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Abstract
Training a model with limited data is an essential task for
machine learning and visual recognition. Few-shot learning
approaches meta-learn a task-level inductive bias from SEEN
class few-shot tasks, and the meta-model is expected to fa-
cilitate the few-shot learning with UNSEEN classes. Inspired
by the idea that unlabeled data can be utilized to smooth the
model space in traditional semi-supervised learning, we pro-
pose TAsk COoperation (TACO) which takes advantage of
unsupervised tasks to smooth the meta-model space. Specif-
ically, we couple the labeled support set in a few-shot task
with easily-collected unlabeled instances, prediction agree-
ment on which encodes the relationship between tasks. The
learned smooth meta-model promotes the generalization abil-
ity on supervised UNSEEN few-shot tasks. The state-of-
the-art few-shot classification results on MiniImageNet and
TieredImageNet verify the superiority of TACO to leverage
unlabeled data and task relationship in meta-learning.

Introduction
Both instance collection and labeling costs influence the
practical utility of a model in real-world applications, which
requires a classifier to be trained with limited examples. For
example, a robotic agent should be able to imitate behaviors
from one single demonstration (Yu et al. 2018).

One solution to the Few-Shot Learning (FSL) problem
takes advantage of data from related classes. Towards train-
ing effective classifiers for few-shot tasks with UNSEEN
classes (a.k.a. the “meta-test” phase), meta-learning mimics
the few-shot task evaluations on the SEEN class set (a.k.a.
the “meta-train” set) and extracts task-level inductive bias in
the “meta-training” phase (Baxter 2000; Vilalta and Drissi
2002; Maurer, Pontil, and Romera-Paredes 2016). For ex-
ample, the instance embedding function (Vinyals et al. 2016;
Snell, Swersky, and Zemel 2017), model initialization (Finn,
Abbeel, and Levine 2017; Nichol, Achiam, and Schulman
2018), functional mapping (Qiao et al. 2018), and optimiza-
tion strategies (Ravi and Larochelle 2017) facilitate FSL.

During meta-training, episodes of few-shot tasks, couples
of few-shot support set and the same-distribution query set,
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Figure 1: Analogy between semi-supervised learning (top)
and semi-supervised few-shot learning (bottom), where un-
labeled instances (resp. unsupervised tasks) assist shaping
a smooth model (resp. meta-model) space. Limited labeled
instances (resp. tasks) make revealing the characteristic of
the data difficult (left). Unsupervised tasks facilitate a meta-
model to generalize better and to construct close classifiers
for similar tasks (right).

are sampled from the SEEN class set to update the meta-
model (as in Fig. 2 (a)). Specifically, a task-specific classifier
is derived from the meta-model based on the few-shot sup-
port set, and the classifier’s performance is measured on the
corresponding query set. The supervision of meta-learning
comes from the labels in the query set, so we define such
tasks as the “supervised” ones. Similarly, we introduce “un-
supervised” task as a task with a few-shot labeled support
set and an unlabeled “pool” set. The pool set contains easily
collected instances from any (even distractor) class, but it is
difficult to provide supervision in meta-training directly.

In this paper, we propose the TAsk COoperation (TACO)
approach for few-shot classification, which takes advantage
of the task relationship by incorporating both the supervised
and unsupervised tasks during meta-training (we denote it
as Semi-Supervised Few-Shot Learning (SS-FSL) in Fig. 2
(c)). As shown in Fig. 1 (bottom), directly learning the meta-
model over supervised tasks could lead to a biased meta-
model space, which constructs diverse classifiers for sim-
ilar tasks. TACO makes the meta-model space smooth, so
that similar support sets are mapped to close classifiers and
the meta-model generalizes better. In detail, the similarity
among few-shot tasks is measured by their prediction agree-
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Figure 2: The difference between supervised few-shot learn-
ing (FSL), Few-Shot Semi-Supervised Learning (FS-SSL)
and Semi-Supervised Few-Shot Learning (SS-FSL). In FSL
(a), episodes of supervised tasks are sampled to train the
meta-model (top), and it is the same scenario in the meta-
test phase (bottom); In FS-SSL, each SEEN few-shot task
is paired with an additional same-distributed unlabeled set
(U) to enhance its ability individually, and correspondingly,
the meta-model only learns how to utilize unlabeled data in
a specific semi-supervised task; SS-FSL emphasizes taking
advantage of the unlabeled data to construct unsupervised
tasks (a joint set with S and U) from a macro-perspective,
obtaining a smooth meta-model.

ment over the unlabeled pool set, which corresponds to the
notion that similar samples (resp. tasks) have similar labels
(resp. classification behavior) in semi-supervised learning
paradigm. It is notable that unlabeled data are only used dur-
ing meta-training to measure the smoothness, and the meta-
model acts in a fully supervised manner in meta-test.

