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Abstract

Training an agent to solve control tasks directly from high-
dimensional images with model-free reinforcement learn-
ing (RL) has proven difficult. A promising approach is to
learn a latent representation together with the control pol-
icy. However, fitting a high-capacity encoder using a scarce
reward signal is sample inefficient and leads to poor perfor-
mance. Prior work has shown that auxiliary losses, such as
image reconstruction, can aid efficient representation learn-
ing. However, incorporating reconstruction loss into an off-
policy learning algorithm often leads to training instability.
We explore the underlying reasons and identify variational
autoencoders, used by previous investigations, as the cause of
the divergence. Following these findings, we propose effec-
tive techniques to improve training stability. This results in a
simple approach capable of matching state-of-the-art model-
free and model-based algorithms on MuJoCo control tasks.
Furthermore, our approach demonstrates robustness to ob-
servational noise, surpassing existing approaches in this set-
ting. Code, results, and videos are anonymously available at
https://sites.google.com/view/sac-ae/home.

1 Introduction
Cameras are a convenient and inexpensive way to acquire
state information, especially in complex, unstructured en-
vironments, where effective control requires access to the
proprioceptive state of the underlying dynamics. Thus, hav-
ing effective RL approaches that can utilize pixels as input
would potentially enable solutions for a wide range of real
world applications, for example robotics.

The challenge is to efficiently learn a mapping from pix-
els to an appropriate representation for control using only
a sparse reward signal. Although deep convolutional en-
coders can learn good representations (upon which a pol-
icy can be trained), they require large amounts of training
data. As existing reinforcement learning approaches already
have poor sample complexity, this makes direct use of pixel-
based inputs prohibitively slow. For example, model-free
methods on Atari (Bellemare et al. 2013) and DeepMind
Control (DMC) (Tassa et al. 2018) take tens of millions of
steps (Mnih et al. 2013; Barth-Maron et al. 2018), which is
impractical in many applications, especially robotics.
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Some natural solutions to improve sample efficiency are i)
to use off-policy methods and ii) add an auxiliary task with
an unsupervised objective. Off-policy methods enable more
efficient sample re-use, while the simplest auxiliary task is
an autoencoder with a pixel reconstruction objective. Prior
work has attempted to learn state representations from pixels
with autoencoders, utilizing a two-step training procedure,
where the representation is first trained via the autoencoder,
and then either with a policy learned on top of the fixed
representation (Lange and Riedmiller 2010; Munk, Kober,
and Babuska 2016; Higgins et al. 2017b; Zhang, Satija, and
Pineau 2018; Nair et al. 2018; Dwibedi et al. 2018), or with
planning (Mattner, Lange, and Riedmiller 2012; Finn et al.
2015). This allows for additional stability in optimization by
circumventing dueling training objectives but leads to sub-
optimal policies. Other work utilizes continual model-free
learning with an auxiliary reconstruction signal in an on-
policy manner (Jaderberg et al. 2017; Shelhamer et al. 2016).
However, these methods do not report of learning represen-
tations and a policy jointly in the off-policy setting, or note
that it performs poorly (Shelhamer et al. 2016).

We revisit the concept of adding an autoencoder to model-
free RL approaches, with a focus on off-policy algorithms.
We perform a sequence of careful experiments to under-
stand why previous approaches did not work well. We con-
firm that a pixel reconstruction loss is vital for learning a
good representation, specifically when trained jointly, but
requires careful design choices to succeed. Based on these
findings, we recommend a simple and effective autoencoder-
based off-policy method that can be trained end-to-end. We
believe this to be the first model-free off-policy approach to
train the latent state representation and policy jointly and
match performance with state-of-the-art model-based meth-
ods 1 (Hafner et al. 2018; Lee et al. 2019) on many chal-
lenging control tasks. In addition, we demonstrate robust-
ness to observational noise and outperform prior methods in
this more practical setup.

