
Hierarchical Graph Capsule Network

Jinyu Yang1∗, Peilin Zhao2, Yu Rong2, Chaochao Yan1, Chunyuan Li1, Hehuan Ma1,
Junzhou Huang1

1University of Texas at Arlington
2Tencent AI Lab
jzhuang@uta.edu

Abstract

Graph Neural Networks (GNNs) draw their strength from ex-
plicitly modeling the topological information of structured
data. However, existing GNNs suffer from limited capabil-
ity in capturing the hierarchical graph representation which
plays an important role in graph classification. In this paper,
we innovatively propose hierarchical graph capsule network
(HGCN) that can jointly learn node embeddings and extract
graph hierarchies. Specifically, disentangled graph capsules
are established by identifying heterogeneous factors underly-
ing each node, such that their instantiation parameters repre-
sent different properties of the same entity. To learn the hier-
archical representation, HGCN characterizes the part-whole
relationship between lower-level capsules (part) and higher-
level capsules (whole) by explicitly considering the structure
information among the parts. Experimental studies demon-
strate the effectiveness of HGCN and the contribution of each
component. Code: https://github.com/uta-smile/HGCN

Introduction
GNNs (Scarselli et al. 2008), especially graph convolutional
networks (Bruna et al. 2013; Henaff, Bruna, and LeCun
2015) have demonstrated remarkable performance in mod-
eling structured data in a wide variety of fields, such as so-
cial networks (Kipf and Welling 2017; Hamilton, Ying, and
Leskovec 2017; Li et al. 2019) and graph-based representa-
tions of molecules (Gilmer et al. 2017; Rong et al. 2020a).
The common practice is to recursively update node embed-
dings by aggregating (or message passing) information from
topological neighbors such that the GNNs can capture the lo-
cal structure of nodes. Subsequently, the learned embeddings
can be used in downstream analyses, e.g., node classification
(Kipf and Welling 2017; Hamilton, Ying, and Leskovec 2017;
Huang et al. 2018; Xu et al. 2018b; Rong et al. 2020b), link
prediction (Zhang and Chen 2018), and graph classification
(Duvenaud et al. 2015; Dai, Dai, and Song 2016; Gilmer et al.
2017). However, those GNNs fail to capture the hierarchical
representations of graphs (Ying et al. 2018b), which is essen-
tial for many scenarios. For instance, in order to predict the
properties of a given molecule, it would be highly desirable

∗This work is done when Jinyu Yang works as an intern at
Tencent AI Lab
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to infer the sub-parts which are important for the molecular
properties hierarchically.

To this end, various graph pooling methods are recently
proposed, aiming to learn the coarse-grained graph structure
by either reserving the most informative nodes (Gao and Ji
2019; Lee, Lee, and Kang 2019) or aggregating nodes be-
longing to the same cluster (Ying et al. 2018b; Yuan and Ji
2020; Khasahmadi et al. 2020; Wang et al. 2020; Bianchi,
Grattarola, and Alippi 2020). In particular, the latter attracts
considerable attention mainly attributed to its remarkable per-
formance. Such kind of methods learn a cluster assignment
matrix to map each node to a set of clusters that may cor-
respond to strongly connected communities within a social
network or functional groups within a molecule. However,
their limitations lie in that (i) simply grouping node features
fails to effectively model the part-whole relationship that is
crucial in characterizing the hierarchical structure, and (ii)
they ignore the entanglement of the latent factors behind
node embeddings, resulting in limited capacity in preserving
detailed node/graph properties and modeling graph hierarchy.
For example, it is of particular importance to consider the
interaction of heterogeneous factors (e.g., work, hobby) un-
derlying each node, in order to identify the communities in a
social network.

Capsule neural networks (CapsNets) have proved its effec-
tiveness in modeling hierarchical relationships on image data
by exploiting the fact that while viewpoint changes have com-
plicated effects on pixel intensities, they have linear effects at
the part/object level (Sabour, Frosst, and Hinton 2017; Hin-
ton, Sabour, and Frosst 2018; Kosiorek et al. 2019). In con-
trast to convolutional neural networks, CapsNets use activity
vectors or pose matrices to represent the entities. Moreover,
the viewpoint-invariant relationship between the part and the
whole is characterized by trainable transformation matrices,
which is under the assumption that the human visual sys-
tem relies on parse tree-like structure to recognize objects.
Such representations make CapsNets especially appealing in
reasoning the part-whole hierarchy and robust to adversarial
attacks (Hinton, Sabour, and Frosst 2018; Qin et al. 2020).
However, how to effectively take advantage of CapsNets to
benefit graph classification remains largely unexplored.

In this work, we present the hierarchical graph capsule
network (HGCN) that is able to jointly learn node embed-
dings and extract the hierarchical structure of the input graph.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

10603



Specifically, to preserve detailed node/graph information, we
build graph capsules by disentangling heterogeneous factors
behind the node embeddings such that each capsule encodes
different properties of the same entity. In order to capture the
graph hierarchy, multiple graph capsule layers are stacked
to get coarser and coarser representations. In each layer, (i)
to infer the votes of instantiation parameters of higher-level
capsules (wholes), we propose transformation GNNs to rea-
son about the part-whole relationship by explicitly consid-
ering the structure information among lower-level capsules
(parts); (ii) each of these votes that are weighted by a routing
weight, are iteratively routed to the potential wholes that cor-
respond to tight clusters in the votes. We further introduce
the auxiliary graph reconstruction to enhance the representa-
tion capacity of graph capsules and the training stability. As
a consequence, HGCN is capable of modeling hierarchical
representations of the input graph and benefits the goal of
graph classification.