Several relatedness measures between tasks and few-shot
classifiers are proposed and investigated for TACO. The
same meta-learning mechanism extends various supervised
few-shot approaches like ProtoNet (Snell, Swersky, and
Zemel 2017) and ProtoMAML (Triantafillou et al. 2020).
TACO variants achieve not only superior performance in dif-
ferent semi-supervised configurations but also get higher ac-
curacy on fully supervised benchmarks like MiniImageNet.

In summary, from the standpoint of traditional semi-
supervised learning, we utilize unlabeled data from a macro-
perspective to form unsupervised few-shot tasks and encour-
age close tasks to behave similarly. We propose TACO to in-
corporate the relationship between tasks to obtain a smooth
meta-model space, and it can still generalize well even in
fully supervised meta-test phase (without unlabeled data).
The experimental results on both SS-FSL and standard FSL
verify the effectiveness of the TACO approach.

Related Work
Training a model with limited examples is essential due to
the instance collection and labeling costs (Li, Fergus, and
Perona 2006; Lake et al. 2011; Lake, Salakhutdinov, and
Tenenbaum 2015). Towards figuring out the data scarcity
problem, two important paradigms, semi-supervised learn-

ing and meta-learning, are usually considered.
Semi-Supervised Learning (SSL) discovers the latent

structure of data via unlabeled instances (Bennett and Dem-
iriz 1998; Chapelle, Schlkopf, and Zien 2010; Oliver et al.
2018). To ensure smoothness of predictions, prediction con-
sistency (Sajjadi, Javanmardi, and Tasdizen 2016), low en-
tropy region (Grandvalet and Bengio 2004), and data gener-
ation (Kingma et al. 2014) act as key principles.

Meta-learning deals with the FSL problem by extracting
task-level inductive bias from SEEN classes, and then gen-
eralizes to UNSEEN class few-shot tasks (Maurer, Pontil,
and Romera-Paredes 2016; Chao et al. 2020). For exam-
ple, the embedding-based (Vinyals et al. 2016; Snell, Swer-
sky, and Zemel 2017; Lee et al. 2019), gradient-based (Finn,
Abbeel, and Levine 2017; Nagabandi et al. 2019), and gen-
erative (Zhang et al. 2019) meta-learning methods.

Recent literature explores the usage of the unlabeled data
in FSL. Transductive few-shot learning assumes all test in-
stances come simultaneously, which are used as the unla-
beled pool, so as to leverage the latent structure between
training and test instances (Liu et al. 2019; Qiao et al. 2019).
In Few-Shot Semi-Supervised Learning (FS-SSL), each task
is equipped with an auxiliary set of unlabeled instances
(even from distractor classes) in both meta-training and
meta-test stages (Boney and Ilin 2017; Ayyad et al. 2019),
and the meta-model learns to provide better classifier esti-
mation based on the unlabeled data (Ren et al. 2018; Kho-
dadadeh, Bölöni, and Shah 2019) (as in Fig. 2 (b)). Instead
of formulating an SSL problem in each few-shot task, we
focus on the Semi-Supervised Few-Shot Learning (SS-FSL)
mechanism from a macro-perspective, where not only super-
vised tasks but also unsupervised tasks are incorporated dur-
ing the meta-training (as in Fig. 2 (c)). Compared with FS-
SSL, there are two main differences in our SS-FSL. First, the
usage of unlabeled data is different. Different from forming
episodes of semi-supervised tasks in FS-SSL, SS-FSL con-
structs unsupervised tasks to smooth the meta-model space
from a macro-perspective — FS-SSL utilizes the unlabeled
data to improve the ability of a specific few-shot task, while
FS-SSL emphasizes improving the discriminative ability of
the meta-model (e.g., embeddings) with the help of unsuper-
vised tasks. Second, meta-test strategies are different. Usu-
ally, FS-SSL needs the assistance of unlabeled data during
meta-test, while SS-FSL can still generalize well even with-
out unlabeled data owing to the smooth meta-model space.

Meta-Learning for Few-Shot Learning
In this section, we introduce the few-shot classification prob-
lem and describe how to solve it with meta-learning.

