], [x′, a′]) =
〈φ (x, a) , φ (x′, a′)〉 and f (x, a) = 〈φ (x, a) , θ〉 where θ is
the representation of function f(·, ·) in H. Further, as com-
monly considered in the bandit literature (Slivkins 2019;
Li et al. 2010), the noise nt follows b-sub-Gaussian dis-
tribution for a constant b ≥ 0, i.e. conditioned on the fil-
tration Ft−1 = {xτ , ya,τ , aτ , τ = 1, · · · , t− 1}, ∀σ ∈ R,

E [eσnt |Ft−1] ≤ exp
(
σ2b2

2

)
.

Without knowledge of reward function f , bandit al-
gorithms are designed to decide an arm sequence
{at, t = 1, · · · , T} to minimize the cumulative regret

RT =

T∑
t=1

f(xt, A
∗(xt))− f(xt, at), (2)

whereA∗ (xt) = arg maxa∈A f(xt, a) is the oracle-optimal
arm at round t given the true context xt. When the received
contexts are perfect, i.e. x̂t = xt, minimizing the cumula-
tive regret is equivalent to maximizing the cumulative re-
ward FT =

∑T
t=1 f(xt, at).

Context Imperfectness
The context error can come from a variety of sources, includ-
ing imperfect context prediction algorithms and adversarial
corruption (Kirschner et al. 2020; Chen, Tan, and Zhang
2019) on context. We simply use context error to encap-
sulate all the error sources without further differentiation.
We assume that context error ‖xt − x̂t‖, where ‖ · ‖ is a
certain norm (Bogunovic et al. 2018), is less than ∆. Also,
∆ is referred to as the defense budget and can be consid-
ered as the level of robustness/safeguard that the agent in-
tends to provide against context errors: with a larger ∆, the
agent wants to make its arm selection robust against larger
context errors (at the possible expense of its reward). A
time-varying error budget can be captured by using ∆t. De-
note the neighborhood domain of context x as B∆ (x) =
{y ∈ X | ‖y − x‖ ≤ ∆}. Then, we have the true context
xt ∈ B∆ (x̂t), where x̂t is available to the agent.

Reward Estimation
Reward estimation is critical for arm selection. Kernel
ridge regression, which is widely used in contextual bandits
(Slivkins 2019) serves as the reward estimation method in
our algorithm designs. By kernel ridge regression, the esti-
mated reward given arm a and context x is expressed as

f̂t(x, a) = kTt (x, a)(Kt + λI)−1yt (3)

where I is an identity matrix, yt ∈ Rt−1 contains the his-
tory of yτ , kt(x, a) ∈ Rt−1 contains k([x, a], [xτ , aτ ]),
and Kt ∈ R(t−1)×(t−1) contains k([xτ , aτ ], [xτ ′ , aτ ′ ]), for
τ,τ ′∈{1, · · · , t− 1}.

The confidence width of kernel ridge regression is given
in the following concentration lemma followed by a defini-
tion of reward UCB.

Lemma 1 (Concentration of Kernel Ridge Regression). As-
sume that the reward function f(x, a) satisfies |f(x, a)| ≤
B, the noise nt satisfies a sub-Gaussian distribution with
parameter b, and kernel ridge regression is used to esti-
mate the reward function. With a probability of at least
1 − δ, δ ∈ (0, 1), for all a ∈ A and t ∈ N, the es-
timation error satisfies |f̂t(x, a) − f(x, a)| ≤ htst(x, a),

where ht =
√
λB + b

√
γt − 2 log (δ), γt = log det(I +

Kt/λ) ≤ d̄ log(1 + t
d̄λ

) and d̄ is the rank of Kt. Let
Vt = λI +

∑t
s=1 φ(x, a)φ(x, a)>, the squared confidence

width is given by s2
t (x, a) = φ(x, a)>V−1

t−1φ(x, a) =
1
λk([x, a], [x, a])− 1

λkt(x, a)T (Kt + λI)−1kt(x, a).

Definition 1. Given arm a ∈ A and context x ∈ X ,
the reward UCB (Upper Confidence Bound) is defined as
Ut (x, a) = f̂t (x, a) + htst(x, a).

The next lemma shows that the term st (xt, at) has a van-
ishing impact on regret over time.

