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Abstract

Model quantization helps to reduce model size and latency of
deep neural networks. Mixed precision quantization is favor-
able with customized hardwares supporting arithmetic oper-
ations at multiple bit-widths to achieve maximum efficiency.
We propose a novel learning-based algorithm to derive mixed
precision models end-to-end under target computation con-
straints and model sizes. During the optimization, the bit-
width of each layer / kernel in the model is at a fractional sta-
tus of two consecutive bit-widths which can be adjusted grad-
ually. With a differentiable regularization term, the resource
constraints can be met during the quantization-aware training
which results in an optimized mixed precision model. Our
final models achieve comparable or better performance than
previous quantization methods with mixed precision on Mo-
bilenetV1/V2, ResNet18 under different resource constraints
on ImageNet dataset.

Introduction
Neural network quantization (Choi et al. 2018; Elthakeb
et al. 2018; Jin, Yang, and Liao 2019b; Lou et al. 2020;
Rastegari et al. 2016; Uhlich et al. 2020; Wang et al. 2019;
Wu et al. 2018; Zhou et al. 2017, 2016) has attracted large
amount of attention due to the resource and latency con-
straints in real applications. Recent progress on neural net-
work quantization has shown that the performance of quan-
tized models can be as good as full precision models un-
der moderate target bit-width such as 4 bits (Jin, Yang, and
Liao 2019b). Besides, customized hardwares can be config-
ured to support multiple bit-widths for neural networks (Jin,
Yang, and Liao 2019a). In order to fully exploit the power
of model quantization, mixed precision quantization strate-
gies are proposed to strike a better balance between com-
putation cost and model accuracy. With more flexibility to
distribute the computation budgets across layers (Elthakeb
et al. 2018; Jin, Yang, and Liao 2019b; Wu et al. 2018), or
even weight kernels (Lou et al. 2020), the quantized models
with mixed precision usually achieve favorable performance
than the ones with uniform precision.

Current approaches for mixed precision quantization usu-
ally borrow ideas from neural architecture search (NAS) lit-
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Methods HAQ ReLeQ AutoQ DNAS US DQ Ours
differentiable 7 7 7 3 7 3 3
one-shot 7 7 7 7 7 3 3
layer-wise 3 3 3 3 3 3 3
kernel-wise 7 7 3 7 7 7 3

Table 1: A comparison of our approach and previous mixed
quantization algorithms. Our method FracBits achieves one-
shot differentiable search and supports both layer-wise and
kernel-wise quatization.

erature. Suppose we have a neural network with each con-
volution layer consisting of N branches where each branch
is the quantized convolution with different bit-width. Find-
ing the best configuration for a mixed precision model can
be achieved by preserving a single branch for each convolu-
tion layer and pruning all other branches, which is concep-
tually equivalent to some recent NAS algorithms that aim
at searching sub-networks from a supergraph (Cai, Zhu, and
Han 2018; Pham et al. 2018; Wu et al. 2019; Xie et al. 2018).
ENAS (Pham et al. 2018) and SNAS (Xie et al. 2018) em-
ploy reinforcement learning (RL) to learn a policy to sample
network blocks from a supergraph. ReLeQ (Elthakeb et al.
2018) and HAQ (Wang et al. 2019) follow this footprint
and employ reinforcement learning to choose layer-wise bit-
width configurations for a neural network. AutoQ (Lou et al.
2020) further optimizes bit-width of each convolution kernel
using a hierarchical RL strategy. ProxylessNAS (Cai, Zhu,
and Han 2018) and FBNet (Wu et al. 2019) adopt a path sam-
pling method to jointly learn model weights and importance
scores of each operation in the supergraph. DNAS (Wu et al.
2018) directly reuses this path sampling methods and adds
a regularization term proportional to the computation cost
or model size, in order to discover mixed precision models
with a good trade-off between computational resources and
accuracy. Uniform Sampling (US) (Guo et al. 2019) is a sim-
ilar method which uses uniform sampling to sample subnet-
works from the supergraph in training and then searches for
pruned or quantized models using evolutionary algorithm.