The Few-Shot Learning Problem
Few-Shot Learning (FSL) formalizes a classification task in
the N -way K-shot form. The support set of a task DS =
{(xi,yi)}NK

i=1 contains N classes and K labeled examples
in each class, where the instance xi ∈ RD and the one-hot
coding label yi ∈ {0, 1}N . The goal of FSL is to train an
N -way classifier h ∈ HN : RD → {0, 1}N based on the
NK examples, whereHN is theN -way classifier space. h is
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prone to over-fit when K is small (e.g., K = 1). sfx(p) nor-
malizes a vector p ∈ RN into a probability distribution with
softmax, i.e.,

∑N
n=1 sfx(p)n = 1 and {sfx(p)n ≥ 0}Nn=1.

Denote KLU (p‖q) =
∑N

n=1 sfx(p)n log
sfx(p)n
sfx(q)n

as an op-
erator which normalizes two N -dimensional vectors with
softmax and then outputs their KL-divergence.

Meta-Learning for Few-Shot Learning
Meta-learning learns a task-level mapping f from the N -
way K-shot support set DS to its target classifier h∗ ∈ HN

in a supervised way (Chao et al. 2020). To learn the meta-
model f , episodes of tasks are sampled from a “meta-train”
set with SEEN classes. In detail, each task contains a N -
way K-shot support set DS and a query set DQ with same-
distribution examples from the N classes. The quality of a
meta-generated classifier f(DS) is measured by its classifi-
cation ability on DQ. In summary, f can be learned by:

min
f

∑
(DS,DQ)

∑
(xQ

j ,yQ
j )∈DQ

`
(
f(DS)(x

Q
j ), y

Q
j

)
. (1)

The summation of (DS,DQ) in Eq. 1 denotes the enumera-
tion of all sampled tasks from the SEEN class set. The loss
`(·, ·) measures the quality of a meta-generated classifier
f(DS) via the discrepancy between the predicted label and
the ground-truth of the query set, e.g., the cross-entropy. The
lower the average loss when predicting instances in DQ, the
closer the meta-generated classifier to the target one. After
optimizing Eq. 1, f maps a training set to its target classifier
even with a few labeled examples. Since the meta-training
mimics the few-shot evaluation, it is supposed to generalize
toN -wayK-shot tasks composed by UNSEEN classes (a.k.a.
meta-test phase). The meta-model f could be implemented
in a non-parametric style. In other words, a query instance
xQj is classified based on a soft nearest neighbor rule:

ŷj = f(DS)(x
Q
j ) =

∑
(xS

i ,yS
i )∈DS

sim
(
φ(xQj ), φ(x

S
i )
)
ySi .

(2)
φ : RD → Rd extracts features of the input examples
and transforms them into a latent space with d dimensions.
sim(φ(xQj ), φ(x

S
i )) measures the similarity between the

query instance φ(xQj ) and a support instance φ(xSi ).
Matching Network (Vinyals et al. 2016) uses the `2-

normalized cosine similarity in Eq. 2. After learning φ with
Eq. 1, the embedding facilitates the construction of near-
est neighbor classifier. The Prototypical Network (Snell,
Swersky, and Zemel 2017) implements Eq. 2 with the neg-
ative euclidean distance. When K > 1, it averages the
same-class instances together and uses class centers (pro-
totypes) for prediction. The embedding center of class n
can be defined as cn = 1

K

∑
yi,n=1 φ(x

S
i ), then we have

ŷj =
∑N

n=1 sim(φ(xQj ), cn)yn.

Semi-Supervised Few-Shot Learning (SS-FSL). Con-
sidering the practical utility of unlabeled data, SS-FSL han-
dles the case that most of the SEEN class data are unlabeled.

The meta-model is required to utilize both labeled and unla-
beled data during meta-training, while only labeled few-shot
support set from UNSEEN classes are provided in meta-test.

Task Cooperation for Few-Shot Learning
We focus on the Semi-Supervised Few-Shot Learning (SS-
FSL), using the unlabeled meta-train data to improve the
generalization ability of the meta-model f . We first outline
the main idea of TAsk COoperation (TACO) and then de-
scribe the concrete configurations. Last are discussions.

TACO for Semi-Supervised Few-Shot Learning
Towards incorporating the easily collected and informative
unlabeled data during the meta-training, we propose the
TAsk COoperation (TACO) framework where the related
tasks cooperate with each other for a smooth meta-model f .
Traditional semi-supervised learning assumes that a smooth
function maps near inputs to similar outputs, which is an es-
sential property to achieve discriminative and generalizable
models (Friedman, Hastie, and Tibshirani 2001; Chapelle,
Schlkopf, and Zien 2010; Berthelot et al. 2019).