Our main contributions can be summarized as: (i) we pro-
pose a novel capsule-based graph neural network to learn
node embeddings and hierarchical graph representations si-
multaneously, (ii) we demonstrate the effectiveness of con-
sidering the entanglement of latent factors and the structure
information within the parts in modeling part-whole rela-
tionships on the graph data; (iii) comprehensive empirical
studies demonstrate that our method achieves remarkably
superior improvement over the state-of-the-art approaches on
11 commonly used benchmarks.

Related Work
Graph Neural Networks GNNs attempt to exploit the
structure information underlying graph structured data in
order to benefit various downstream tasks (Li et al. 2016;
Kipf and Welling 2017; Hamilton, Ying, and Leskovec 2017;
Li et al. 2018; Xu et al. 2018b; Luan et al. 2019; Rong
et al. 2020b; You, Ying, and Leskovec 2019). Recent stud-
ies have proved GNNs’ wide applicability in, for example,
drug discovery (Yan et al. 2020; Gilmer et al. 2017; Ma
et al. 2020), protein interface prediction (Fout et al. 2017),
and recommendation system (Ying et al. 2018a). Current
GNNs can be mainly summarized as two streams: spectral-
based methods and spatial-based methods. The spectral-based
methods largely rely on the convolution operation defined in
the Fourier domain with spectral filters (Bruna et al. 2013;
Henaff, Bruna, and LeCun 2015). This kind of method is fur-
ther simplified and extended by introducing polynomial spec-
tral filters (Defferrard, Bresson, and Vandergheynst 2016) or
linear filters (Kipf and Welling 2017). To deal with arbitrarily
structured graphs, the spatial-based methods define convo-
lutions directly on the graph by aggregating features from
topological neighbors (Atwood and Towsley 2016; Niepert,
Ahmed, and Kutzkov 2016; Hamilton, Ying, and Leskovec
2017; Vaswani et al. 2017).

Graph Pooling It is widely recognized that pooling oper-
ation plays an important role in graph classification (Errica
et al. 2020) which requires the graph level representation.
The most straightforward way is, to sum up, or take an aver-
age of all node features (Hamilton, Ying, and Leskovec 2017;

Xu et al. 2018a). The limitation of such strategy is that the
hierarchical information which is crucial in capturing graph
structure is not considered. Inspired by the downsampling
in convolutional neural networks, recent studies propose to
adaptively keep the most informative nodes in a hierarchi-
cal manner (Gao and Ji 2019; Lee, Lee, and Kang 2019),
or aggregate maximal cliques by only using topological in-
formation (Luzhnica, Day, and Lio 2019). Another line of
work focuses on finding strongly connected communities on
a graph. This is typically achieved by learning a cluster as-
signment matrix in order to map each node to a set of clusters
(Ying et al. 2018b; Ranjan, Sanyal, and Talukdar 2020; Yuan
and Ji 2020; Khasahmadi et al. 2020). Most recent studies ap-
proach this problem by leveraging more advanced clustering
techniques, such as local graph Fourier transform (Ma et al.
2019b), spectral clustering (Bianchi, Grattarola, and Alippi
2020), and compressive Haar transforms (Wang et al. 2020).
However, simply grouping node features has limited capac-
ity in modeling the part-whole relationships, especially for
biological data. In this work, we reason about the part-whole
hierarchy by exploring the interaction of underlying latent
factors and structure information among the parts, then use
an routing mechanism to assign the parts to wholes.

Capsule Networks A capsule (Hinton, Krizhevsky, and
Wang 2011) is a group of neurons whose orientation rep-
resents the instantiation parameters such as pose (position,
size) of an entity (e.g., an object). The probability that the
entity exists can be represented by the capsule length (Sabour,
Frosst, and Hinton 2017) or a logistic unit (Hinton, Sabour,
and Frosst 2018; Kosiorek et al. 2019). Compared to a single
neuron, a capsule contains different properties of the same
entity and can preserve hierarchical relationships between
lower-level capsules (e.g., eyes, mouth) and higher-level cap-
sules (e.g., face). Such part-whole relationships are described
by trainable transformation matrices which are viewpoint-
invariant. Concretely, a lower-level capsule (part) makes pre-
dictions for the pose of each higher-level capsule (whole)
by multiplying its own pose by the transformation matrices.
Routing-by-agreement is then performed between two adja-
cent capsule layers to update the probability with which a
part is assigned to a whole (Sabour, Frosst, and Hinton 2017;
Hinton, Sabour, and Frosst 2018).

Inspired by this, GCAPS-CNN (Verma and Zhang 2018)
builds capsules on graphs by considering higher-order sta-
tistical moments as instantiation parameters. Normal graph
convolution is then carried out to aggregate information from
neighbors and the covariance is computed as the permutation
invariant feature for graph classification. Its most obvious
drawback lies in that the hierarchical structure of the graph
is not considered. Different from GCAPS-CNN, we explic-
itly take into account the hierarchy between two consecutive
capsule layers through trainable transformation GNNs. Caps-
GNN (Xinyi and Chen 2019) uses multiple GNN channels
to build graph capsules and follow the same voting strategy
as (Sabour, Frosst, and Hinton 2017) to predict higher-level
capsules. However, simply using the transformation matrix
ignores the local structure information among lower-level
capsules and fails to describe part-whole relationships in

10604



graphs. Our method introduces transformation GNNs to rea-
son about the pose of each whole in the layer above, which
is in contrast to each individual part making its own predic-
tion. A further advantage of transformation GNNs is that
they save orders of magnitude of memory compared to trans-
formation matrices used in previous work (Xinyi and Chen
2019; Sabour, Frosst, and Hinton 2017; Hinton, Sabour, and
Frosst 2018). Furthermore, different from CapsGNN that re-
constructs the histogram of input nodes, we reconstruct the
adjacency matrix of the input graph to ensure the quality of
graph capsules and enhance the training stability.