Lemma 2. The sum of confidence widths given xt for t ∈
{1, · · · , T} satisfies

∑T
t=1 s

2
t (xt, at) ≤ 2γT , where γT =

log det(I + KT /λ) ≤ d̄ log(1 + T
d̄λ

) and d̄ is the rank of
KT .

Then, we give the definition of UCB-optimal arm which
is important in our algorithm designs.

Definition 2. Given context x ∈ X , the UCB-optimal arm
is defined as A†t (x) = arg maxa∈A Ut (x, a) .

Note that if the received contexts are perfect, i.e. x̂t = xt,
the standard contextual UCB strategy selects arm at round t
as A†t (xt). Under the cases with imperfect context, a naive
policy (which we call SimpleUCB) is simply oblivious of
context errors, i.e. the agent selects the UCB-optimal arm
regarding imperfect context x̂t, denoted as a†t = A†t (x̂t),
by simply viewing the imperfect context x̂t as true context.
Nonetheless, if we want to guarantee the arm selection per-
formance even in the worst case, robust arm selection that
accounts for context errors is needed.

Robustness Objectives
In the existing bandit literature such as (Auer and Chiang
2016; Han et al. 2020; Li et al. 2010), maximizing the cu-
mulative reward is equivalent to minimizing the cumulative
regret, under the assumption of perfect context for arm se-
lection. In this section, we will show that maximizing the
worst-case reward is equivalent to minimizing a pseudo re-
gret and is different from minimizing the worst-case true re-
gret.
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Figure 1: Illustration of reward and regret functions that Type-I and Type-II robustness objectives are suitable for, respectively.
The golden dotted vertical line represents the imperfect context cI, and the gray region represents the defense region B∆(cI).

Type-I Robustness
With imperfect context, one approach to robust arm selec-
tion is to maximize the worst-case reward. With perfect
knowledge of reward function, the oracle arm that maxi-
mizes the worst-case reward at round t is

āt = arg max
a∈A

min
x∈B∆(x̂t)

f(x, a). (4)

For analysis in the following sections, given āt, the corre-
sponding context for the worst-case reward is denoted as

x̄t = arg min
x∈B∆(x̂t)

f (x, āt) , (5)

and the resulting optimal worst-case reward is denoted as

MFt = f (x̄t, āt) . (6)

Next, Type-I robustness objective is defined based on the
difference

∑T
t=1MFt − FT , where FT =

∑T
t=1 f(xt, at)

is the actual cumulative reward.
Definition 3. If, with an arm selection strategy
{a1, · · · , aT }, the difference between the optimal cu-
mulative worst-case reward and the cumulative true reward∑T
t=1MFt − FT is sub-linear with respect to T , then the

strategy achieves Type-I robustness.
If an arm selection strategy achieves Type-I robustness,

the lower bound for the true reward f (xt, at) approaches
the optimal worst-case reward MFt in the defense region
as t increases. Therefore, a strategy achieving type-I robust-
ness objective can prevent very low reward. For example,
in Fig. 1(a), arm 1 is the one that maximizes the worst-case
reward, which is not necessarily optimal but always avoids
extremely low reward under any context in the defense re-
gion.

Note that maximizing the worst-case reward is equivalent
to minimizing the robust regret defined in (Kirschner et al.
2020), which is written using our formulation as

R̄T =
T∑
t=1

min
x∈B∆(x̂t)

f (x, āt)− min
x∈B∆(x̂t)

f (x, at) . (7)

However, this robust regret is a pseudo regret because the re-
wards of oracle arm āt and selected arm at are compared un-
der different contexts (i.e., their respective worst-case con-
texts), and it is not an upper or lower bound of the true regret
RT . To obtain a robust regret performance, we need to define
another robustness objective based on the true regret.

Type-II Robustness
To provide robustness for the regret with imperfect context,
we can minimize the cumulative worst-case regret, which is
expressed as

R̃T =
T∑
t=1

max
x∈B∆(x̂t)

[f (x,A∗(x))−f (x, at)] . (8)

Clearly, the true regretRT ≤ R̃T , and minimizing the worst-
case regret is equivalent to minimizing an upper bound for
the true regret. Define the instantaneous regret function with
respect to context x and arm a as r (x, a) = f(x,A∗ (x))−
f(x, a). Since given the reward function the optimization is
decoupled among different rounds, the robust oracle arm to
minimize the worst-case regret at round t is

ãt = arg min
a∈A

max
x∈Bt(x̂t)

r(x, a). (9)