For an N -way K-shot classification task, f maps its sup-
port set DS to its corresponding classifier hN = f(DS).
TACO generalizes the smooth notion in the traditional su-
pervised learning to the meta-model space. From a macro-
perspective of meta-learning, we first make an analogy be-
tween the training instance in the traditional supervised
learning and the few-shot support set in the meta-learning.

We propose TACO to better capture the task relationship,
which adds a smoothness constraint over the meta-learning
objective in Eq. 1, so that two close tasks behave similarly:

λ
∑

(DS,D̂S)

DIS
(
f(DS), f(D̂S)

)
. (3)

We assumeDS and D̂S are two visually/semantically similar
few-shot support sets sampled from the meta-train set, and
DIS(·, ·) measures the discrepancy between two mapped
models in HN . λ > 0 is a balance parameter. By minimiz-
ing Eq. 3 together with Eq. 1, the meta-model f not only
maps a task to its target classifier but also generates simi-
lar classifiers for close few-shot support set (revealed by the
small classifier-space distance between f(DS) and f(D̂S)),
which corresponds well to the smooth notion in traditional
supervised/semi-supervised learning. Benefited from TACO,
the meta-model f becomes smooth and more discriminative,
generalizing better in the meta-test stage.

Similarity Measures for TACO
Eq. 3 leaves the question of how to define the similarity be-
tween few-shot support sets and the discrepancy between
classifiers. Here we provide detailed definitions.

Similarity between tasks. Given an N -way K-shot sup-
port set DS, we generate another “similar” few-shot sup-
port set D̂S based on two strategies. First, we consider two
tasks are similar if they have the same set of classes. Given
the N classes in DS, we sample another non-overlapping
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Figure 3: Empirical observations of measuring similarity
between classifiers based on their predictions over the in-
stance space. Each row corresponds to a 5-way task trained
by 3000 examples in MiniImageNet, where the task-specific
classifier is based on Nearest Center Mean (NCM) over em-
beddings. The first two tasks have exactly the same cate-
gories while their classifiers are learned with different ini-
tializations; the third task has different classes but all classes
belong to the same super-categories with the first two; the
last task targets classes from different sets of super-classes.
The construction of tasks encodes the task-level visual and
semantic similarity. The similarity between the output of
meta-model, i.e., the classifiers, could be revealed by their
prediction results over the same (even distractor class) in-
stance, as shown in the r.h.s. The histograms demonstrate
the mean prediction results of 600 examples from the “Jelly-
fish” class. The visually/semantically similar tasks will have
closer NCM decisions compared with the dissimilar ones.

K instances from the labeled meta-train set for each of the
N classes to construct D̂S. Besides, we keep the order of
classes in the two few-shot classification tasks the same,
which maintains a correspondence between their classifiers.
Second, we borrow the idea from standard semi-supervised
learning (Sajjadi, Javanmardi, and Tasdizen 2016; Berthelot
et al. 2019) to construct similar tasks based on perturbations.
In this case, instances in D̂S are the same as those instances
in DS except additional (advanced) data augmentation oper-
ations (e.g., random crop). Data augmentation changes the
raw image input of an instance to some extent while keep-
ing its semantic meaning, so the transformed task is close to
the original one. Two labeled tasks with similar support sets
usually target similar classifiers, so it is meaningful to apply
the task similarity objective to them.
Remark 1 In addition to generating visually similar tasks,
we can also obtain semantically similar tasks based on
class relationships, e.g., the binary classification task for
“tiger vs. dog” and “cat vs. dog” are similar. Since such
a class-wise similarity measure requires semantic attributes
for classes, we leave it for future study.

Similarity between Classifiers. The output of the meta-
model f w.r.t. a support set, an N -way classifier hN , is a
function from instances to labels, and directly measuring
the discrepancy between two classifiers in Eq. 3 requires
function space metrics. Since the characteristic of classi-
fiers could be revealed by its predictions {hN (x)} over all

Figure 4: Illustration on the usage of unsupervised tasks for
SS-FSL in TACO. Similarities for task and classifier are pro-
posed to ensure the smoothness of meta-model f .

possible instances {x} sampled from the task distribution,
we transform the similarity between two classifiers from the
function space to the instance space — two similar classi-
fiers have similar predictions over all instances.