However, previous approaches on mixed precision quan-
tization mostly directly adopts NAS algorithms and do not
leverage specific properties of quantized models. Differ-
ent from NAS and model pruning, the quantitative differ-
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ence of weights and activations with similar bits is small.
For example, choosing 4 or 5 bits for one weight matrix
only generates around 7.4% difference in value, assuming
weights are uniformly distributed on [0, 1] with linear quan-
tization scheme. Thus the transition from one bit to its neigh-
boring bits can be considered as a differentiable operation
with appropriate parameterization. Recently, DQ (Uhlich
et al. 2020) utilizes the Straight-Through Estimation (Ben-
gio, Léonard, and Courville 2013) to facilitate differentiable
bit-switching by treating bit-width of each layer as contin-
uous parameters. Here, we propose a new approach to treat
the bit-widths as continuous values by interpolating quan-
tized weights or activation values of its two nerighboring
bit-widths. Such an approach facilitates an efficient one-
shot differentiable optimization procedure of mixed preci-
sion quantization. By allocating differentiable bit-widths to
layers or kernels, it can enable both layer-wise and kernel-
wise quantization. A high-level comparison of our methods
and previous mixed precision methods is shown in Table 1.

In summary, our contribution of this work is threefold.
• We propose a fractional bit-widths formulation that cre-

ates a smooth transition between neighboring quantized
bits of weights and activations, facilitating differentiable
search in layer-wise or kernel-wise precision dimension.

• Our mixed precision quantization algorithm only needs
one-shot training of the network, greatly reduces explo-
ration cost for resource restrained tasks.

• Our simple and straight-forward formulation is ready to
be used for different quantization schemes. We showed
superior performance than uniform precision approaches
and previous mixed precision approaches on a wide range
of models with different quantization schemes.

Related Work
Quantized Neural Networks Previous quantization tech-
niques can be categorized into two types. The first type
named post-training quantization directly quantizes weights
and activations of a pretrained full-precision model into
lower bit (Krishnamoorthi 2018; Nagel et al. 2019). Another
type of techniques named quantization-aware training is pro-
posed to incorporate quantization into training stage. Early
studies in this direction employ a single precision for the
whole neural network. For example, DoReFa (Zhou et al.
2016) proposes to transform the unbounded weights into a
finite interval to reduce undesired quantization error intro-
duced by infrequent large outliers. PACT (Choi et al. 2018)
investigates the effect of clipping activations from different
layers, finding the layer-dependence of the optimal clipping-
levels. SAT (Jin, Yang, and Liao 2019b) investigates the gra-
dient scales in training with quantized weights, and further
improves model performance by adjusting weight scales. As
another direction, some work assigns different bit-widths
to different layers or kernels, enabling more flexible com-
putation budget allocation. The first attempts employ rein-
forcement learning technique with rewards from estimated
memory and computational cost by formulas (Elthakeb et al.
2018) or simulators (Wang et al. 2019). AutoQ (Lou et al.
2020) modifies the training procedure into a hierarchical

strategy, resulting in fine-grained kernel-wise quantization.
However, these RL strategies needs to sample and train a
large number of model variants which is very resource-
demanding. DNAS (Wu et al. 2018) resorts to a differen-
tiable strategy by constructing a supernet with each layer
comprised by a linear combination of outputs from differ-
ent bit-widths. However, due to the discrepancy between the
search process and final configuration, it still needs to re-
train the discovered model candidates. To further improve
the searching efficiency, we propose a one-shot differen-
tiable search method with fractional bit-widths. Due to the
smooth transition between fractional bit-width and final in-
teger bit-width, our method embeds the bit-width searching
and model finetuning stages in a single pass of model train-
ing. Meanwhile, our technique is also orthogonal to Uniform
Sample (US) (Guo et al. 2019) which trains a supernet by
uniform sampling and searches good sub-architectures with
evolutionary algorithm.
Network Pruning Network pruning is an orthogonal ap-
proach to speed up inference of neural networks to quanti-
zation. Early work (Han, Mao, and Dally 2015) compresses
bulky models by learning connection together with weights,
which produces unstructured connection in the final net-
work. Later, structured compression by kernel-wise (Luo,
Wu, and Lin 2017) or channel-wise (Gordon et al. 2018;
He, Zhang, and Sun 2017; Liu et al. 2017; Ye et al. 2018)
pruning is proposed, where the learned architecture is more
friendly with acceleration on modern hardware. As an exam-
ple, (Liu et al. 2017) identifies and prunes insignificant chan-
nels in each layer by penalizing on the scaling factor of the
batch normalization layer. More recently, NAS algorithms
are leveraged to guide network pruning. (Yu and Huang
2019) presents a one-shot searching algorithm by greedily
slimming a pretrained slimmable neural network (Yu et al.
2018). (Mei et al. 2019) proposes a one-shot resource-aware
searching algorithm using FLOPs as an L1 regularization
term on the scaling factor of the batch normalization layer.
We adopt a similar strategy to use BitOPs and model sizes as
L1 regularization which are computed based on the trainable
fractional bit-widths in our framework.