This paper makes three main contributions: (i) a method-
ical study of the issues involved with combining autoen-
coders with model-free RL in the off-policy setting that ad-

1We define model-based methods as those that train a dynamics
model. By this definition, SLAC (Lee et al. 2019) is a model-based
method.
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vises a successful variant we call SAC+AE; (ii) a demon-
stration of the robustness of our model-free approach over
model-based methods on tasks with noisy observations; and
(iii) an open-source PyTorch implementation of our simple
and effective algorithm for researchers and practitioners to
build upon.

2 Related Work
Efficient learning from high-dimensional pixel observations
has been a problem of paramount importance for model-
free RL. While some impressive progress has been made
applying model-free RL to domains with simple dynamics
and discrete action spaces (Mnih et al. 2013), attempts to
scale these approaches to complex continuous control en-
vironments have largely been unsuccessful, both in simula-
tion and the real world. A glaring issue is that the RL sig-
nal is much sparser than in supervised learning, which leads
to sample inefficiency, and higher dimensional observation
spaces such as pixels worsens this problem.

One approach to alleviate this problem is by training with
auxiliary losses. Early work (Lange and Riedmiller 2010)
explores using deep autoencoders to learn feature spaces
in visual reinforcement learning, crucially Lange and Ried-
miller (2010) propose to recompute features for all collected
experiences after each update of the autoencoder, rendering
this approach impractical to scale to more complicated do-
mains. Moreover, this method has been only demonstrated
on toy problems. Alternatively, Finn et al. (2015) apply deep
autoencoder pretraining to real world robots that does not
require iterative re-training, improving upon computational
complexity of earlier methods. However, in this work the lin-
ear policy is trained separately from the autoencoder, which
we find to not perform as well as end-to-end methods.

Shelhamer et al. (2016) employ auxiliary losses to en-
hance performance of A3C (Mnih et al. 2016) on Atari. They
recommend a multi-task setting and learning dynamics and
reward to find a good representation, which relies on the
assumption that the dynamics in the task are easy to learn
and useful for learning a good policy. To prevent instabili-
ties in learning, Shelhamer et al. (2016) pre-train the agent
on randomly collected transitions and then perform joint op-
timization of the policy and auxiliary losses. Importantly,
the learning is done completely on-policy: the policy loss is
computed from rollouts while the auxiliary losses use sam-
ples from a small replay buffer. Yet, even with these precau-
tions, the authors are unable to leverage reconstruction by
VAE (Kingma and Welling 2013) and report its damaging
affect on learning.

Similarly, Jaderberg et al. (2017) propose to use unsuper-
vised auxiliary tasks, both observation and reward based,
and show improvements in Atari, again in an on-policy
regime2, which is much more stable for learning. Of all
the auxiliary tasks considered by Jaderberg et al. (2017),
reconstruction-based Pixel Control is the most effective.
However, in maximizing changes in local patches, it imposes

2Jaderberg et al. (2017) make use of a replay buffer that only
stores the most recent 2K transitions, a small fraction of the 25M
transitions experienced in training.

strong inductive biases that assume that dramatically chang-
ing pixel values and textures are correlated with good explo-
ration and reward. Unfortunately, such highly task specific
auxiliary is unlikely to scale to real world applications.

Generic pixel reconstruction is explored in Higgins et al.
(2017b); Nair et al. (2018), where the authors use a beta vari-
ational autoencoder (β-VAE) (Kingma and Welling 2013;
Higgins et al. 2017a) and attempt to perform joint represen-
tation learning, but find it hard to train, thus receding to the
alternating training procedure (Lange and Riedmiller 2010;
Finn et al. 2015).

There has been more success in using model learning
methods on images, such as Hafner et al. (2018); Lee et al.
(2019). These methods use a world model approach (Ha
and Schmidhuber 2018), learning a representation space us-
ing a latent dynamics loss and pixel decoder loss to ground
on the original observation space. These model-based rein-
forcement learning methods often show improved sample ef-
ficiency, but with the additional complexity of balancing var-
ious auxiliary losses, such as a dynamics loss, reward loss,
and decoder loss in addition to the original policy and value
optimizations. These proposed methods are correspondingly
brittle to hyperparameter settings, and difficult to reproduce,
as they balance multiple training objectives.