We first empirically demonstrate that the prediction for
an object from other classes except the ones in few-shot
support set (i.e., distractor classes) still reveals the proper-
ties of the embedding based few-shot classifier. Consider a
task discerning N cat classes, the predictions of its classi-
fier on a dog image decomposes the cat-level characteristic
into these N cat classes. With classifiers based on embed-
dings, the confidence of a new instance implies its simi-
larity to those N class centers in a joint embedding space.
We verify this point with Nearest Center Mean (NCM)
Classifier (Mensink et al. 2013) based on the tasks from
MiniImageNet (in Fig. 3). The agreements between nor-
malized confidences demonstrate the similarity among tasks
(and their target classifiers) — visually/semantically similar
few-shot support sets make similar predictions on instances.

Based on the previous observation, we take a further step
to make use of the unlabeled data during meta-training to
measure the similarity between classifiers. Since the query
set error

∑
(xQ

j ,yQ
j )∈DQ

`
(
hN (xQj ), y

Q
j

)
is used to update

the meta-model f , it is notable that if we can not get ac-
cess to yQj , i.e., the query set labels, the meta-model f can
not be updated. Thus, we make another analogy between su-
pervised “examples” (i.e., the instance and label pair) in the
traditional supervised learning and the tasks (i.e., the “sup-
port” and “query” sets pair) in the meta-learning. The “in-
stance” and “label” in the supervised learning correspond
to the “few-shot support set” and “query set” in the meta-
learning, respectively. A few-shot support set with an unla-
beled query set is similar to the unlabeled instances in tra-
ditional supervised learning. We denote a supervised task as
a couple of labeled support and query sets (DS,DQ), and
an unsupervised task as a combination of a few-shot labeled
support set DS and an unlabeled pool set Dpool = {xPk }
sampled from the unlabeled part of the meta-train set. In-
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stances in Dpool may come from distractor classes w.r.t.
those classes in DS. During SS-FSL, for two similar un-
supervised tasks (DS,Dpool) and (D̂S,Dpool) sharing the
same unlabeled pool set Dpool, we measure the similarity
between the output of the meta-model — the similarity be-
tween two few-shot classifiers — based on the JS divergence
of their predicted distributions on Dpool:

DIS(f(DS), f(D̂S)) (4)

=
∑

xP
k ∈Dpool

JSDT

(
f(DS)(x

P
k )
∥∥ f(D̂S)(x

P
k )
)
.

f(DS)(x
P
k ) provides the affiliation confidence of an in-

stance xPk towards the N classes in DS. JSDT (p‖q) =
1
2KLU (p‖ qT ) +

1
2KLU (q‖ pT ) is the JS divergence over the

unnormalized predictions, the smaller the value, the closer
these two distributions. T is a positive temperature to soften
the predicted distribution (Hinton, Vinyals, and Dean 2015;
Ye, Lu, and Zhan 2020). In our experiments, we stop the
gradient of the second vector when computing the JS diver-
gence. By matching the predictions of two few-shot classi-
fiers on the same set of instances without label, the meta-
model is required to map similar few-shot tasks to similar-
performed models. Therefore, the outputs of similar meta-
model inputs are pulled together, which forces the smooth-
ness of the meta-model f . Eq. 4 could be applied to two
labeled tasks if we replace Dpool as the union of query sets.

Remark 2 Minimizing the discrepancy between similar
tasks’ predictions potentially produces a smooth instance
embedding encoder φ. However, matching the embeddings
directly from the input perspective of the meta-model is not
as flexible as Eq. 4, which is too strong and does not work
well in our experiments.

Objective. TACO uses Eq. 4 as an auxiliary objective, i.e.,

min
f

∑
(DS,DQ,Dpool)

∑
(xQ

j ,yQ
j )∈DQ

`
(
f(DS)(x

Q
j ), y

Q
j

)
(5)

+ λ
∑

xP
k ∈Dpool

⋃
DQ

JSDT

(
f(DS)(x

P
k )
∥∥ f(D̂S)(x

P
k )
)
.

TACO can be instantiated with the embedding-based meth-
ods like ProtoNet. Eq. 5 acts as an efficient way to maxi-
mize the similarity between both labeled and unsupervised
tasks. During meta-training, we sample DS, DQ and Dpool

from labeled and unlabeled meta-train set respectively (as
in Fig. 4 and Alg.1). To take full advantage of examples,
we combine the query set DQ with Dpool. The predic-
tion matching not only utilizes the unlabeled meta-train data
in a semi-supervised manner, but also promotes the co-
supervision between similar tasks. During meta-test withDS

only, a discriminative classifier is generated based on f in a
supervised manner without additional unlabeled instances.

