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Abstract

Recognizing ongoing events based on acoustic clues has been
a critical yet challenging problem that has attracted signif-
icant research attention in recent years. Joint audio-visual
analysis can improve the event detection accuracy but may
not always be feasible as under many circumstances only au-
dio recordings are available in real-world scenarios. To solve
the challenges, we present a novel visual-assisted teacher-
student mutual learning framework for robust sound event
detection from audio recordings. Our model adopts a multi-
modal teacher network based on both acoustic and visual
clues, and a single-modal student network based on acoustic
clues only. Conventional teacher-student learning performs
unsatisfactorily for knowledge transfer from a multi-modality
network to a single-modality network. We thus present a mu-
tual learning framework by introducing a single-modal trans-
fer loss and a cross-modal transfer loss to collaboratively
learn the audio-visual correlations between the two networks.
Our proposed solution takes the advantages of joint audio-
visual analysis in training while maximizing the feasibility
of the model in use cases. Our extensive experiments on the
DCASE17 and the DCASEI18 sound event detection datasets
show that our proposed method outperforms the state-of-the-
art audio tagging approaches.

Introduction

Audio tagging aims to automatically detect the presence of
multiple events in an audio recording, which is of great
significance in many applications including surveillance,
video indexing, context-aware services, efc. (Tian et al.
2018; Imoto et al. 2019; Shrivastava et al. 2020). A pre-
cisely recognized sound event can also be used as priors
to improve the performance of acoustic scene classifica-
tion (Wu et al. 2019; Xuan et al. 2020). Existing work mostly
leveraged audios as the single modality input, while the at-
tempt of transfer learning in this field is usually limited to
fine-tuning the pre-trained acoustic models on large-scale
YouTube videos (Hershey et al. 2017).
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Figure 1: Illustration of an audio surveillance system in do-
mestic environments.
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Combining complementary information from multiple
modalities is intuitively appealing for improving the per-
formance of machine learning based approaches (Liu et al.
2018; Yu et al. 2019; Gao et al. 2020). However, the multi-
modal features required by such models may not always
be available in real-world scenarios. For example, Figure 1
shows an audio surveillance system deployed in domestic
environments for anomaly detection such as home abuse.
Compared with video cameras, audio sensors (as micro-
phones) have several appealing features including (1) mi-
crophones have a 360° coverage whereas standard cameras
are constrained by a limited field of view; and (2) Micro-
phones can acquire audio events even when there are ob-
stacles present along the path (Crocco et al. 2016). Thus,
it is crucial to develop an effective sound event detection
method based on audio recordings when the visual modality
is not available due to view obstruction or camera destruc-
tion made by people on purpose.

To embrace the advantage and reduce the limitation of
using signals from different modalities, we investigate us-
ing a multi-modal network to improve the performance of a
single-modal network where the latter has no dependence on
the auxiliary modalities during inference. To the best of our
knowledge, there are currently two popular transfer learning
techniques that are widely adopted in previous work in au-
dio analysis: 1) teacher-student network based knowledge
transfer and 2) pre-trained model based knowledge trans-
fer. Conventional teacher-student networks are designed for
knowledge transfer within a single modality from a large



and powerful teacher network to a small student network,
which performs less satisfactorily for cross-modal knowl-
edge transfer (Hinton, Vinyals, and Dean 2015). Pre-trained
model based methods, on the other hand, can learn deep
acoustic features from large-scale YouTube videos during
training (Aytar, Vondrick, and Torralba 2016). However, as
revealed by our experiments, we have found that the pre-
trained acoustic models tend to perform less satisfactorily
on audios compared to the pre-trained visual models on im-
ages. A key reason might be that audio analysis is more chal-
lenging due to the short duration of sound events and the
low dimension of the raw waveforms. To fill the research
gap, we propose a novel multi- to single-modal teacher-
student mutual learning framework. The teacher network
performs more robust inference as it fuses features from dif-
ferent modalities, which carry complementary information
about different aspects of objects, events, and activities. To
conduct effective knowledge transfer, we propose a mutual
learning paradigm and introduce two new loss functions to
model the audio-visual correlations: 1) a single-modal trans-
fer loss that matches the intermediate acoustic representa-
tions, and 2) a cross-modal transfer loss that matches the
high-level representations of pairwise audio and visual data.
Mutual learning is conducted where both the networks are
supervised by the ground-truth labels while matching to the
soft predictions and the intermediate representations gener-
ated by its peer. We jointly update the parameters of the two
networks in each iteration until converge.