3 Background
3.1 Markov Decision Process
A fully observable Markov decision process (MDP) can be
described as M = 〈S,A, P,R, γ〉, where S is the state
space, A is the action space, P (st+1|st,at) is the transition
probability distribution,R(st,at) is the reward function, and
γ is the discount factor (Bellman 1957). An agent starts in a
initial state s1 sampled from a fixed distribution p(s1), then
at each timestep t it takes an action at ∈ A from a state
st ∈ S and moves to a next state st+1 ∼ P (·|st,at). Af-
ter each action the agent receives a reward rt = R(st,at).
We consider episodic environments with the length fixed to
T . The goal of standard RL is to learn a policy π(at|st)
that can maximize the agent’s expected cumulative reward∑T
t=1 E(st,at)∼ρπ [rt], where ρπ is discounted state-action

visitations of π, also known as occupancies. An important
modification (Ziebart et al. 2008) auguments this objective
with an entropy term H(π(·|st)) to encourage exploration
and robustness to noise. The resulting maximum entropy ob-
jective is then defined as

π∗ = arg max
π

T∑
t=1

E(st,at)∼ρπ [rt + αH(π(·|st))], (1)

where α is temperature that balances between optimizing for
the reward and for the stochasticity of the policy.

3.2 Soft Actor-Critic
Soft Actor-Critic (SAC) (Haarnoja et al. 2018) is an off-
policy actor-critic method that uses the maximum entropy
framework to derive soft policy iteration. At each itera-
tion SAC performs soft policy evaluation and improvement
steps. The policy evaluation step fits a parametric Q-function
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Task name Number of SAC:pixel PlaNet SLAC SAC:stateEpisodes
finger spin 1000 645± 37 659± 45 900± 39 945± 19
walker walk 1000 33± 2 949± 9 864± 35 974± 1
ball in cup catch 2000 593± 84 861± 80 932± 14 981± 1
cartpole swingup 2000 758± 58 802± 19 - 860± 8
reacher easy 2500 121± 28 949± 25 - 953± 11
cheetah run 3000 366± 68 701± 6 830± 32 836± 105

Table 1: A comparison of current methods: SAC from pixels, PlaNet, SLAC, SAC from proprioceptive states (representing an
upper bound). The large performance gap between SAC:pixel and SAC:state motivates us to address the representation learning
bottleneck in model-free off-policy RL.

Q(st,at) using transitions sampled from the replay bufferD
by minimizing the soft Bellman residual

J(Q) = E(st,at,rt,st+1)∼D

[(
Q(st,at)− rt − γV̄ (st+1)

)2]
.

(2)

The target value function V̄ is approximated via a Monte-
Carlo estimate of the following expectation

V̄ (st) = Eat∼π
[
Q̄(st,at)− α log π(at|st)

]
, (3)

where Q̄ is the target Q-function parametrized by a weight
vector obtained from an exponentially moving average of
the Q-function weights to stabilize training. The policy im-
provement step then attempts to project a parametric policy
π(at|st) by minimizing KL divergence between the policy
and a Boltzmann distribution induced by the Q-function us-
ing the following objective

J(π) = Est∼D
[
DKL(π(·|st)||Q(st, ·))

]
, (4)

where Q(st, ·) ∝ exp{ 1αQ(st, ·)}.