Mixed Precision Quantization
In this section, we will introduce our proposed method for
mixed precision quantization. Our one-shot training pipeline
involves two steps: bit-width searching and finetuning. We
first introduce the implementation of fractional bit-width,
and integration of the resource constraint in the searching
process. After that, we introduce implementation of kernel-
wise mixed precision quantization.

Searching with Fractional Bit-widths
In order to learn bit-widths dynamically in one-shot train-
ing, it is necessary to make them differentiable and define
their derivative accordingly. To this end, we first examine
a generic operation fk(x) that quantizes a value x to k-bit.
Typically, fk(x) is well-defined only for positive integer val-
ues of k. To generalize bit-width to an arbitrary positive real
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Figure 1: Our differentiable bit-width searching method consists of two stages: searching with fractional bit-width and finetun-
ing with mixed bit-width quantization.

number λ, we apply first-order expansion around one of its
nearby integer, and approximate the derivative at this inte-
ger by the slope of the segment joining the two adjacent grid
points neighboring λ. Such a linear interpolation reads

fλ(x) ≈ fbλc(x) + (λ− bλc)(fdλe(x)− fbλc(x)) (1)

where b·c and d·e denote the floor and ceiling function, re-
spectively. In other words, we can approximate an operation
with a fractional bit-width by a linear combination of two
operations with integer bit-widths, thus naturally achieving
differentiability on it and making it learnable through typi-
cal gradient-based optimization, such as SGD. Note that the
approximation in (1) turns into a strict equality if the orig-
inal operation fk(x) is linear in k or if λ takes an integer
value. The basic idea is illustrated in Fig. 1. In (1), the two
rounding functions floor and ceiling on bit-width has van-
ishing gradient with respect to the argument, and thus the
partial derivative of (1) with respect to λ is given by

∂

∂λ
fλ(x) = fdλe(x)− fbλc(x) (2)

The difference of such an linear interpolation scheme com-
pared to the widely-adopted straight through estimation
(STE) (Bengio, Léonard, and Courville 2013) is that it uses
soft bit-widths in both forward and backward propagation,
rather than hard bit-widths in forward and soft bit-widths in
back-propagation, as adopted by (Uhlich et al. 2020). In this
way, the computed gradient reflects the true direction that
the network parameters need to evolve along which results
in better convergence.

Throughout we will adopt the DoReFa scheme for weight
quantization, and the PACT scheme for activation quantiza-
tion. The quantization function for both is the same, defined
as

qk(x) =
1

a

⌊
ax
⌉

(3)

where x ∈ [0, 1], b·e indicates rounding to the nearest inte-
ger, and a equals 2k−1 where k is the quantization bit-width.
Thus, for both quantization, we have fk(x) = qk(x) for inte-
ger bit-widths, and quantization with fractional bit-widths is

implemented with Eq. (1). The weight quantization is given
byQW = 2qλw

(W̃ )−1, where W̃ is the transformed weight
clamped to the interval [0, 1]; activation quantization is given
by QX = αqλa

(Xα ), where α is a learnable parameter and
X is the original activation clipped at α. λw and λa are the
learnable fractional bit-widths for weight and activation, re-
spectively. Also, it is possible to privatize bit-width to each
kernel, enabling kernel-wise mixed precision quantization,
as discussed later.