Our proposed method is essentially different from the ex-
isting transfer learning techniques. Compared to conven-
tional teacher-student networks, the teacher network in our
method is powerful in the sense of learning from multiple
modalities, rather than having an extremely deep and large
architecture. Existing pre-trained models learn a general
acoustic representation from large-scale YouTube videos,
while our solution learns from relatively small-scale and
task-specific videos, which is shown to be more effective.
And more importantly, it can be integrated with the exist-
ing pre-trained models as well. Here we summarize the key
contributions of this work as follows:

We are the first to enhance a single-modal audio-based
sound event detector by introducing a visual-assisted
multi-modal network that takes video frames as an addi-
tional input.

We present a teacher-student mutual learning framework,
which performs effective cross-modal knowledge transfer
from the multi-modal teacher network to the single-modal
student network.

We show that our proposed framework is parallel to, and
can be easily integrated with existing pre-trained acoustic
models, which is a popular transfer learning approach in
multimedia analysis.

We have performed extensive experiments on the
DCASE17 and the DCASEI8 sound event detection
benchmark datasets. Based on audio only, our proposed
method outperforms the state-of-the-art audio tagging ap-
proaches by a significant margin.
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Under many circumstances, the acoustic input and the vi-
sual input can be temporally inconsistent. For example, we
may hear a dog’s barking without actually seeing a dog in
the video. We address this problem by modeling the single-
and cross-modal transfer losses between the global contexts
of the paired modalities. Moreover, the mutual learning we
proposed enables the multi-modal teacher network to learn
from the single-modal student network as well, which helps
reduce overfitting on the visual input to the sound event oc-
currence, leading to improved audio tagging performance.

Related Work

The release of the AudioSet (Hershey et al. 2017), which is
a large-scale audio dataset annotated with 527 sound event
labels, have motivated the development of deep learning ap-
proaches in the field of audio analysis (Fayek and Kumar
2020; Wang, Tran, and Feiszli 2020). State-of-the-art classi-
fication results have been reported in challenging problems
such as acoustic scene classification and sound event detec-
tion (Chou, Jang, and Yang 2018; Yin, Shah, and Zimmer-
mann 2018). For example, Kong et al. presented a deep CNN
with eight layers to detect and localize sound events in au-
dios (Kong et al. 2018). Chou et al. proposed an attention-
based network architecture that was trained by considering
both clip-level and segment-level supervisions (Chou, Jang,
and Yang 2018). Yin et al. proposed to use a 3D CNN to cap-
ture the spatial-temporal dynamic patterns for acoustic scene
classification (Yin, Shah, and Zimmermann 2018). Chen et
al. presented a class-aware self-attention model, which aims
at generating discriminative clip-level feature representa-
tions for sound event detection (Chen et al. 2018). However,
these methods extract features from audio only without ex-
ploiting the use of other supplementary data sources.

Transfer learning can be one effective technique that im-
proves the classification performance of one task by trans-
ferring knowledge from other data sources (Kumar et al.
2019; Perez et al. 2020). Kumar et al. presented a CNN-
based framework for sound event detection where adapta-
tion layers were introduced to adapt pre-trained models for
new tasks (Kumar, Khadkevich, and Fiigen 2017). The rep-
resentations extracted from the intermediate layers of pre-
trained models, such as the SoundNet (Aytar, Vondrick, and
Torralba 2016), can be directly used as an additional feature
to improve the classification accuracy. Techniques based on
teacher-student learning (Li et al. 2017; Tang et al. 2019; Ge
et al. 2019) and mutual deep learning (Zhang et al. 2018)
have also been proposed recently to transfer knowledge be-
tween models. However, the existing efforts have only been
made on models with the same single-modal input. A recent
trend in multimedia is the joint audio-visual analysis as the
two components are naturally correlated in a video (Parekh
et al. 2018; Zhou et al. 2018). However, one drawback of
such methods is that both the audio and the visual compo-
nents are required during the inference phase.