Preliminaries
Graph Classification A graph G with N nodes is rep-
resented as (A,X), where A ∈ {0, 1}N×N is the adja-
cency matrix, and X ∈ RN×d is the node feature matrix
with feature dimension d. Given a set of labeled graphs
D = {(G1, y1), (G2, y2), ...}, the goal of graph classifica-
tion is to learn a mapping f : G → Y , where Gi ∈ G and
yi ∈ Y . For example, each graph is a molecule, and its label
indicates whether it is toxic.

Graph Neural Networks To extract useful information
from local neighborhoods, our method is built upon GNNs
by following the general ”message-passing” paradigm, which
is formulated as:

H(l+1) =M(A,H(l);W(l)), (1)

whereM indicates the message passing function with various
possible implementations (Kipf and Welling 2017; Hamilton,
Ying, and Leskovec 2017), W(l) is learnable weight matrix,
H(l+1) and H(l) are the node embeddings of layer l+1 and l,
respectively. The input node embeddings H(1) are initialized
using the node feature X, i.e., H(1) = X. The final node
representations are denoted by GNN(A,X) = H(LGNN) ∈
RN×h with LGNN iterations.

Methodology
In this section, we begin by first briefing the proposed HGCN
as shown in Figure 1, then we detail each component in the
following sections. The goal of HGCN is to jointly learn
node embeddings and coarsen the graph through exploiting
hierarchical information. To achieve this, we disentangle
node representations to build the graph capsule by consider-
ing heterogeneous factors underlying each edge connection.
Therefore, each graph capsule is composed of multiple inde-
pendent latent factors that represent different properties of
the same entity. To learn hierarchical graph representations,
transformation GNNs (TGNNs) are proposed to encode the
part-whole relationship between lower-level and higher-level
graph capsules. Specifically, a capsule in one layer votes
for the instantiation parameters of each capsule in the layer
above through TGNNs which highly depend on the structure
information of lower-level capsules. Each of these votes is
then routed to a higher-level capsule that receives a cluster of
similar votes by a routing-by-agreement strategy. To encour-
age the graph capsules to encode the instantiation parameters
of the input graph and also enhance the training stability,

we further introduce the auxiliary graph reconstruction to
reconstruct the input adjacency matrix.

Disentangled Graph Capsules
In most cases, highly complex interactions are involved in
the connection between each node pair in a graph. For exam-
ple, the edges between a node and its neighbors in a social
network are driven by heterogeneous factors, since a person
connects with others for various reasons such as exercise,
work, etc. Therefore, it is necessary to disentangle the ex-
planatory factors of variations underlying the node represen-
tations. Furthermore, each node embedding is considered as
multiple individual scalar features in existing GNNs, which
are proved to have limited capability in preserving the graph
properties (Verma and Zhang 2018; Xinyi and Chen 2019).

To address these two limitations, motivated by (Sabour,
Frosst, and Hinton 2017), we propose graph capsules to de-
scribe the given graph. Specifically, we disentangle the latent
factors of each node embedding and use the disentangled
node representation to represent graph capsules (Figure 1A).
In this way, each graph capsule is composed of multiple
heterogeneous factors, and each factor describes a specific
instantiation parameter of the entity/node. Formally, given
G = (A,X), the node i is denoted by xi ∈ Rd. We project
the input node features into K different subspaces, assuming
that there are K latent factors/instantiation parameters:

zi,k = σ(WT
k xi) + bk, (2)

where Wk ∈ Rd× h
K and bk ∈ R h

K are learnable parameters,
σ is a nonlinear activation function, and h

K is the dimension
of each factor. Although more sophisticated implementations
of node disentanglement are possible (Ma et al. 2019a), we
use linear projection in our study attributed to its efficiency
and remarkable performance. Therefore, each graph capsule
is represented by a pose matrix Zi ∈ RK× h

K (Hinton, Sabour,
and Frosst 2018). For simplicity, we reshape Zi to the vector
format zi ∈ Rh. Recall that the existence probability of an
entity represented by a capsule is measured by the capsule
length (Sabour, Frosst, and Hinton 2017), we thus squash zi
as follows:

pi = squash(zi) =
‖zi‖2

1 + ‖zi‖2
zi
‖zi‖

, (3)

where u
(1)
i = pi ∈ Rh is the primary graph capsule rep-

resenting the lowest level of entities, such as atoms in the
molecular graph.

Hierarchical Capsule Layers
To obtain hierarchical graph representation, it is essential to
capture the part-whole relationship between adjacent capsule
layers. Such relationship is measured by viewpoint-invariant
transformation matrix T(l)

i,j ∈ Rdl×dl+1 for each pair of lower-

level capsule u(l)
i and higher-level capsule u(l+1)

j in previous
studies (Sabour, Frosst, and Hinton 2017; Hinton, Sabour, and
Frosst 2018), where dl and dl+1 are the capsule dimensions of
u
(l)
i and u

(l+1)
j , respectively. However, T(l)

i,j totally ignores

10605



Figure 1: An overview of the proposed framework. (A) Given an input graph, we build graph capsules by learning disentangled
node representations in order to take into account the heterogeneous factors behind each node. TGNNs are established to
characterize the part-whole relationship, and a routing strategy is used to predict higher-level capsules that receive a cluster of
similar votes. (B) The residual connection that combines fine, low layer information with coarse, high layer information.

Figure 2: Cluster by agreement.

the structure information within u(l), which is especially
problematic for graph structured data. Furthermore, T(l) ∈
RNl×Nl+1×dl×dl+1 is extremely memory-consuming for the
scenario where a large number of high-dimensional capsules
are required.