3.3 Image-based Observations and Autoencoders
Directly learning from raw images posses an additional
problem of partial observability, which is formalized by a
partially observable MDP (POMDP). In this setting, instead
of getting a low-dimensional state st ∈ S at time t, the agent
receives a high-dimensional observation ot ∈ O, which
is a rendering of potentially incomplete view of the corre-
sponding state st of the environment (Kaelbling, Littman,
and Cassandra 1998). This complicates applying RL as the
agent now needs to also learn a compact latent representa-
tion to infer the state. Fitting a high-capacity encoder using
only a scarce reward signal is sample inefficient and prone to
suboptimal convergence. Following prior work (Lange and
Riedmiller 2010; Finn et al. 2015) we explore unsupervised
pretraining via an image-based autoencoder (AE). In prac-
tice, the AE is represented as a convolutional encoder gφ
that maps an image observation ot to a low-dimensional la-
tent vector zt, and a deconvolutional decoder fθ that recon-
structs zt back to the original image ot. Both the encoder
and decoder are trained simultaneously by maximizing the
expected log-likelihood

J(AE) = Eot∼D
[

log pθ(ot|zt)
]
, (5)

where zt = gφ(ot). Or in the case of β-VAE (Kingma and
Welling 2013; Higgins et al. 2017a) we maximize the objec-
tive below

J(VAE) = Eot∼D
[
Ezt∼qφ(zt|ot)[log pθ(ot|zt)] (6)

− βDKL(qφ(zt|ot)||p(zt))
]
,

where the variational distribution is parametrized as
qφ(zt|ot) = N (zt|µφ(ot), σ

2
φ(ot)). The latent vector zt is

then used by an RL algorithm, such as SAC, instead of the
unavailable true state st.

4 Representation Learning with Image
Reconstruction

We start by noting a dramatic gap in an agent’s performance
when it learns from image-based observations rather than
low-dimensional proprioceptive states. Table 1 illustrates
that in all cases SAC:pixel (an agent that learns from pix-
els) is significantly outperformed by SAC:state (an agent
that learns from states). This result suggests that attaining
a compact state representation is key in enabling efficient
RL from images. Prior work has demonstrated that auxil-
iary supervision can improve representation learning, which
is further confirmed in Table 1 by superior performance of
model-based methods, such as PlaNet (Hafner et al. 2018)
and SLAC (Lee et al. 2019), both of which make use of sev-
eral auxiliary tasks to learn better representations.

While a wide range of auxiliary objectives could be added
to aid effective representation learning, we focus our atten-
tion on the most general and widely applicable – an im-
age reconstruction loss. Furthermore, our goal is to develop
a simple and robust algorithm that has the potential to be
scaled up to real world applications (e.g. robotics). Corre-
spondingly, we avoid task dependent auxiliary losses, such
as Pixel Control from Jaderberg et al. (2017), or world-
models (Shelhamer et al. 2016; Hafner et al. 2018; Lee et al.
2019). As noted by Gelada et al. (2019) the latter can be brit-
tle to train for reasons including: i) tension between reward
and transition losses which requires careful tuning and ii)
difficulty in modeling complex dynamics (which we explore
further in Section 5.2).

Following Nair et al. (2018); Hafner et al. (2018); Lee
et al. (2019), which use reconstruction loss to learn the rep-
resentation space and dynamics model with a variational au-
toencoder (Kingma and Welling 2013; Higgins et al. 2017a),
we also employ a β-VAE to learn representations, but in
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Figure 1: Image-based continuous control tasks from the DeepMind Control Suite used in our experiments. Each task offers an
unique set of challenges, including complex dynamics, sparse rewards, hard exploration, and other traits (see Appendix A).

contrast to Hafner et al. (2018); Lee et al. (2019) we only
consider reconstructing the current frame, instead of recon-
structing a temporal sequence of frames. Based on evidence
from Lange and Riedmiller (2010); Finn et al. (2015); Nair
et al. (2018) we first try alternating between learning the pol-
icy and β-VAE, and in Section 4.2 observe a positive cor-
relation between the alternation frequency and the agent’s
performance. However, this approach does not fully close
the performance gap, as the learned representation is not op-
timized for the task’s objective. To address this shortcoming,
we then attempt to additionally update the β-VAE encoder
with the actor-critic gradients. Unfortunately, our investiga-
tion in Section 4.3 shows this approach to be ineffective
due to severe instability in training, especially with larger
β values. Based on these results, in Section 4.3 we identify
two reasons behind the instability, that originate from the
stochastic nature of a β-VAE and the non-stationary gradient
from the actor. We then propose two simple remedies and in
Section 4.5 introduce our method for an effective model-free
off-policy RL from images.