For analysis in the following sections, given ãt, the corre-
sponding context for the worst-case regret is denoted as

x̃t = arg max
x∈B∆(x̂t)

r(x, ãt), (10)

and the resulting optimal worst-case regret is

MRt = r(x̃t, ãt). (11)

Now, we can give the definition of Type-II robustness as fol-
lows.
Definition 4. If, with an arm selection strategy
{a1, · · · , aT }, the difference between the cumulative
true regret and the optimal cumulative worst-case regret
RT −

∑T
t=1MRt is sub-linear with respect to T , then the

strategy achieves Type-II robustness.
If an arm selection strategy achieves Type-II robust-

ness, as time increases, the upper bound for the true re-
gret r(xt, at) also approaches the optimal worst-case regret
MRt. Hence, a strategy achieving type-II robustness objec-
tive can prevent a high regret. As shown in Fig. 1(b), arm 1
is selected by minimizing the worst-case regret, which is a
robust arm selection because the regret of arm 1 under any
context in the defense region is not too high.

Comparison of Two Robustness Objectives
The two types of robustness correspond to the algorithms
maximizing the worst-case reward and minimizing the
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Algorithm 1 Robust Arm Selection with Imperfect Context

Input: Context error budget ∆
for t = 1, · · · , T do

Receive imperfect context x̂t.
Select arm aI

t to solve Eqn. (12) in MaxMinUCB; or
select arm aII

t to solve Eqn. (16) in MinWD
Observe the true context xt and the reward yt.

end for

worst-case regret, respectively. In many cases, they result in
different arm selections. Take the two scenarios in Fig. 1 as
examples. In the scenario of Fig. 1(a), given the defense re-
gion, arm 1 is selected by maximizing the worst-case reward
and arm 2 is selected by minimizing the worst-case regret. It
can be observed that the worst-case regrets of the two arms
are very close, but the worst-case reward of arm 2 is much
lower than that of arm 1. Thus, the strategy of maximizing
the worst-case reward is more suitable for this scenario. Dif-
ferently, in the scenario of Fig. 1(b), arm 2 is selected by
maximizing the worst-case reward and arm 1 is selected by
minimizing the worst-case regret. Since the worst-case re-
wards of the two arms are very close and the worst-case re-
gret of arm 2 is much larger than arm 1, it is more suitable
to minimize the worst-case regret.

Robust Bandit Arm Selection
In this section, we propose two robust arm selection algo-
rithms: (1) MaxMinUCB (Maximize Minimum Upper Con-
fidence Bound), which aims to maximize the minimum re-
ward (Type-I robustness objective); and (2) MinWD (Mini-
mize Worst-case Degradation), which aims to minimize the
maximum regret (Type-II robustness objective). We derive
the regret and reward bounds for both algorithms and the
proofs are available in (Yang and Ren 2021).

MaxMinUCB: Maximize Minimum UCB
Algorithm To achieve type-I robustness, MaxMinUCB in
Algorithm 1 selects an arm aI

t by maximizing the minimum
UCB within the defense region B∆(x̂t):

aI
t = arg max

a∈A
min

x∈B∆(x̂t)
Ut (x, a) . (12)

The corresponding context that attains the minimum UCB in
Eqn.(12) is xI

t = minx∈B∆(x̂t) Ut
(
x, aI

t

)
.

Analysis The next theorem gives a lower bound of the cu-
mulative true reward of MaxMinUCB in terms of the optimal
worst-case reward and a sub-linear term.
Theorem 3. If MaxMinUCB is used to select arms with im-
perfect context, then for any true contexts xt ∈ B∆(x̂t) at
round t, t = 1, · · · , T , with a probability of 1−δ, δ ∈ (0, 1),
we have the following lower bound on the worst-case cumu-
lative reward

FT ≥
T∑
t=1

MFt − 2hT

√
2T d̄ log(1 +

T

d̄λ
) (13)

where MFt is the optimal worst-case reward in Eqn. (6), d̄
is the rank of Kt and hT is given in Lemma 1.

Remark 1. Theorem 3 shows that by MaxMinUCB, the dif-
ference between the optimal cumulative worst-case reward
and the cumulative true reward is sub-linear and thus effec-
tively achieves Type-I robustness according to Definition 3.
This means that the reward by MaxMinUCB has a bounded
sub-linear gap compared to the optimal worst-case reward∑T
t=1MFt obtained with perfect knowledge of the reward

function. �

We are also interested in the cumulative true regret of
MaxMinUCB which is given in the following corollary.