During the earlier searching stage, the precision assigned
to each layer or each kernel is still undetermined, and we
want to find the optimal bit-width structure through train-
ing. By initializing each bit-width with some arbitrary value,
we can use (1) to quantize weights and activations in the
model to fractional bit-widths. Meanwhile, this allows us to
assign different bit-widths to different layers or even kernels,
as well as to furnish separate precision for weight and acti-
vation quantization. During the training process, the model
gradually converges to an optimal bit-width for both weight
and activation corresponding to each unit, enabling quanti-
zation with mixed precision.

Resource Constraint as Penalty Loss
Restricting storage or computation cost is essential for
model quantization, as the original purpose of quantiza-
tion is to save resource consumption when deploying bulky
model on portable devices or embedded systems. To this
end, previous work resort to constraining on different met-
rics during the optimization procedure, including memory
footprints (Uhlich et al. 2020), model size (Uhlich et al.
2020; Wang et al. 2019), BitOPs (Guo et al. 2019; Wu
et al. 2018) and even estimated latency or energy (Lou et al.
2020; Wang et al. 2019). Here, we focus on model size
in bits (Bytes) for weight-only quantization, and the num-
ber of BitOPs for quantization on both weight and activa-
tion, as they can be directly calculated from assigned bit-
widths. Note latency and energy consumption (Lou et al.
2020; Wang et al. 2019) may seem to be more practical mea-
sures for real applications. However, we argue that BitOPs
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can also be a good metric since it is solely determined by
the model itself rather than different configurations of hard-
wares, simulators and compilers, which guarantees fair com-
parison between different approaches and advocates repro-
ducible research.

Weight-only quantization targets at shrinking the model
size, while floating point operation is still needed during in-
ference. Model size are usually expressed in terms of the
required number of bits to store weights (and bias) in the
model. For a weight w of kw-bit, the size is simply kw. The
generalized model size for a fractional bit-width λw is thus
λw. The size of the whole model can be obtained by sum-
ming over all weights in the model. Note that the bit-width
can be shared among all weights in the whole layer or along
each kernel (as discussed later), corresponding to layer-wise
or kernel-wise quantization, respectively. For example, for a
typical 2D convolution layer (without grouping) sharing the
same fractional bit-width λw among all weights, the size is
given by λwcincoutkxky , where cin is the number of input
channels, cout is the number of output channels, and kx and
ky represent the horizontal and vertical kernel sizes, respec-
tively.

Quantization on both weights and activations can effec-
tively decrease computation cost for real application, which
can be measured with number of BitOPs involved in multi-
plications. Suppose a weight valuew and an activation value
a involved in multiplication are quantized to kw-bit and ka-
bit, respectively. The number of BitOPs for such a multipli-
cation is

compwa = kwka (4)
This expression is bi-linear in kw and ka, which means that
for fractional bit-widths λw and λa, (1) leads to

sizew = λw (5)

compwa = λwλa (6)
The total computation cost of the model is the sum over
all weights and activations. As for the example of 2D con-
volution layer, if all weights share the same fractional bit-
width λw and all input activations share the same frac-
tional bit-width λa, the number of BitOPs is given by
λwλacincoutkxkyoxoy , where ox and oy represents the hor-
izontal and vertical sizes of the output features, respectively.
Targeting prescribed objective With constraints defined
properly, we are able to penalize on them to enable
constraint-aware optimization. Here, we directly define the
penalty term as the L1 difference from some target constraint
value by

Lsize =
∣∣∣∑
w

sizew − sizet

∣∣∣ (7a)

Lcomp =
∣∣∣∑
wa

compwa − compt

∣∣∣ (7b)

where sizet and compt denote target constraints for model
size and computation cost, respectively. The sum is taken
over all weights in the model for model size constrained op-
timization, and is taken over all weights and all activations
for computation cost constrained case. Following the con-
vention adopted in most literature, for both constraints we

only take into account those contributed by convolution and
fully-connected layers.