Visual-Assisted Audio Tagging

Problem. Let X denote a set of video samples, and x
(a, v) represent the audio and visual components of a video
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Figure 2: Overview of the proposed teacher-student mutual learning networks.

x € X. Lety € {0,1}¢ denote a binary vector of clip-level
labels, where C' is the number of sound events to be detected.
Our goal is to mutually train a teacher network based on
both the visual and the audio inputs D = {(a, v,y)|x € X}
and an enhanced student network based on only the audio
input D, = {(a,y)|x € X} supervised by clip-level labels
y. Next, we introduce the technical details of our proposed
teacher-student networks.

Challenges

Conventional teacher-student learning was proposed for
model compression within a single modality, which aimed
at training a less expensive student model supervised by
an expensive teacher model while maintaining the predic-
tion accuracy (Hinton, Vinyals, and Dean 2015; You et al.
2017). Recently, a few efforts have been made on single-
modality domain adaptation (Li et al. 2017; Meng et al.
2018; Fukuda et al. 2017) and feature enhancement (Watan-
abe et al. 2017) via teacher-student learning. However, both
the teacher and the student networks are limited to acoustic
models in the aforementioned methods. We thus present the
first audio-based sound event detector enhanced by transfer
learning from a visual-assisted multi-modal teacher network
that takes video frames as an additional input.

Network Architecture Design

The system overview of our proposed multi- to single-modal
teacher-student network is illustrated in Figure 2. We in-
troduce two new losses to model the audio-visual correla-
tions and perform mutual learning to achieve effective cross-
modal knowledge transfer.

Multi-Modal Teacher Network The teacher network
takes both sound tracks and video frames as the input. For
audio processing we extract the log-mel spectrograms with
64 bin mel-scale, which are fed to an audio processing sub-
network that ranked the third place in the DCASE challenge
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2018 (Kong et al. 2018). As shown in Figure 2, the net-
work consists of eight-layer CNNs with the filter size set
to 3 x 3 and the number of filters set to 64, 64, 128, 128,
256, 256, 512, 512, respectively. Batch normalization (BN)
and rectified linear unit (ReLU) are employed after each
convolutional layer. Additionally, a max pooling of 2 x 2
is applied after layers 2, 4, 6, and 8. To extract visual fea-
tures, we sample frames at 1 Hz and adopt the pre-trained
VGG16 model (Simonyan and Zisserman 2014) to extract a
deep feature vector. This deep feature vector is next passed
to a fully-connected layer with 128 hidden units, followed by
batch normalization and ReLLU activation to generate frame-
level visual representations. Both the acoustic and the vi-
sual frame-level representations are aggregated to clip-level
representations based on average pooling, denoted as hf
and hy, which are next fused by concatenation, denoted as
hy = concat(hi, hy). The feature vector after fusion, h,
is next fed to a fully-connected layer and Sigmoid activation
to output the predictions, termed as p¢, on the sound event
classes.

Single Modal Student Network The student network
takes the sound tracks as the only input. Basically, we adopt
the same audio processing sub-network as the one used in
the teacher network (Kong et al. 2018), but with the follow-
ing modifications to support effective cross-modal knowl-
edge transfer. It has been shown in previous literatures that
using the intermediate representations learnt by the teacher
network to supervise the training of the student network can
achieve potential performance gain (Romero et al. 2014).
Let h2 denote the acoustic intermediate representations gen-
erated by the student network. We model the single-modal
transfer loss within the acoustic modality as,

N
Lingie = 3, (i) — h3(ay)]?