Corollary 3.1. If MaxMinUCB is used to select arms with
imperfect context, then for any true contexts xt ∈ B∆(x̂t) at
round t, t = 1, · · · , T , with a probability of 1−δ, δ ∈ (0, 1),
we have the following bound on the cumulative true regret
defined in Eqn. (2):

RT ≤
T∑
t=1

MRt + 2hT

√
2T d̄ log(1 +

T

d̄λ
) (14)

where MRt = maxx∈B∆(x̂t) f (x,A∗ (x))−MFt, MFt is
the optimal worst-case reward in Eqn. (6) .

Remark 2. Corollary 3.1 shows that the worst-case regret
by MaxMinUCB can be quite larger than the optimal worst-
case regret MRt given in Eqn. (11) (Type-II robustness ob-
jective). Actually, despite being robust in terms of rewards,
arms selected by MaxMinUCB can still have very large re-
gret as shown in Fig. 1(b). Thus, to achieve type-II robust-
ness, it is necessary to develop an arm selection algorithm
that minimizes the worst-case regret.

MinWD: Minimize Worst-case Degradation
Algorithm MinWD is designed to asymptotically min-
imize the worst-case regret. Without the oracle knowl-
edge of reward function, MinWD performs arm selection
based on the upper bound of regret. Denote Da (x) =

Ut

(
x,A†t (x)

)
− Ut (x, a) referred to as UCB degradation

at context x. By Lemma 1, the instantaneous true regret can
be bounded as

r(xt, at)≤ [Dat (xt)+2htst (xt, at)]

≤Dat +2htst (xt, at) ,
(15)

where Dat = maxx∈B∆(x̂t)Da (x) is called the worst case
degradation, and 2htst (xt, at) has a vanishing impact by
Lemma 2. Thus, to minimize worst-case regret, MinWD
minimizes its upper boundDat excluding the vanishing term
2htst (xt, at), i.e.

aII
t = min

a∈A
max

x∈B∆(x̂t)

{
Ut

(
x,A†t (x)

)
− Ut (x, a)

}
. (16)

The context that attains the worst case in Eqn. (16) is written
as xII

t = arg maxx∈B∆(x̂t)DaII
t

(x).

Analysis Given arm aII
t selected by MinWD, the next

lemma gives an upper bound of worst-case degradation.
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Lemma 4. If MinWD is used to select arms with imperfect
context, then for each t = 1, 2, · · · , T , with a probability at
least 1− δ, δ ∈ (0, 1), we have

DaII
t ,t
≤MRt + 2htst

(
ẋt, A

†
t (ẋt)

)
, (17)

where MRt is the optimal worst-case regret defined in
Eqn. (11), ẋt = arg maxx∈B∆(x̂t)Dãt (x) is the context that
maximizes the degradation given the arm ãt defined for the
optimal worst-case regret in Eqn. (10).

Then, in order to show that DaII
t ,t

approaches MRt, we

need to prove that 2htst

(
ẋt, A

†
t (ẋt)

)
vanishes as t in-

creases. But, this is difficult because the considered se-
quence

{
ẋt, A

†
t (ẋt)

}
is different from the actual sequence

of context and selected arms
{
xt, a

II
t

}
under MinWD. To

circumvent this issue, we first introduce the concept of ε−
covering (Wu 2016). Denote Φ = X ×A as the context-arm
space. If a finite set Φε is an ε− covering of the space Φ, then
for each ϕ ∈ Φ, there exists at least one ϕ̄ ∈ Φε satisfying
‖ϕ− ϕ̄‖2 ≤ ε. Denote Cε (ϕ̄) = {ϕ | ‖ϕ− ϕ̄‖2 ≤ ε} as the
cell with respect to ϕ̄ ∈ Φε. Since the dimension of the en-
tries in Φ is d, the size of the Φε is |Φε| ∼ O

(
1
εd

)
. Besides,

we assume the mapping function φ is Lipschitz continuous,
i.e. ∀x, y ∈ Φ, ‖φ(x) − φ(y)‖ ≤ Lφ‖x − y‖. Next, we
prove the following proposition to bound the sum of confi-
dence widths under some conditions.
Proposition 5. Let XT = {xa1,1, · · · , xaT ,T } be the se-
quence of true contexts and selected arms by bandit algo-
rithms and ẊT = {ẋȧ1,1, · · · , ẋȧT ,T } be the considered se-
quence of contexts and actions. Suppose that both xat,t and
ẋȧt,tbelong to Φ. Besides, with an ε− covering Φε ⊆ Φ,
ε > 0, there exists κ ≥ 0 such that two conditions are satis-
fied: First, ∀ϕ̄ ∈ Φε, ∃t ≤

⌈
κ/εd

⌉
such that xat,t ∈ Cε (ϕ̄).