Adding the penalty term to the original loss (such as cross
entropy for classification task) with a coefficient κ, we arrive
at the total loss for optimization

Ltotal = Lcls + κ · Lsize (8a)

Ltotal = Lcls + κ · Lcomp (8b)

It should be noted that the value of κ depends on the unit of
constraints. Throughout the paper, we measure model size
in terms of MB (megabytes) and computation cost in terms
of GBitOPs (billion of BitOPs). In this way, the desired re-
source constraint can be reached in the joint optimization of
model parameters and bit-widths. Note that the recent con-
current work (Nikolić et al. 2020) adopts a similar approach
for mixed precision quantization with L1 regularzation on
bit-widths for weights and activations, while here we ex-
plicitly define the loss as a function of computational cost
in BitOPs or model size in Bytes and incorporate the target
constraint into the loss directly.

Finetuning with Mixed Precision
After searching, the bit-widths of the model are still con-
tinuous values. We discretize the bit-widths with a thresh-
old value to make the resulted network meeting the re-
source constraints. Specifically, we use binary search to find
a threshold for both weight and activation bit-widths, which
makes the resource cost of the model to be within 1% devi-
ation of the target constraint. This way, each layer or each
kernel has its individual bit-widths for weights and activa-
tions learned in the previous stage, and the training enters
the finetuning stage to only update model weights. The ra-
tio between training epochs allocated to searching and fine-
tuning is a hyper-parameter that can be freely specified. In
practice, we assign 80% of training epochs to searching and
20% to finetuning. Here we want to emphasize that the com-
bination of searching and finetuning constitutes the whole
training procedure, and the total number of epochs of the
two stages is the same as a traditional quantization-aware
training procedure. Also, the whole procedure for updating
learned parameters and scheduling hyper-parameter (learn-
ing rate, weight decay, etc.) is smooth, and do not need any
re-initialization for the finetuning. Thus, our training method
is one-shot, without extra retraining steps.

Kernel-wise Mixed Precision Quantization
As mentioned above, our algorithm is not restricted to layer-
wise quantization, but also supports kernel-wise quantiza-
tion. Here, one kernel means weight parameters associated
with a convolution filter to produce a single-channel fea-
ture map. Weight kernels in a convolution layer are assigned
with different bit-width parameters λwi

, where i is the in-
dex of the weight kernel. For each convolution operation
of one weight kernel with the input tensor, the input ten-
sor can also be assigned with different bit-widths. How-
ever, quantizing the input tensor with different bit-widths
for different weight kernels requires large computation over-
head. Here we assign the same bit-width λa on the input
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tensor for computation with all the weight kernels. Note
that (Lou et al. 2020) adopted the same strategy for kernel-
wise quantization. For a 2D convolution layer, the number of
BitOPs associated with the fractional bit-width is given by∑
i λwi

λacinkxkyoxoy , and model size can be represented
by
∑
i λwi

cinkxky .

Experiments
In this section, we conduct quantitative experiments us-
ing FracBits and compare it with previous quantiza-
tion approaches including uniform quantization algorithms
PACT (Choi et al. 2018), LQNet (Zhang et al. 2018),
SAT (Jin, Yang, and Liao 2019b) and mixed precision quan-
tization algorithms HAQ (Wang et al. 2019), AutoQ (Lou
et al. 2020), DNAS (Wu et al. 2018), US (Guo et al. 2019),
DQ (Uhlich et al. 2020). We first compare our method with
previous approaches on layer-wise mixed precision quanti-
zation. Then we compare our method with a previous kernel-
wise mixed precision method AutoQ on kernel-wise preci-
sion search.

Implementation Details
We build our algorithms based on a recent quantization
algorithm SAT (Jin, Yang, and Liao 2019b), which is an
improved version of PACT algorithm (Choi et al. 2018).
PACT jointly learns quantized weights and activations where
weights are quantized using the DoReFa scheme (Zhou et al.
2016), while SAT modifies PACT with gradient calibration
and scale adjusting. κ is a critical parameter for the proper
convergence of the network towards required resource con-
straints. Models under mild or aggressive constraints may
couple with different values of κ. Different types of resource
constraints (computational cost and model size) have differ-
ent scales and requires different scales of the regularization
term. However, in our experiments, we find our algorithm is
not very sensitive to values of κ. We set κ to 0.1 for all com-
putation cost constrained experiments, and 1 for all model
size constrained experiments. We also find it beneficial to
initialize the model at some point close to the target resource
constraint, facilitating more exploration close to the target
model spaces. We set the initial value of κ to bt+0.5 in each
layer for all experiments, where bt is the bit-width achieving
similar resource constraints in the corresponding uniformly
quantized model. For all channel-wise quantization experi-
ments with both weights and activations quantized, we set
the candidate bit-widths to be 2-8. For all other experiments
including weight-only quantization and kernel-wise quanti-
zation, we set the candidate bit-widths to be 1-8. Since the
first and the last layers in a neural network have crucial im-
pact on the performance of the model, we fix the bit-width
of the first and last layer to 8 bit following (Jin, Yang, and
Liao 2019b).