To overcome these difficulties, we propose the transforma-
tion GNNs (TGNNs) to vote for the instantiation parameters
of higher-level graph capsules (voting). When multiple votes
agree, a higher-level capsule that receives a cluster of sim-
ilar pose votes becomes active (routing). More concretely,
we denote the graph capsules at layer l as u(l) ∈ RNl×dl ,
the capsule number as Nl, and the adjacency matrix as
A(l). Our goal is to decide which capsules to activate in
u(l+1) ∈ RNl+1×dl+1 and how to assign each active lower-
level capsule u

(l)
i to one active higher-level capsule u

(l+1)
j .

In practice, we set Nl+1 < Nl in order to get coarser and
coarser graph representations (Figure 1A).

Voting For all capsules in u(l), their poses are transformed
by TGNNs to cast votes for the pose of each capsule in u(l+1)

by the following equation,

v
(l)
j = TGNNj(A(l),u(l)), (4)

where v
(l)
j ∈ RNl×dl+1 . Specifically, v(l)

j|i ∈ Rdl+1 is the

vote for the pose of u
(l+1)
j predicted by the capsule u

(l)
i .

Note, TGNNs are learned discriminatively and could learn to
represent part-whole relationships by considering the struc-
ture information of capsules in u(l). This is different from
previous studies that use one transformation matrix for each
pair of (u

(l)
i ,u

(l+1)
j ). Compared to transformation matrices,

TGNNs also save Nl orders of magnitude memory.

Routing Each of these votes is then weighted by an routing
weight c(l)i,j with which a part is assigned to a whole, where

c
(l)
i,j > 0 and

∑Nl+1

j=1 c
(l)
i,j = 1. Here, c(l)i,j is iteratively updated

using an ”routing-by-agreement” mechanism such that each
vote in v(l) is routed to a capsule in u(l+1) that receives a
cluster of similar votes (Figure 2). Formally, c(l)i,j is defined

as c(l)i,j = exp(b
(l)
i,j)/

∑
k exp(b

(l)
i,k), where b(l)i,j is initialized as

b
(l)
i,j = 0. To iteratively search for the vote cluster, in each

iteration we have,

u
(l+1)
j = squash(

∑
i

c
(l)
i,jv

(l)
j|i) (5)

where u
(l+1)
j is the predicted capsule j in layer l + 1, rep-

resenting a tight cluster of votes from layer l. We update
b
(l)
i,j with b(l)i,j = b

(l)
i,j + a

(l)
i,j , where a(l)i,j = v

(l)
j|i · u

(l+1)
j in-

dicates the agreement between each vote and vote cluster.
It is worth mentioning that such top-down feedback also
has a beneficial effect on the aggregation in the proposed
TGNNs, such that TGNNs can more focus on aggregating
information from neighbors that are likely to be in the same
cluster. After R iterations, we get higher-level graph cap-
sules u(l+1) and the coarsened adjacency matrix defined as
A(l+1) = C(l)TA(l)C(l) ∈ RNl+1×Nl+1 . As opposed to
generating structurally independent higher-level capsules in
previous work (Sabour, Frosst, and Hinton 2017; Xinyi and

10606



Chen 2019), the capsule layer we developed is able to explic-
itly preserve the structure information which is encoded in
A(l+1).

Drawing inspiration from (Long, Shelhamer, and Darrell
2015), we add a residual connection at each pair of consecu-
tive capsule layers, aiming to provide fine-grained informa-
tion to higher-level capsules (Figure 1B). Formally, we have
u(l+1) ← u(l+1) + GA(u(l)), where GA indicates the global
average operation.

By stacking multiple capsule layers, we get the class cap-
sules u(L) ∈ RO×dL which are intended to encode feature
attributes corresponding to the class, where O is the number
of graph categories. The classification loss is measured by
a margin loss (Sabour, Frosst, and Hinton 2017) which is
formulated as:

Lm(A,X) =
∑
o∈O

[To max(0,m+ − ‖uLo ‖)2+

λ(1− To) max(0, ‖uLo ‖ −m−)2],

(6)

where m+ = 0.9, m− = 0.1, To = 1 iff the input graph has
label o, and λ is ued to stop the initial learning from shrinking
the length of class capsules.

Auxiliary Graph Reconstruction
To encourage the graph capsules to encode the instantiation
parameters of the input graph and to improve the training
stability, we introduce a reconstruction loss to constraint the
capsule reconstruction to closely match the class-conditional
distribution. Specifically, we first mask out all but the win-
ning capsule (the capsule corresponds to ground truth) and
combine them with primary capsules by following the equa-
tion,

Z = u(1) + (WT
r Φ(u(L)) + br), (7)

where Z ∈ RN×d1 , Φ is the mask operation, Wr ∈
R(O×dL)×d1 , and br ∈ Rd1 . The reconstruction loss is then
defined as,

Lr(A,X) = − 1

N2

N∑
j=1

N∑
k=1

∑
c∈{0,1}

A(j,k,c)log(Ã(j,k,c)),

(8)
where Ã = ZZT is the reconstructed adjacency matrix of the
input graph. Taken together, we reach the optimization ob-
jective of our method as min

θ

∑
G∈D
Lm(A,X) + βLr(A,X),

where θ are all learnable parameters, and β leverages the
importance of Lr. The whole training process is detailed in
Algorithm 1.

Experiments
In this section, we conduct empirical studies on 11 bench-
mark datasets and demonstrate HGCN’s superiority over a
number of state-of-the-art graph classification methods. Ex-
tensive ablation studies are also performed to evaluate the
effectiveness of each component in our model.

Algorithm 1: Training process with K latent factors,
L capsule layers, and R iterations of routing.