Second, if at round t, xat,t ∈ Cε (ϕ̄) for some ϕ̄ ∈ Φε, then
∃t ≤ t′ < t +

⌈
κ/εd

⌉
such that xa′t,t′ ∈ Cε (ϕ̄). If the map-

ping function φ is Lipschitz continuous with constant Lφ, the
sum of squared confidence widths is bounded as
T∑
t=1

s2
t (ẋȧt,t)≤

√
T

(
4d̃ log

(
1+

T

d̃λ

)
+

1

λ

)
+

8L2
φκ

2/d

λ
T 1−1/d,

where d is the dimension of xat,t, d̃ is the effective dimension
defined in the proof, s2

t (ẋȧt,t) = φ(ẋȧt,t)
>V−1

t−1φ(ẋȧt,t)

and Vt=λI +
∑t
s=1 φ(xas,s)φ(xas,s)

>.
Remark 3. The conditions in Proposition 5 guarantee that
the time interval between the events that true context-arm
feature lies in the same cell is not larger than

⌈
κ/εd

⌉
, which

is proportional to the size of the ε-covering |Φε|. That means,
similar contexts and selected arms occur in the true sequence
repeatedly if T is large enough. If contexts are sampled
from a bounded space X with some distribution, then simi-
lar contexts will occur repeatedly. Also, note that the arm in
our considered sequence A†t (ẋt) is the UCB-optimal arm,
which becomes close to the optimal arm for ẋt if the confi-
dence width is sufficiently small. Hence, there exists some
context error budget sequence {∆t} such that, starting from

a certain round T0, the two conditions are satisfied. The two
conditions in Proposition 5 are mainly for theoretical analy-
sis of MinWD.

By Lemma 4 and Proposition 5, we bound the cumulative
regret of MinWD.
Theorem 6. If MinWD is used to select arms with imperfect
context and as time goes on, and the conditions in Proposi-
tion 5 are satisfied, then for any true context xt ∈ B∆(x̂t) at
round t, t = 1, · · · , T , with a probability of 1−δ, δ ∈ (0, 1),
we have the following bound on the cumulative true regret:

RT ≤
T∑
t

MRt + 2hTT
3
4

√(
4d̃ log

(
1 +

T

d̃λ

)
+

1

λ

)
+

4

√
2

λ
Lφκ

1
dhTT

1− 1
2d + 2hT

√
2T d̄ log(1+

T

d̄λ
),

where MRt is the optimal worst-case regret for round t in
Eqn. (11), d is the dimension of xat,t, d̃ is the effective di-
mension defined in the proof of Proposition 5, d̄ is the rank
of Kt and hT is given in Lemma 1.

Remark 4. Theorem 6 shows that by MinWD, RT −∑T
t=1MRt is sub-linear w.r.t. T and thus Type-II robust-

ness is effectively achieved according to Definition 4. This
means the true regret bound approaches

∑T
t MRt, the opti-

mal worst-case regret, asymptotically.
Next, in parallel with MaxMinUCB, we derive the bound

of true reward for MinWD.
Corollary 6.1. If MinWD is used to select arms with imper-
fect context and as time goes on, and the true sequence of
context and arm obeys the conditions in Proposition 5, then
for any true contexts xt ∈ B∆(x̂t) at round t, t = 1, · · · , T ,
with a probability of 1− δ, δ ∈ (0, 1), we have the following
lower bound of the cumulative reward

FT ≥
T∑
t=1

[MFt−MRt]−2hTT
3
4

√(
4d̃ log

(
1 +

T

d̃λ

)
+

1

λ

)

− 4

√
2

λ
Lφκ

1
dhTT

1− 1
2d − 2hT

√
2T d̄ log(1+

T

d̄λ
),

where MRt is the optimal worst-case regret for round t in
Eqn. (11), d is the dimension of xat,t, d̃ is the effective di-
mension defined in the proof of Proposition 5, d̄ is the rank
of Kt, and hT is given in Lemma 1.
Remark 5. Corollary 6.1 shows that as t becomes suf-
ficiently large, the difference between the optimal worst-
case reward and the true reward of the selected arm is no
larger than the optimal worst-case regret MRt. With perfect
context, we have MRt = 0, and hence MaxMinUCB and
MinWD both asymptotically maximize the reward, imply-
ing that these two types of robustness are the same under
perfect context.