4.1 Experimental Setup
Before carrying out our empirical study, we detail the experi-
mental setup. A more comprehensive overview can be found
in Appendix B. We evaluate all agents on six challenging
control tasks (Figure 1). For brevity, on occasion, results for
three tasks are shown with the remainder presented in the
appendix. An image observation is represented as a stack
of three consecutive 84 × 84 RGB renderings (Mnih et al.
2013) to infer temporal statistics, such as velocity and accel-
eration. For simplicity, we keep the hyper parameters fixed
across all the tasks, except for action repeat (see Appendix
B.3), which we set according to Hafner et al. (2018) for a
fair comparison to the baselines. We evaluate an agent after
every 10K training observations, by computing an average
return over 10 episodes. For a reliable comparison we run
10 random seeds and report the mean and standard devia-
tion of the evaluation reward.

4.2 Alternating Representation Learning with a
β-VAE

We first set out to confirm the benefits of an alternating ap-
proach to representation learning in off-policy RL. We con-
duct an experiment where we initially pretrain the convolu-
tional encoder gφ and deconvolutional decoder fθ of a β-
VAE according to the loss J(VAE) (Equation (6)) on obser-
vations collected by a random policy. The actor and critic
networks of SAC are then trained for N steps using latent

states zt ∼ gφ(ot) as inputs instead of image-based obser-
vations ot. We keep the encoder gφ fixed during this pe-
riod. The updated policy is then used to interact with the
environment to gather new transitions that are consequently
stored in the replay buffer. We continue iterating between
the autoencoder and actor-critic updates until convergence.
Note that the gradients are never shared between the β-VAE
for learning the representation space, and the actor-critic.
In Figure 2 we vary the frequency N at which the represen-
tation space is updated, from N = ∞ where the represen-
tation is never updated after the initial pretraining period, to
N = 1 where the representation is updated after every pol-
icy update. We observe a positive correlation between this
frequency and the agent’s performance. Although the alter-
nating scheme helps to improve the sample efficiency of the
agent, it still falls short of reaching the upper bound perfor-
mance of SAC:state. This is not surprising, as the learned
representation space is never optimized for the task’s objec-
tive.

4.3 Joint Representation Learning with a β-VAE
To further improve performance of the agent we seek to
learn a latent representation that is well aligned with the un-
derlying RL objective. Shelhamer et al. (2016) has demon-
strated that joint policy and auxiliary objective optimiza-
tion improves on the pretraining approach, as described in
Section 4.2, but this has been only shown in the on-policy
regime.

Thus we now attempt to verify the feasibility of joint
representation learning with a β-VAE in the off-policy set-
ting. Specifically, we want to update the encoder network gφ
with the gradients coming through the latent state zt from
the actor J(π) (Equation (4)), critic J(Q) (Equation (2)),
and β-VAE J(VAE) (Equation (6)) losses. We thus take
the best performing variant from the previous experiment
(e.g. SAC+VAE:pixel (iter, 1)) and let the actor-critic’s gra-
dients update the encoder gφ. We tune for the best β and
name this agent SAC+VAE:pixel. Results in Figure 3 show
that the joint representation learning with β-VAE in unstable
in the off-policy setting and performs worse than the base-
line that does not utilize task dependent information (e.g.
SAC+VAE:pixel (iter, 1)).

4.4 Stabilizing Joint Representation Learning
Following an unsuccessful attempt at joint representation
learning with a β-VAE in off-policy RL, we investigate the
root cause of the instability.

We first observe that the stochastic nature of a β-VAE
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Figure 2: Separate β-VAE and policy training with no shared gradients SAC+VAE:pixel (iter, N ), with SAC:state shown as an
upper bound. N refers to frequency in environment steps at which the β-VAE updates after initial pretraining. More frequent
updates are beneficial for learning better representations, but cannot fully address the gap in performance.