Remark 3 TACO is general based on the definition of the
similarity measurements of inputs (few-shot support sets)
and outputs (target classifiers) of the meta-model. Since

Algorithm 1 The meta-training flow of the TACO.

Require: SEEN class set S
1: for all iteration = 1,... do
2: Sample N -way K-shot (DS, DQ) from S
3: Generate similar tasks D̂S based on DS

4: Sample Dpool from the unlabeled part of S
5: for all (xQj ,y

Q
j ) ∈ DQ do

6: Get f(DS)(x
Q
j )

7: end for
8: for all xPk ∈ DQ

⋃
Dpool do

9: Get JSDT (f(DS)(x
P
k ) ‖ f(D̂S)(x

P
k ))

10: end for
11: Compute objective as in Eq. 5 and update f
12: end for
13: return Few-shot classifier mapping f

the embedding based classifiers project all the instances
into a common subspace, it is able to measure the cross-
class similarity in an unsupervised way between in-task
class instances and distractor class instances. In our exper-
iments, we implement f with ProtoNet (Snell, Swersky, and
Zemel 2017) and ProtoMAML (Triantafillou et al. 2020) (in
the supplementary). By minimizing the discrepancy between
similar classifiers, TACO updates the meta-model (i.e., the
embedding) to pull similar few-shot tasks together, which
gives rise to a smooth task-classifier meta-model (Saito et al.
2018). Thus, given the neighborhood SEEN class few-shot
task w.r.t. an UNSEEN class few-shot task, the discerning
ability of a well-performed meta-model on those similar
SEEN class tasks generalize to the UNSEEN tasks as well.

Experiments
We investigate TACO on MiniImageNet as well as
TieredImageNet. We describe experimental setups, and then
provide the few-shot classification performance together
with visualization results. Implementation details, qualita-
tive and quantitative evaluations are in the supplementary.

Experimental Setups
Datasets. MiniImageNet (Vinyals et al. 2016) and
TieredImageNet (Ren et al. 2018) contain 100 classes and
608 classes respectively. All images are resized to 3×84×84
following (Vinyals et al. 2016; Finn, Abbeel, and Levine
2017; Snell, Swersky, and Zemel 2017). We use the standard
split of two datasets following (Ravi and Larochelle 2017;
Ren et al. 2018), where meta-train, meta-val, and meta-test
have non-overlapping classes.

Supervised Evaluation Protocols. We evaluate mean
accuracy over 10,000 5-way 1-Shot and 5-Way 5-shot
tasks (Vinyals et al. 2016; Ye et al. 2020), where the test set
in a task has 15 examples from each of the 5 classes. In this
supervised evaluation, all labeled examples in the meta-train
set are utilized. We omit the 95% confidence interval in the
experiments, and detailed values are in the supplementary.
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Semi-Supervised Data Generation and Evaluation Pro-
tocols. We construct the semi-supervised meta-train set by
removing part of its labels. Two different partitions are in-
vestigated. The first strategy splits all examples in the meta-
train set across “classes” (SAC). In this case, we randomly
select 30% classes in the meta-train set as the labeled part
and uses the instances in the remaining classes without their
labels as the unlabeled set. Similarly, we randomly select
30% instances across “instances” (SAI). In the SAI case, it is
possible to sample non-distractor classes from the unlabeled
pool, which reduces the classification difficulty w.r.t. SAC
to some extent. Based on the observation in (Oliver et al.
2018), it is more realistic to set the number of images in the
meta-val set smaller than the number of labeled instances
in the meta-train set. Thus instead of preserving the whole
meta-val set, we adopt the same SAC or SAI split methods
to reduce the size of the meta-val set. Only selected labeled
meta-val images are utilized to select the best model. The
average performance of 3 random partitions is reported.

Comparison Methods. We mainly compare TACO
with four embedding based approaches, namely Match-
Net (Vinyals et al. 2016), ProtoNet (Snell, Swersky,
and Zemel 2017), Semi-ProtoNet (Ren et al. 2018) and
PRWN (Ayyad et al. 2019). Semi-ProtoNet is designed
for few-shot semi-supervised learning, and we adapt it
in our setting. Its improved version, with an MLP-based
selector to detect helpful unlabeled instances, is denoted as
Semi-ProtoNet?. PRWN gets compact and well-separated
class representations via prototypical random walk.