For all experiments, we use cosine learing rate scheduler
without restart. Learning rate is initially set to 0.05 and up-
dated every iteration for totally 150 epochs. We use SGD
optimizer with a momentum weight of 0.9 without damping,
and weight decay of 4× 10−5. The batch size is set to 2048
for all models. The warmup strategy suggested in (Goyal

bit-width 3 4
method top-1 top-5 bitops top-1 top-5 bitops

MBNetV1
HAQ - - - 67.4 87.9 -
SAT 67.1 87.1 5.73 71.3 89.9 9.64
FracBits-SAT 68.7 88.2 5.78 71.4 90.0 9.63

MBNetV2

HAQ - - - 67 87.3 -
AutoQ - - - 69 89.4 -
DQ - - - 69.7 - -
SAT 67.2 87.3 3.32 70.8 89.7 5.35
FracBits-SAT 67.8 87.6 3.33 71.3 90.1 5.35

Table 2: Comparison of computation cost constrained layer-
wise quantization of our method and previous approaches on
ImageNet with MobileNet V1/V2. Note that accuracies are
in % and bitops are in B (billion).

et al. 2017) is also adopted by linearly increasing the learn-
ing rate every iteration to batchsize/256× 0.05 for the first
five epochs before using the cosine annealing scheduler. Bit-
width search is conducted in the first 120 epochs after the
warmup stage. At the 121th epoch, all fractional bit-width
will be discretized to integer bits, and the network will be
further finetuned for the rest 30 epoches. We do not observe
any glitch in the training loss in this discretization process,
potentially due to the insignificant difference in quantized
values of two neighboring bit-widths.
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Figure 2: Layer-wise mixed precision quantization for 3 bit
MobileNet V2 (a) and ResNet18 (b).
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bit-width 3 4 FP
method top-1 ∆acc bitops top-1 ∆acc bitops top-1
PACT (Choi et al. 2018) 68.3 -1.9 22.83 69.2 -1.0 34.70 70.2
LQNet (Zhang et al. 2018) 68.2 -2.1 22.83 69.3 -1.0 34.70 70.3
DNAS (Wu et al. 2018) 68.7 -2.3 24.34* 70.6 -0.4 35.17* 71.0
DQ (Uhlich et al. 2020) - - - 70.1 -0.2 - 70.3
AutoQ (Lou et al. 2020) - - - 68.2 -1.7 - 69.9
US (Guo et al. 2019) 69.4 -1.5 22.11* 70.5 -0.4 33.74* 70.9
FracBits-PACT 69.1 -1.1 22.70 69.7 -0.5 34.73 70.2
SAT (Jin, Yang, and Liao 2019b) 69.3 -0.9 22.83 70.3 0.1 34.70 70.2
FracBits-SAT 69.4 -0.8 22.93 70.6 0.4 34.70 70.2

Table 3: Comparison of computation cost constrained layer-wise quantization of our method and previous approaches on Ima-
geNet with ResNet18. Note bitops of US (Guo et al. 2019) and DNAS (Wu et al. 2018) does not include first and last layer in
their papers, and US shows different bitops numbers from ours. We give an estimation of their bitops based on the difference
with uniformly quantizated models. Note that accuracies are in % and bitops are in B (billion).

Quantization with Layer-wise Precision
We compare FracBits with previous quantization algorithms
on layer-wise precision search. We conducted experiments
on MobileNet V1/V2 and ResNet18. Since FracBits can be
used for both computation cost constrained and model size
constrained bit-width search, we conduct experiments on
both settings to validate the effectiveness of our approach.