Figure 3: An unsuccessful attempt to propagate gradients from the actor-critic down to the β-VAE encoder. SAC+VAE:pixel
exhibits instability in training which leads to subpar performance comparing to the baseline SAC+VAE:pixel (iter, 1), which
does not use the actor-critic gradients.

(a) Smaller values of β reduce stochasticity of a β-VAE and lead to a better perfor-
mance.

(b) Preventing the actor’s gradients to update the convolutional encoder helps to im-
prove performance even further.

Figure 4: We identify two reasons for the subpar performance of joint representation learning. (a) The stochastic nature of a
β-VAE, and (b) the non-stationary actor’s gradients. Full results in Appendix E.

damages performance of the agent. The results from Fig-
ure 4a illustrate that smaller values of β improve the training

stability as well as the task performance. This motivates us
to instead consider a completely deterministic autoencoder.
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Figure 5: Our algorithm (SAC+AE) auguments SAC with a regularized autoencoder to achieve stable training from images in
the off-policy regime. The stability comes from switching to a deterministic encoder that is carefully updated with gradients
from the reconstruction J(RAE) (Equation (7)) and soft Q-learning J(Q) (Equation (2)) objectives.

Furthermore, we observe that updating the convolutional
encoder with the actor’s gradients hurts the agent’s perfor-
mance. In Figure 4b we observe that blocking the actor’s
gradients from propagating to the encoder improves results
considerably. This is because updating the encoder with the
J(π) loss (Equation (4)) also changes the Q-function net-
work inside the objective, due to the convolutional encoder
being shared between the policy π and Q-function. A sim-
ilar phenomenon has been observed by Mnih et al. (2013),
where the authors employ a static target Q-function to stabi-
lize TD learning. It might appear that updating the encoder
with only the critic’s gradients would be insufficient to learn
a task dependent representation space. However, the policy
π in SAC is a parametric projection of a Boltzmann distribu-
tion induced by the Q-function, see Equation (4). Thus, the
Q-function contains all relevant information about the task
and allows the encoder to learn task dependent representa-
tions from the critic’s gradient alone.

4.5 Our Approach SAC+AE: Joint Off-Policy
Representation Learning

We now introduce our approach SAC+AE – a stable off-
policy RL algorithm from images, derived from the above
findings. We first replace the β-VAE with a deterministic
autoencoder. To preserve the regularization affects of a β-
VAE we adopt the RAE approach of Ghosh et al. (2019),
which imposes a L2 penalty on the learned representation zt
and weight-decay on the decoder parameters

J(RAE) = Eot∼D
[

log pθ(ot|zt) + λz||zt||2 + λθ||θ||2
]
,

(7)

where zt = gφ(ot), and λz, λθ are hyper parameters.
We also prevent the actor’s gradients from updating the

convolutional encoder, as suggested in Section 4.4. Unfor-
tunately, this slows down signal propogation to the encoder,
and thus we find it important to update the convolutional
weights of the target Q-function faster than the rest of the
network’s parameters. We thus employ different rates τQ and
τenc (with τenc > τQ) to compute Polyak averaging over the
corresponding parameters of the target Q-function. Our ap-
proach is summarized in Figure 5.

5 Evaluation of SAC+AE
In this section we evaluate our approach, SAC+AE, on var-
ious benchmark tasks and compare against state-of-the-art
methods, both model-free and model-based. We then high-
light the benefits of our model-free approach over those
model-based methods in modified environments with dis-
tractors, as an approximation of real world noise.