Implementation Details. We use a 4-layer Con-
vNet (Vinyals et al. 2016; Finn, Abbeel, and Levine 2017;
Snell, Swersky, and Zemel 2017) as the backbone, which
is initialized following (Rusu et al. 2018; Ye et al. 2020).
TACO and all comparison methods are fine-tuned on the
pre-trained embedding in meta-training, and For semi-
supervised FSL, we sample 75 unlabeled instances in each
mini-batch. We also investigate the ResNet-12 (Lee et al.
2019), which is complicated but with high discriminative
ability. We find ResNet over-fits when applied to the
SS-FSL setting with a limited number of meta-train data,
so we only test ResNet in the standard supervised few-shot
classification tasks. Meta-model in TACO is implemented
with ProtoNet. For constructing similar unsupervised tasks,
we sample two support sets with the same classes and
then apply random perturbations to them via the advanced
augmentation reported in (Xie et al. 2020).

Results of Semi-Supervised Few-Shot Learning
We first investigate TACO for Semi-Supervised Few-
Shot Learning (SS-FSL) case on two benchmark datasets
MiniImageNet and TieredImageNet. Results are recorded in
Table 1 and Table 2. All compared methods are required to
meta-learn few-shot facilitated embeddings whose qualities
are revealed by the average accuracy on the meta-test set.
Two split strategies, i.e., split across classes and instances,
are considered to verify the importance of the unlabeled

MiniImageNet 1-shot 5-shot

Configuration→ SAC SAI SAC SAI

MatchNet 42.33 44.73 55.93 59.03
ProtoNet 43.18 45.41 54.80 58.41

SemiProto 42.41 44.22 58.70 61.54
SemiProto? 42.84 45.59 59.21 62.31

PRWN 42.72 44.65 58.90 61.34

TACO 43.97 46.56 61.13 62.85

Table 1: Mean SS-FSL accuracy over 10,000 tasks
on MiniImageNet, with only 30% labeled meta-train
set. SAC/SAI denote Split (meta-train set) Across
Classes/Instances.

TieredImageNet 1-shot 5-shot

Configuration→ SAC SAI SAC SAI

MatchNet 49.72 52.12 64.62 67.17
ProtoNet 50.24 52.42 67.74 70.56

SemiProto 49.29 51.31 68.52 70.88
SemiProto? 50.41 51.78 68.92 71.17

PRWN 50.28 51.35 67.96 70.23

TACO 51.82 54.66 68.77 71.83

Table 2: SS-FSL accuracy on the TieredImageNet, with 30%
labeled meta-train set.

meta-train set. Due to the fact there are more diverse ex-
amples (more classes) in the SAI case, all few-shot methods
achieve better classification accuracy in this scenario com-
pared with the SAC case.

MatchNet and ProtoNet are meta-trained in a fully super-
vised manner, where only the labeled meta-train set is used.
Semi-Proto takes advantage of the unlabeled instances to
help estimate the center of each class during meta-training.
Since there are no unlabeled data in the meta-test phase,
Semi-Proto does not improve a lot w.r.t. the vanilla ProtoNet
in the 1-Shot scenario. From the results, the unlabeled in-
stances help a lot when there is more than one instance in
each class, and the distractor detector in Semi-Proto? works
well especially in this case. Table 1 and Table 2 provide
consistent results, where the methods taking advantage of
the unlabeled data in meta-training achieve (at least slightly)
better results than the supervised counterparts. The super-
vised baselines are really strong. The same phenomenon is
also discovered in the classical deep semi-supervised learn-
ing (Oliver et al. 2018). TACO uses the unlabeled data by
matching model predictions. With high-quality embeddings,
TACO gets the best performance in both cases over the two
benchmarks even there are no unlabeled instances during
meta-test. It verifies TACO is able to meta-learn more dis-
criminative meta-knowledge (instance embeddings) with the
unlabeled data in meta-training.
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T=2 SAC SAI λ = 0.1 SAC SAI

λ = 0 42.33 44.73 T = 1 43.58 46.50
λ = 0.1 43.97 46.56 T = 2 43.97 46.56
λ = 1 42.31 44.65 T = 4 43.23 46.47

Table 3: Semi-supervised 1-shot classification accuracy on
MiniImageNet with ConvNet backbone, where only 30% of
meta-train set are labeled. Performance of TACO using dif-
ferent parameters are compared.