Table 2 shows experiment results of layer-wise compu-
tation cost constrained quantization on MobileNet V1/V2.
Previous methods HAQ (Wang et al. 2019) and AutoQ (Lou
et al. 2020) use PACT as quantization scheme, while DQ
uses a similar scheme to PACT with learnable clipping
bounds. Derived from PACT, SAT is a strong uniform quan-
tization baseline which already outperforms all previous
mixed precision methods. For example, it already achieves
71.3% on 4-bit MobileNet V1 and 70.8% on 4-bit Mo-
bileNet V2, almost closing the gap between full precision
models (71.7% for MobileNet V1 and 71.8% for MobileNet
V2) and quantized ones. We believe that validating the ef-
fectiveness of our FracBits algorithm based on SAT is help-
ful towards seeking the limit of mixed precision quantiza-
tion algorithms. We find that FracBits-SAT achieves slightly
better performance compared to SAT on 4-bit MobileNet
V1/V2, and achieves significantly better result on 3-bit mod-
els, which proves its effectiveness on strong uniform quanti-
zation baselines. It has a 1.6% absolute gain on 3-bit Mo-
bileNet V1 and a 0.6% gain on MobileNet V21under the
same computation cost budget.

We show comparison with more algorithms on ResNet18,
as listed in Table 3. Here we compare with uniform precision
approaches PACT, LQNet and mixed precision approaches
DNAS, DQ, AutoQ, and US. Except DQ, all mixed preci-
sion approaches use PACT as quantization scheme. Since all
methods report different accuracies for full precision (FP)
models, we also add the top-1 accuracy of FP models re-
ported in corresponding papers and report the relative ac-

1In MobileNet V2, some convolution layers are not followed by
ReLU activation. Here we use double-sided quantization for out-
puts of these layers, meaning that they are clipped into an interval
of [−α, α]. Our re-implemented SAT also adopts such double-side
clipping.

curacy drop for each method. Here we also include results
of directly applying our method on PACT scheme, and de-
note this as FracBits-PACT. Comparing absolute accuracy,
FracBits-PACT achieves comparable performance as state-
of-the-art mixed precision methods. Note DNAS uses sev-
eral tricks in training to boost performance, thus its re-
sult is not directly comparable to others. Comparing rela-
tive accuracy drop, our method achieves least performance
drop on 3-bit ResNet18. Enhanced by SAT quantization
method, FracBits-SAT further improves over SAT baseline
and achieves only 0.8% accuracy drop on 3-bit ResNet18
and even a 0.4% performance gain on 4-bit ResNet18. Note
DQ and our method are one-shot differentiable method
which only need one pass of training to obtain the final
model, and are much more efficient than the other mixed
quantization approaches (DNAS, AutoQ, US).

To have a more intuitive understanding of the learned bit-
width structure from our algorithm, we plot the bit-widths
from different layers for 3-bit MobileNet V2 and ResNet18,
as shown in Fig. 2. We find that models for mixed quantiza-
tion contrained on computational cost generally uses more
bit-width on the late stage of the network, potentially due
to the larger computation cost of early layers than later lay-
ers. Also, in MobileNet V2, depth-wise convolutions result
in more bit-width than point-wise convolutions due to their
low computation cost.

For model size constrained quantization, we show com-
parison with previous methods Deep Compression (Han,
Mao, and Dally 2015), HAQ and uniform quantization ap-
proach SAT in Table 4. Our FracBits-SAT outperforms
mixed precision methods HAQ and strong uniform quan-
tization baseline SAT on all experimented bit-widths con-
sistently. Note that FracBits has an over 3% absolute gain
on top-1 accuracy over SAT on 2-bit MobileNet V1/V2. On
the challenging 3-bit setting where quantized models already
achieve similar performance as full precision ones, FracBits
also outperforms SAT with a 0.6% margin on MobileNet V1
and a 0.8% gain on MobileNet V2 in top-1 accuracy.
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bit-width 2 3
method top-1 top-5 size top-1 top-5 size

MBNetV1

DeepComp 37.6 64.3 1.09 65.9 86.9 1.60
HAQ 57.1 81.9 1.09 67.7 88.2 1.58
SAT 66.3 86.8 1.83 70.7 89.5 2.22
FracBits-SAT 69.7 88.9 1.81 71.3 90.0 2.23