Input: G = (A,X),A ∈ RN×N ,X ∈ RN×d
Result: class capsules u(L)

for i← 1 to N do
for k ← 1 to K do

zi,k = σ(WT
k xi) + bk // K latent factors

end
end
u
(1)
i = squash(zi) // disentangled graph capsules

for l← 1 to L do
b
(l)
i,j = 0

for j ← 1 to Nl+1 do
v
(l)
j = TGNNj(A(l),u(l)) // votes

end
for r ← 1 to R do

c
(l)
i,j = exp(b

(l)
i,j)/

∑
k exp(b

(l)
i,k)

u
(l+1)
j = squash(

∑
i c

(l)
i,jv

(l)
j|i)

b
(l)
i,j = b

(l)
i,j + v

(l)
j|i · u

(l+1)
j

end
A(l+1) = C(l)TA(l)C(l) ∈ RNl+1×Nl+1

end
return u(L) ∈ RO×dL // class capsules

Datasets Eleven commonly used benchmarks including (i)
seven biological graph datasets, i.e., MUTAG, NCI1, PRO-
TEINS, D&D, ENZYMES, PTC, NCI109; and (ii) four so-
cial graph datasets, i.e., COLLAB, IMDB-Binary (IMDB-B),
IMDB-Multi (IMDB-M), Reddit-BINARY (RE-B), are used
in this study. It is noteworthy that the social graphs have no
node attributes, while the biological graphs come with cate-
gorical node attributes. More details about the data statistics
and properties can be found in Supplementary.

Baseline Methods We compare with two capsule-based
methods, i.e., CapsGNN (Xinyi and Chen 2019) and GCAPS-
CNN (Verma and Zhang 2018). We also conduct a com-
parison with a number of state-of-the-art GNN-based meth-
ods, including PATCHY-SAN (PSCN) (Niepert, Ahmed,
and Kutzkov 2016), PSCN (Niepert, Ahmed, and Kutzkov
2016), GCN (Kipf and Welling 2017), Deep Graph CNN
(DGCNN) (Zhang et al. 2018), CLIQUEPOOL (Luzhnica,
Day, and Lio 2019), DIFFPOOL (Ying et al. 2018b), ASAP
(Ranjan, Sanyal, and Talukdar 2020), SAGPool (Lee, Lee,
and Kang 2019), EigenPooling (Ma et al. 2019b), GIN (Xu
et al. 2018a), GFN (Chen, Bian, and Sun 2019), HaarPool
(Wang et al. 2020), STRUCTPOOL (Yuan and Ji 2020), and
MemGNN/GMN (Khasahmadi et al. 2020). For kernel-based
methods, we consider WL (Shervashidze et al. 2011), DGK
(Yanardag and Vishwanathan 2015), AWE (Ivanov and Bur-
naev 2018), and GK (Shervashidze et al. 2009).

Experimental Settings We set K = 4, R = 3, λ = 0.5,
β = 0.1, L = 2, and follow the same settings in previ-
ous studies (Ying et al. 2018b) to perform 10-fold cross-

10607



Algorithm MUTAG NCI1 PROTEINS D&D ENZYMES PTC NCI109

AWE

K
er

ne
l 87.87±9.76 — — 71.51±4.02 35.77±5.93 — —

GK 81.58±2.11 62.49±0.27 71.67±0.55 78.45±0.26 32.70±1.20 59.65±0.31 62.60±0.19
WL 82.05±0.36 82.19±0.18 74.68±0.49 79.78±0.36 52.22±1.26 57.97±0.49 82.46±0.24
DGK 87.44±2.72 80.31±0.46 75.68±0.54 73.50±1.01 53.43±0.91 60.08±2.55 80.32±0.33

SAGPool

G
N

N

— 67.45±1.11 71.86±0.97 76.45±0.97 — — 67.86±1.41
CLIQUEPOOL — — 72.59 77.33 60.71 — —
ASAP — 71.48±0.42 74.19±0.79 76.87±0.7 — — 70.07±0.55
HaarPool 77.60±8.94 80.17±2.29 73.23±2.51 — — — 69.61±1.49
EigenPooling 79.50 77.00 76.60 78.60 64.50 — 74.90
DGCNN 85.83±1.66 74.44±0.47 75.54±0.94 79.37±0.94 51.00±7.29 58.59±2.47 75.03±1.72
PSCN 88.95±4.37 76.34±1.68 75.00±2.51 76.27±2.64 — 62.29±5.68 —
GIN 89.40±5.60 82.70±1.70 76.20±2.80 — — 64.60±7.00 —
DIFFPOOL — — 76.25 80.64 62.53 — 74.10
GCN 87.20±5.11 83.65±1.69 75.65±3.24 79.12±3.07 66.50±6.91 — 70.70
GFN 90.84±7.22 82.77±1.49 76.46±4.06 78.78±3.49 70.17±5.58 — —

CapsGNN

C
ap

s 86.67±6.88 78.35±1.55 76.28±3.63 75.38±4.17 54.67±5.67 — —
GCAPS-CNN — 82.72±2.38 76.40±4.17 77.62±4.99 61.83±5.39 66.01±5.91 81.12±1.28
Ours 93.16±6.10 84.87±1.68 77.99±3.16 80.99±2.58 78.00±4.89 66.54±7.97 83.91±1.27

Table 1: Performance comparison on biological graphs. ”Caps” indicates capsule-based GNNs.