(a) Split Across Classes (b) Split Across Instances

Figure 5: The change of 5-Way 1-Shot classification accu-
racy of ProtoNet, Semi-ProtoNet?, and TACO when the ratio
of labeled examples in the meta-train set changes. Both label
splits across classes and instances are investigated.

Ablation Studies
Influence of parameters. There are two main parameters
in TACO, the balance weight λ weighting the distribution
matching term, and the temperature T to soften the predicted
confidence. We show the influences of these two parameters
in the SS-FSL scenario. The same configurations are used
as the previous experiments. From the results in Table 3,
we find the distribution matching term indeed improves the
learned embedding upon the supervised baseline (λ = 0).
For the reason that we try to match the prediction distribu-
tions of two tasks mutually, the temperature used to scale the
prediction outputs does not influence the performance a lot.

Influence of the Label Ratio Change. We also test the
TACO approach when the ratio of labeled meta-train set
varies, ranging from 10%, 30%, 50% to 80%. The remain-
ing part of the labeled set in the meta-train set is used as the
unlabeled set for SS-FSL. Results of 5-way 1-shot classifi-
cation accuracy with both SAC and SAI partitions are shown
in Fig. 5. Two plots reveal the same trends that with more la-
beled instances in the meta-training, all few-shot approaches
achieve better performance. Among all results, TACO gets
the best 5-way 1-shot classification results in all cases, es-
pecially meta-learned in SAI partition. Semi-Proto? cannot
improve the quality of the embedding especially when the
size of the labeled data is very small (e.g., 10%). The results
verify the robustness of TACO.

Supervised Few-Shot Classification
As mentioned before and for fair comparisons, we inves-
tigate the supervised few-shot classification via replacing
Dpool by the union of query sets of two supervised few-

MiniImageNet TieredImageNet

5-Way 1-Shot 5-Shot 1-Shot 5-Shot

TapNet 61.65 76.36 63.08 80.26
MTL 61.20 75.50 65.60 78.60

MetaOpt 62.64 78.63 65.99 81.56
CAN 63.85 79.44 69.89 84.23

TACO (Ours) 66.57 82.10 71.12 85.42

TEAM† 60.07 75.9 - -
TPN† 59.46 75.65 - -
CAN† 67.19 80.64 73.21 84.93

TACO†(Ours) 68.23 83.42 75.53 85.72

Table 4: Supervised few-shot classification accuracy on the
MiniImageNet and TieredImageNet using the ResNet-12
Backbone. “†” denotes the transductive FSL method which
utilizes the unlabeled data from the query set.

shot tasks in Eq. 4. We find that TACO still works due to
its explicit consideration of task relationship. The smooth-
ness of a meta-learned model improves the generalization
ability of the learned embedding when classifying UN-
SEEN few-shot tasks. We compare TACO with TEAM (Qiao
et al. 2019), TPN (Liu et al. 2019), TapNet (Yoon, Seo,
and Moon 2019), MTL (Sun et al. 2019), MetaOpt (Lee
et al. 2019), CAN (Hou et al. 2019) on MiniImageNet and
TieredImageNet datasets with the ResNet backbone, the re-
sults are shown in Table 4. For MiniImageNet, we cite the
published results of compared methods, and we can find that
TACO can get better performances, which can also be veri-
fied from TieredImageNet.

In addition to the fully supervised comparison, we also
apply TACO in a transductive manner (super-scripted by “†”
in Table 4), where the query set acts as the unlabeled pool.
By taking advantage of unlabeled data in each few-shot task
as the Semi-ProtoNet (Ren et al. 2018) manner, TACO pro-
mote the FSL performance especially in the 1-shot scenario.
More details could be found in the supplementary.

Conclusion
Instead of utilizing unlabeled data to help classification in
each few-shot task, we focus on the Semi-Supervised Few-
Shot Learning (SS-FSL) problem from a macro-perspective.
For a pair of meta-training tasks, the proposed TAsk CO-
operation (TACO) approach leverages unsupervised tasks —
couples of a labeled few-shot support set and an unlabeled
query set with distractor classes — to minimize the dis-
agreement of predictions between their few-shot classifiers.
Thus, TACO obtains a smooth meta-model space where sim-
ilar few-shot tasks have close classifiers, which leads to a
more discriminative and generalizable meta-model. Finally,
a supervised classifier could be effectively constructed when
targeting UNSEEN class few-shot tasks. TACO improves FSL
performance on two benchmarks in both semi-supervised
and supervised scenarios. Future work includes extending
the TACO paradigm to a fully unsupervised scenario.
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