Summary of Main Results
We summarize our analysis of MaxMinUCB and MinWD
in Table 1, while the algorithms details are available in Al-
gorithm 1. In the table, d is the dimension of context-arm
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Figure 2: Different cumulative regret objectives for different algorithms.

Algorithms Regret Reward
MaxMinUCB

∑T
t=1MRt +

O(
√
TlogT)

∑T
t=1MFt −

O(
√
TlogT)

MinWD
∑T
t=1MRt +

O(T
3
4

√
logT +

T 1− 1
2d +
√
TlogT)

∑T
t [MFt−MRt]−

O(T
3
4

√
log T +

T 1− 1
2d +
√
TlogT)

Table 1: Summary of Analysis

vector [x, a], MRt = maxx∈B∆(x̂t) f (x,A∗ (x)) −MFt,
and MFt and MRt are defined in Eqn. (6) and (11), respec-
tively. Type-I and type-II robustness objectives are achieved
by MaxMinUCB and MinWD respectively.

Simulation
Edge computing is a promising technique to meet the de-
mand of latency-sensitive applications (Shi et al. 2016).
Given multiple heterogeneous edge datacenters located in
different locations, which one should be selected? Specif-
ically, each edge datacenter is viewed as an arm, and the
users’ workload is context that can only be predicted prior
to arm selection. Our goal is to learn datacenter selection
to optimize the latency in a robust manner given imperfect
workload information. We assume that the service rate of
the edge datacenter a, a ∈ A, is µa, the computation la-
tency satisfies an M/M/1 queueing model and the average
communication delay between this datacenter and users is
pa. Hence, the average total latency cost can be expressed
as l(x, a) = pa · x + x

µa−x which is commonly-considered
in the literature (Lin et al. 2011; Xu, Chen, and Ren 2017;
Lin et al. 2012). The detailed settings are given in (Yang and
Ren 2021).

In Fig. 2, we compare different algorithms in terms of
three cumulative regret objectives: robust regret in Eqn. (7),
worst-case regret in Eqn. (8) and true regret in Eqn. (2).
We consider the following algorithms: SimpleUCB with im-
perfect context, MaxMinUCB with imperfect context and
MinWD with imperfect context. Given a sequence of true
contexts, imperfect context sequence is generated by sam-
pling i.i.d. uniform distribution over B∆(xt) at each round.
In the simulations, Gaussian kernel with parameter 0.1 is
used for reward (loss) estimation. λ in Eqn. (3) is set as 0.1.

The exploration rate is set as ht = 0.04.
As is shown in Fig. 2(a), MaxMinUCB has the best perfor-

mance of robust regret among the three algorithms. This is
because MaxMinUCB targets at type-I robustness objective
which is equivalent to minimizing the robust regret. How-
ever, MaxMinUCB is not the best algorithm in terms of true
regret as is shown in Fig. 2(c) since robust regret is not an
upper or lower bound of true regret. Another robust algo-
rithm MinWD is also better than SimpleUCB in terms of ro-
bust regret, and it has the best performance among the three
algorithms in terms of the worst-case regret, as shown in
Fig. 2(b). This is because the regret of MinWD approaches
the optimal worst-case regret (Theorem 6). MinWD also has
a good performance of true regret, which coincides with the
fact that the worst-case regret is the upper bound of the true
regret. By comparing the three algorithms in terms of the
three regret objectives, we can clearly see that MaxMinUCB
and MinWD achieve performance robustness in terms of the
robust regret and worst-case regret, respectively.

Conclusion
In this paper, considering a bandit setting with imperfect
context, we propose: MaxMinUCB which maximizes the
worst-case reward; and MinWD which minimizes the worst-
case regret. Our analysis of MaxMinUCB and MinWD based
on regret and reward bounds shows that as time goes on,
MaxMinUCB and MinWD both perform as asymptotically
well as their counterparts that have perfect knowledge of the
reward function. Finally, we consider online edge datacenter
selection and run synthetic simulations for evaluation.
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