MBNetV2

DeepComp 58.1 82.2 0.96 68.0 88.0 1.38
HAQ 66.8 87.3 0.95 70.9 89.8 1.38
SAT 66.8 87.2 1.83 71.1 89.9 2.11
FracBits-SAT 69.9 89.3 1.84 71.9 90.4 2.12

Table 4: Comparison of model size constrained layer-wise
quantization of our method and previous approaches on Im-
ageNet with MobileNet V1/V2. Note that accuracies are in
% and sizes are in MB. The difference in model size is due to
that we use 8bit for the last fully-connected layer, following
previous work (Choi et al. 2018; Jin, Yang, and Liao 2019b),
while this bit-width is searched in (Wang et al. 2019).
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Figure 3: Kernel-wise mixed precision quantization for 3 bit
MobileNet V2 (a) and ResNet18 (b).

Quantization with Kernel-wise Precision
In this section, we experiment with quantization with kernel-
wise precision. Among previous approaches, only Au-
toQ (Lou et al. 2020) has experiments on kernel-wise pre-
cision which we will compare with. In Table 5, we denote
kernel-wise FracBits based on PACT and SAT as FB-PACT-
K and FB-SAT-K, and compare them with AutoQ and uni-

bit-width 3 4
method top-1 top-5 bitops top-1 top-5 bitops

MBNetV2

AutoQ - - - 70.8 90.3 -
FB-PACT-K 68.0 87.8 3.33 70.9 89.5 5.36
SAT 67.2 87.3 3.32 70.8 89.7 5.35
FB-SAT-K 68.2 87.9 3.35 71.6 90.0 5.33

ResNet18

AutoQ - - - 69.8 88.4 -
FB-PACT-K 69.0 88.3 23.01 69.9 88.8 34.70
SAT 69.3 88.9 22.83 70.3 89.5 34.70
FB-SAT-K 69.8 88.9 22.87 70.8 89.6 34.82

Table 5: Comparison of computation cost constrained
kernel-wise quantization of our method and previous ap-
proaches on MobileNet V2 and ResNet18. Note that accu-
racies are in % and bitops are in B (billion). FB-PACT-K
and FB-SAT-K denote FracBits for kernel-wise quantization
with PACT and SAT quantization schemes, respectively.

form precision method SAT. FB-PACT-K achieves compara-
ble results as AutoQ on MobileNet V2 and ResNet18, while
being much more efficient than the RL based method which
needs to train hundreds of model variants, thanks to the dif-
ferentiable formulation. FB-SAT-K outperforms SAT signif-
icantly with 1.0% and 0.8% increase on top-1 accuracy on
3 and 4 -bit MobileNet V2, respectively, and with 0.5% in-
crease on top-1 accuracy on both 3 and 4 -bit ResNet18.
Compared to layer-wise precision models, FB-SAT-K out-
performs FracBits-SAT by 0.4% and 0.3% on 3 and 4-
bit MobileNet V2, respectively. It also outperforms layer-
wise FracBits-SAT by 0.4% on 3-bit ResNet18, proving our
kernel-wise quantization method can further improve over
strong layer-wise mixed-precision models. Fig. 3 illustrates
the bit-width distribution against layer indices for 3-bit Mo-
bileNet V2 and ResNet18. We can see that 3-bit MobileNet
V2 assign low bits in the early layers and intermediate bot-
tleneck layers, while 3-bit ResNet-18 assign low bits only in
early layers. We believe that the point-wise convolutions in
MobileNet V2 have much larger computation cost compared
to depth-wise convolutions and thus they receive a larger re-
source penalty during optimization, leading to more com-
pression by lower bit-widths.

Conclusion

We propose a new formulation named FracBits for mixed
precision quantization. We formulate the bit-width of each
layer or kernel with a continuous learnable parameter that
can be instantiated by interpolating quantized parameters of
two neighboring bit-widths. Our method facilitates differ-
entiable optimization of layer-wise or kernel-wise bit-width
in a single shot of training. With only a regularized term to
penalize extra computational resource in the training pro-
cess, our method is able to discover proper bit-width config-
urations for different models, outperforming previous mixed
precision and uniform precision approaches. We believe our
method will motivate research along low-precision neural
networks, and low-cost computational models.
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