Algorithm COLLAB IMDB-B IMDB-M RE-B

GK

K
er

ne
l 72.84±0.28 65.87±0.98 43.89±0.38 65.87±0.98

AWE 73.93±1.94 74.45±5.83 51.54±3.61 87.89±2.53
WL 79.02±1.77 73.40±4.63 49.33±4.75 81.10±1.90
DGK 73.09±0.25 66.96±0.56 44.55±0.52 78.04±0.39

PSCN

G
N

N

72.60±2.15 71.00±2.29 45.23±2.84 86.30±1.58
DGCNN 73.76±0.49 70.03±0.86 47.83±0.85 76.02±1.73
DIFFPOOL 75.48 — — —
GCN 81.72±1.64 73.30±5.29 51.20±5.13 —
GFN 81.50±2.42 73.00±4.35 51.80±5.16 —
GIN 80.20±1.90 75.10±5.10 52.30±2.80 92.40±2.50

GCAPS-CNN

C
ap

s 77.71±2.51 71.69±3.40 48.50±4.10 87.61±2.51
CapsGNN 79.62±0.91 73.10±4.83 50.27±2.65 —
Ours 82.86±1.81 77.20±4.73 52.80±2.45 93.15±1.58

Table 2: Performance comparison on social graphs.

validation for performance evaluation. For each dataset, we
select a single epoch that has the best cross-validation ac-
curacy averaged over the 10 folds, and report the average
and standard deviation of test accuracies at the selected
epoch. HaarPool (Wang et al. 2020) repeats each experi-
ment 10 times with different random seeds, for a fair com-
parison, we run HaarPool with 10-fold cross-validation and
report the result. STRUCTPOOL (Yuan and Ji 2020) and
MemGNN/GMN (Khasahmadi et al. 2020) use a different
assessment criterion that selects the epoch with the best test
accuracy on each fold and then take the average. We name
such assessment criterion as C∗ and run our method by fol-
lowing the same paradigm for comparison. Unless otherwise
indicated, we use the result reported in the original paper
for other baseline methods. For TGNNs, we adopt the GCN
(Kipf and Welling 2017) with LGNN = 1.

Experimental Results We first compare HGCN with exist-
ing state-of-the-art graph classification methods on seven bio-
logical datasets. Our results demonstrate that HGCN achieves
the best performance based on the widely used criterion (Ta-
ble 1) and competes favorably against three C∗- based base-
lines (Supplementary Table 5). In particular, compared with
two capsule-based GNNs (i.e., GCAPS-CNN and CapsGNN),
we boost of 16.17%, 6.49%, 3.37%, and 2.79% improvement
on ENZYMES, MUTAG, D&D, and NCI109, respectively.
The reason is that higher-order statistical moments of local
neighbors are used in GCAPS-CNN to build graph capsules,
this strategy, however, fails to identify the underlying latent
factors which are important in preserving node/graph prop-
erty and extracting the hierarchical representations. Although
this limitation can be partially alleviated by using multiple
graph channels as reported in CapsGNN, the transformation
matrices used in CapsGNN ignore the structure information
involved in lower-level capsules. In contrast, we disentangle
node representations to explicitly consider the entanglement
of heterogeneous factors, and propose transformation GNNs
to measure structure-aware part-whole relationships. Further-
more, it should be noted that we achieve the largest perfor-
mance gains on ENZYMES which has six classes, compared
to the rest of datasets with only two classes. This observa-
tion implies that HGCN is able to capture more complicated
and accurate hierarchy for the multiclass classification prob-
lem than other methods. For instance, although assignment
matrix-based methods (e.g., DIFFPOOL) are capable of map-
ping nodes to a set of clusters for structurally simple graphs,
its representation power is limited to complex and crowded
graphs such as ENZYMES. By contrast, our method per-
forms iterative routing to obtain the cluster of agreement,
which jointly learns the hierarchical graph representation and
provides the necessary deprecation of assignment ambiguity
(Sabour, Frosst, and Hinton 2017).

10608



MUTAG NCI1 PROTEINS D&D ENZYMES PTC NCI109

A1

ab
la

tio
n 91.46±5.77 80.24±1.78 76.37±3.11 78.35±2.73 70.00±4.51 63.61±12.47 80.64±2.09

A2 92.08±5.10 85.28±1.37 77.63±3.03 80.64±3.65 77.00±5.82 64.24±8.45 83.84±1.41
A3 92.11±7.13 84.87±1.07 77.54±3.44 79.96±3.26 77.67±3.70 65.10±8.81 83.84±1.48

Ours 93.16±6.10 84.87±1.68 77.99±3.16 80.99±2.58 78.00±4.89 66.54±7.97 83.91±1.27

2
K

91.55±5.64 84.50±1.87 77.90±3.31 80.04±2.77 77.50±5.05 64.81±9.45 84.15±1.93
8 93.16±6.59 84.65±1.17 77.18±2.74 78.69±2.99 77.83±4.97 65.71±7.95 84.03±2.31

1

R

91.05±6.59 83.36±1.62 76.64±2.46 79.45±2.47 77.33±5.34 64.23±8.60 82.26±1.75
2 92.11±6.68 84.01±1.68 77.45±2.92 79.97±3.60 77.83±3.77 65.13±8.07 83.35±1.36
4 92.63±5.66 84.26±1.20 76.92±2.66 81.15±3.79 77.00±4.29 64.21±8.31 83.60±2.05
5 92.08±6.19 84.55±1.23 77.18±1.99 80.64±3.11 77.33±3.87 65.38±14.31 83.11±1.82

Ours 93.16±6.10 84.87±1.68 77.99±3.16 80.99±2.58 78.00±4.89 66.54±7.97 83.91±1.27

Table 3: Ablation studies (upper part) and sensitivity analyses (lower part) on biological graphs.

COLLAB IMDB-B IMDB-M RE-B

A1

ab
la

tio
n 81.44±1.57 64.70±11.65 51.00±3.10 91.45±2.13

A2 82.20±1.41 74.80±4.18 49.80±6.39 92.95±1.94
A3 83.08±1.69 75.90±4.36 52.00±1.54 92.70±1.53

Ours 82.86±1.81 77.20±4.73 52.80±2.45 93.15±1.58

2

K

82.94±1.66 75.60±6.69 52.20±2.46 92.85±2.12
8 83.10±1.80 74.90±5.82 51.67±3.99 93.35±1.73

1

R

82.52±1.87 74.50±4.58 51.87±3.23 92.45±1.82
2 82.36±2.03 74.80±4.73 51.40±3.68 92.65±1.73
4 83.04±1.92 74.70±2.87 51.67±3.07 93.10±0.91
5 82.64±1.44 74.50±6.26 51.13±2.93 92.85±1.67

Ours 82.86±1.81 77.20±4.73 52.80±2.45 93.15±1.58

Table 4: Ablation studies (upper part) and sensitivity analyses
(lower part) on social graphs.