5.1 Learning Control from Pixels
We evaluate our method on six challenging image-based
continuous control tasks (see Figure 1) from DMC (Tassa
et al. 2018) and compare against several state-of-the-art
model-free and model-based RL algorithms for learning
from pixels: D4PG (Barth-Maron et al. 2018), an off-policy
actor-critic algorithm; PlaNet (Hafner et al. 2018), a model-
based method that learns a dynamics model with determinis-
tic and stochastic latent variables and employs cross-entropy
planning for control; and SLAC (Lee et al. 2019), which
combines a purely stochastic latent model together with an
model-free soft actor-critic. In addition, we compare against
SAC:state that learns from low-dimensional proprioceptive
state, as an upper bound on performance. Results in Fig-
ure 6a illustrate that SAC+AE:pixel matches the state-of-
the-art model-based methods such as PlaNet and SLAC, de-
spite being extremely straightforward to implement.

5.2 Performance on Noisy Observations
Performing accurate forward-modeling predictions based
off of noisy observations is challenging and requires learn-
ing a high fidelity model that encapsulates strong induc-
tive biases (Watters et al. 2017). The current state-of-the-art
world-model based approaches (Hafner et al. 2018; Lee et al.
2019) solely rely on a general purpose recurrent state-space
model parametrized with a β-VAE, and thus are highly vul-
nerable to the observational noise. In contrast, the represen-
tations learned with just reconstruction loss are better suited
to handle the background noise.

To confirm this, we evaluate several agents on tasks where
we add simple distractors in the background, consisting of
colored balls bouncing off each other and the frame (Fig-
ure 7). We use image processing to filter away the static
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(a) Our method demonstrates significantly improved performance over the baseline SAC:pixel. Moreover, it matches the state-of-the-art
performance of world-model based algorithms, such as PlaNet and SLAC, as well as a model-free algorithm D4PG, that learns directly from
raw images. Our algorithm is extremely stable, robust, and straightforward to implement.

(b) Methods that rely on forward modeling, such as PlaNet and SLAC, suffer severely from the background noise, while our approach is
resistant to the distractors. Examples of background distractors are show in Figure 7.

Figure 6: Two main results of our work. In (a) we demonstrate that our simple method matches the state-of-the-art performance
on DMC tasks. In (b) we outperform the baselines on more complicated tasks where the observations are altered with noise.

Figure 7: Backgrounds altered with moving distractors.

background and replace it with this dynamic noise, as pro-
posed in Zhang, Wu, and Pineau (2018). We aim to emulate
a common setup in a robotics lab, where various unrelated
objects can affect robot’s observations. In Figure 6b we see
that methods that rely on forward modeling perform drasti-
cally worse than our approach, showing that our method is
more robust to background noise.

6 Discussion
For RL agents to be effective in the real world, where vision
is one of the richest sensing modalities, we need sample ef-
ficient, robust algorithms that work from pixel observations.
We pinpoint two strategies to obtain sample efficiency – i)
use off-policy methods and ii) use self-supervised auxiliary
losses. For methods to be robust, we want auxiliary losses
that do not rely on task-specific inductive biases, so we fo-
cus on a simple reconstruction loss. In this work, we pro-
vide a thorough study into combining reconstruction loss
with off-policy methods for improved sample efficiency in
rich observation settings. Our analysis yields two key find-

ings. The first is that deterministic AE models outperform
β-VAEs (Higgins et al. 2017a), due to additional instabili-
ties such as bootstrapping, off-policy data, and joint training
with auxiliary losses. The second is that propagating the ac-
tor’s gradients through the convolutional encoder hurts per-
formance.

Based on these results, we also recommend an effective
off-policy, model-free RL algorithm for pixel observations
with only reconstruction loss as an auxiliary task. It is com-
petitive with state-of-the-art model-based methods on tradi-
tional benchmarks, but much simpler, robust, and does not
require learning a dynamics model (Figure 6a). We show
through ablations the superiority of joint learning over previ-
ous methods that use an alternating training procedure with
separated gradients, the necessity of a pixel reconstruction
loss over reconstruction to lower-dimensional “correct” rep-
resentations, and demonstrations of the representation power
and generalization ability of our learned representation. We
additionally construct settings with distractors approximat-
ing real world noise which show how learning a world-
model as an auxiliary loss can be harmful (Figure 6b), and
in which our method, SAC+AE, exhibits state-of-the-art per-
formance.
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