Table 2 and Table 6 (Supplementary) show the perfor-
mance comparison on four social graph datasets, where the
key challenge is to identify strongly connected communities.
Similarly, we achieve the significant performance improve-
ment over baseline models, indicating that HGCN can better
reason about the part-whole relationships in social networks.
This is also consistent with the fact that highly complex inter-
actions are involved in social graphs, which can be modeled
by identifying heterogeneous factors underlying each node.
Most importantly, considering the entanglement of the latent
factors enables more accurate hierarchy learning.

Ablation Studies Comprehensive ablation studies are car-
ried out in this section to understand the contribution of each
component (i.e., disentangled graph capsules, capsule layers,
and auxiliary graph reconstruction) in our method. Specif-
ically, we (i) directly use the input node representation to
serve as graph capsules, without considering the entangle-
ment of heterogeneous factors (A1); (ii) remove the residual
connection between adjacent capsule layers (A2); and (iii)
remove the auxiliary graph reconstruction (A3). The results
illustrated in Table 3 and Table 4 (upper part) reveal that

(i) disentangling node representation allows us to character-
ize the latent factors underlying each node and in turn more
accurately preserve the node/graph properties and capture
the part-whole relationship; (ii) combining fine, low layer
information with coarse, high layer information provides us
an ability to enhance the final graph-level representation; and
(iii) graph reconstruction plays an important role in encoding
the instantiation parameters of the input graph and enhancing
the training stability. Thus, we reach the conclusion that each
component in our method is necessary and contributes to
the performance improvement. One exception is NCI1 (A2)
and COLLAB (A3), where residual connection and auxiliary
graph reconstruction bring inferior performance which may
be caused by overfitting.

Sensitivity Analyses In this section, we analyze the sensi-
tivity of HGCN to the number of latent factors K = {2, 8}
and the number of routing iterations R = {1, 2, 4, 5}, where
our method with setting: K = 4 and R = 3. As shown in
Table 3 and Table 4 (lower part), the results demonstrate that
HGCN is not very sensitive to these two hyper-parameters.
Although K = 8 brings limited performance improvement
on COLLAB and RE-B thanK = 4 (ours), the computational
complexity is doubled in calculating the disentangled graph
capsules. Similarly, R = 4 requires more routing iterations,
albeit with 0.16% accuracy boost on D&D.

Conclusion

In this paper, we introduce a novel HGCN framework for
graph classification, which is able to explicitly extract hi-
erarchical graph representations. Built upon disentangled
graph capsules by identifying heterogeneous factors behind
each node, HGCN encodes part-whole relationships by con-
sidering the structure information of lower-level parts and
iteratively infer the pose of higher-level objects. Empirical
studies demonstrate the superiority of our framework over
existing graph classification methods on 11 commonly used
benchmarks.

10609



Acknowledgments
This work was partially supported by US National Science
Foundation IIS-1718853, the CAREER grant IIS-1553687
and Cancer Prevention and Research Institute of Texas
(CPRIT) award (RP190107).

References
Atwood, J.; and Towsley, D. 2016. Diffusion-convolutional
neural networks. In Advances in neural information process-
ing systems.

Bianchi, F. M.; Grattarola, D.; and Alippi, C. 2020. Spectral
clustering with graph neural networks for graph pooling.
International Conference on Machine Learning .

Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2013.
Spectral networks and locally connected networks on graphs.
International Conference on Learning Representations .

Chen, T.; Bian, S.; and Sun, Y. 2019. Are powerful graph
neural nets necessary? a dissection on graph classification. In-
ternational Conference on Learning Representations (Work-
shop) .

Dai, H.; Dai, B.; and Song, L. 2016. Discriminative em-
beddings of latent variable models for structured data. In
International conference on machine learning.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information process-
ing systems.

Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell,
R.; Hirzel, T.; Aspuru-Guzik, A.; and Adams, R. P. 2015.
Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing
systems.

Errica, F.; Podda, M.; Bacciu, D.; and Micheli, A. 2020. A fair
comparison of graph neural networks for graph classification.
International Conference on Learning Representations .

Fout, A.; Byrd, J.; Shariat, B.; and Ben-Hur, A. 2017. Protein
interface prediction using graph convolutional networks. In
Advances in neural information processing systems.

Gao, H.; and Ji, S. 2019. Graph u-nets. International Confer-
ence on Machine Learning .

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. International conference on machine learning .

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive rep-
resentation learning on large graphs. In Advances in neural
information processing systems, 1024–1034.

Henaff, M.; Bruna, J.; and LeCun, Y. 2015. Deep convo-
lutional networks on graph-structured data. arXiv preprint
arXiv:1506.05163 .

Hinton, G. E.; Krizhevsky, A.; and Wang, S. D. 2011. Trans-
forming auto-encoders. In International conference on artifi-
cial neural networks. Springer.

Hinton, G. E.; Sabour, S.; and Frosst, N. 2018. Matrix cap-
sules with EM routing. International Conference on Learning
Representations .

Huang, W.; Zhang, T.; Rong, Y.; and Huang, J. 2018. Adap-
tive Sampling Towards Fast Graph Representation Learn-
ing. Advances in Neural Information Processing Systems 31:
4558–4567.

Ivanov, S.; and Burnaev, E. 2018. Anonymous walk embed-
dings. In International Conference on Machine Learning,
2186–2195. PMLR.

Khasahmadi, A. H.; Hassani, K.; Moradi, P.; Lee, L.; and
Morris, Q. 2020. Memory-Based Graph Networks. Interna-
tional Conference on Learning Representations .

Kipf, T. N.; and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. International
Conference on Learning Representations .

Kosiorek, A.; Sabour, S.; Teh, Y. W.; and Hinton, G. E. 2019.
Stacked capsule autoencoders. In Advances in Neural Infor-
mation Processing Systems.

Lee, J.; Lee, I.; and Kang, J. 2019. Self-attention graph
pooling. International Conference on Machine Learning .

Li, J.; Rong, Y.; Cheng, H.; Meng, H.; Huang, W.; and Huang,
J. 2019. Semi-supervised graph classification: A hierarchical
graph perspective. In The World Wide Web Conference.

Li, R.; Wang, S.; Zhu, F.; and Huang, J. 2018. Adaptive
graph convolutional neural networks. In Thirty-second AAAI
conference on artificial intelligence.

Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. 2016.
Gated graph sequence neural networks. International Con-
ference on Learning Representations .

Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convolu-
tional networks for semantic segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recogni-
tion.

Luan, S.; Zhao, M.; Chang, X.-W.; and Precup, D. 2019.
Break the Ceiling: Stronger Multi-scale Deep Graph Con-
volutional Networks. In Advances in neural information
processing systems.

Luzhnica, E.; Day, B.; and Lio, P. 2019. Clique pooling for
graph classification. International Conference on Learning
Representations (Workshop) .

Ma, H.; Bian, Y.; Rong, Y.; Huang, W.; Xu, T.; Xie, W.; Ye,
G.; and Huang, J. 2020. Multi-View Graph Neural Networks
for Molecular Property Prediction. Advances in Neural Infor-
mation Processing Systems (Workshop) .

Ma, J.; Cui, P.; Kuang, K.; Wang, X.; and Zhu, W. 2019a.
Disentangled graph convolutional networks. In International
Conference on Machine Learning.

Ma, Y.; Wang, S.; Aggarwal, C. C.; and Tang, J. 2019b. Graph
convolutional networks with eigenpooling. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining.

10610



Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
convolutional neural networks for graphs. In International
conference on machine learning.
Qin, Y.; Frosst, N.; Sabour, S.; Raffel, C.; Cottrell, G.; and
Hinton, G. 2020. Detecting and diagnosing adversarial im-
ages with class-conditional capsule reconstructions. Interna-
tional Conference on Learning Representations .
Ranjan, E.; Sanyal, S.; and Talukdar, P. P. 2020. ASAP:
Adaptive Structure Aware Pooling for Learning Hierarchical
Graph Representations. Thirty-second AAAI conference on
artificial intelligence .
Rong, Y.; Bian, Y.; Xu, T.; Xie, W.; Wei, Y.; Huang, W.;
and Huang, J. 2020a. Self-Supervised Graph Transformer on
Large-Scale Molecular Data. Advances in Neural Information
Processing Systems 33.
Rong, Y.; Huang, W.; Xu, T.; and Huang, J. 2020b. DropE-
dge: Towards Deep Graph Convolutional Networks on Node
Classification. In International Conference on Learning Rep-
resentations.
Sabour, S.; Frosst, N.; and Hinton, G. E. 2017. Dynamic
routing between capsules. In Advances in neural information
processing systems.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2008. The graph neural network model. IEEE
Transactions on Neural Networks .
Shervashidze, N.; Schweitzer, P.; Van Leeuwen, E. J.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
lehman graph kernels. Journal of Machine Learning Re-
search .
Shervashidze, N.; Vishwanathan, S.; Petri, T.; Mehlhorn, K.;
and Borgwardt, K. 2009. Efficient graphlet kernels for large
graph comparison. In International Conference on Artificial
Intelligence and Statistics.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in neural information processing
systems.
Verma, S.; and Zhang, Z.-L. 2018. Graph capsule convolu-
tional neural networks. International Conference on Machine
Learning (Workshop) .
Wang, Y. G.; Li, M.; Ma, Z.; Montufar, G.; Zhuang, X.; and
Fan, Y. 2020. Haar graph pooling. International Conference
on Machine Learning .
Xinyi, Z.; and Chen, L. 2019. Capsule graph neural network.
International Conference on Learning Representations .
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018a. How
powerful are graph neural networks? International Confer-
ence on Learning Representations .
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.;
and Jegelka, S. 2018b. Representation learning on graphs
with jumping knowledge networks. International conference
on machine learning .
Yan, C.; Ding, Q.; Zhao, P.; Zheng, S.; Yang, J.; Yu, Y.;
and Huang, J. 2020. Retroxpert: Decompose retrosynthesis

prediction like a chemist. Advances in Neural Information
Processing Systems .
Yanardag, P.; and Vishwanathan, S. 2015. Deep graph ker-
nels. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.
Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton,
W. L.; and Leskovec, J. 2018a. Graph convolutional neural
networks for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining.
Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; and
Leskovec, J. 2018b. Hierarchical graph representation learn-
ing with differentiable pooling. Advances in neural informa-
tion processing systems .
You, J.; Ying, R.; and Leskovec, J. 2019. Position-aware
graph neural networks. International conference on machine
learning .
Yuan, H.; and Ji, S. 2020. STRUCTPOOL: STRUC-
TURED GRAPH POOLING VIA CONDITIONAL RAN-
DOM FIELDS. International Conference on Learning Rep-
resentations .
Zhang, M.; and Chen, Y. 2018. Link prediction based on
graph neural networks. In Advances in Neural Information
Processing Systems.
Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An
end-to-end deep learning architecture for graph classification.
In Thirty-Second AAAI Conference on Artificial Intelligence.

10611