i=1
where N is the number of samples in the training dataset. As
this single-modal transfer loss can only propagate knowl-
edge in the acoustic modality from the teacher network to

ey



the student network, we need to model the cross-modal cor-
relations between the audio and video frames to further
achieve cross-modal knowledge transfer. The sound tracks
and video frames are naturally correlated in each video.
Though the segment-level acoustic and visual features can
be unsynchronized due to temporal inconsistency, the global
contexts of different modalities are mostly correlated as
they tend to share high-level concepts such as the clip-level
events (Xuan et al. 2020). Here we use the average pooling
operation to summarize the representations of the input se-
quence to obtain the global context of the acoustic modality
hZ in the student network and the global context of the vi-
sual modality hy in the teacher network. The main idea of
our cross-modal knowledge transfer is to let the global con-
text representations of the paired modalities similar to each
other. Thus we model the cross-modal transfer loss as,

N
Loross = Y |0y (vi) — $(Weh2(a:) +bo)[I* (2)
=1

where W, and b, are the trainable parameters that match
the size of acoustic global context in the student network to
the size of the visual global context in the teacher network,
¢ is an activation function where ReLU is adopted in our
framework. Similar to the teacher network, we fuse h2(a;)
and ¢(Wch?(a;)+b.) and pass it to a fully-connected layer
with Sigmoid activation to output the predictions, termed as
Ps, on the sound event classes.

Multi- to Single-Modal Mutual Learning To achieve
effective knowledge transfer from multi-modal to single-
modal network, we further present a teacher-student mutual
learning framework where we formulate audio tagging as a
multi-class classification problem as multiple sound events
may occur in a single audio clip. The supervised classifi-
cation loss is computed using the binary cross-entropy er-
ror between the student predictions, teacher predictions, and
ground-truth labels as,

student

L¢iass = BCE(y,ps) + As BCE(pt, Ps)
N K

=375 (wF 10g(0E (@) + (1 — yF) log(1 — p¥ (a:)))

k

(3)

.
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-
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-

Ltc?ﬁ:fjéw = BCE(y,pt) + A\t BCE(ps, Pt)

(; log(pr (1) + (1 = y;) log(1 — pj (1))

M=
M=
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H
>
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=M 3 Do (P (@i)log(py (x:0)) + (1 — p (a:)) log(1 — b} (x:))
i=1 k=1
where Licher and Lgitdent are the supervised classifica-

tion losses for the teacher network and the student network,
respectively. y¥ represents the ground-truth label of the i-th
sample for class k. Recall that x = (a,v) and a denote the
multi-modal and single-modal inputs to the teacher and the
student networks, thus p¥(x;) and p*(a;) represent the pre-
dicted scores of the i-th sample for class k generated by the
teacher network and the student network, respectively.
Finally, by fusing the supervised classification loss with
our proposed single-modal transfer loss and cross-modal
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Figure 3: Illustration of a generalized teacher network that
fuses multiple acoustic features extracted from the input.

transfer loss, we obtain the overall losses for the two net-
works as

student

Lstudent = LéC’luasesn + 'ysLSingle + WSLCross (5)
teacher

Licacher = LCe'l(tz(sL:? + ’VtLSingle + wiLcross (6)

where ), v, and w are balancing factors that control the
weights of different losses. In our framework, not only the
student network learns from its teacher, the teacher network
also adapts its “teaching strategy” to its student. It is worth
mentioning that such a collaborative training strategy can
help align the global contexts in different modalities much
better in the feature space compared to the conventional one-
way training. The two models are optimized jointly in every
mini-batch. At each iteration, we compute the intermediate
representations based on the current models, and update both
networks’ parameters according to the intermediate repre-
sentations of its peer, the soft outputs of its peer, and the
ground-truth labels of training samples. We collaboratively
train the two models until converge.

Model Generalization and Multi-Feature Fusion

We have introduced how to train a student network based
on a single acoustic feature, i.e., the log-mel spectro-
grams. Here we generalize our model by fusing multiple
acoustic features in both the student and the teacher net-
works to further boost the system’s performance. Figure 3
shows a generalized architecture of the teacher network.
We process each of the input acoustic features such as log-
mel spectrograms and pre-trained deep acoustic representa-
tions (Hershey et al. 2017) by separate feature-processing
sub-networks to generate the global context from each
acoustic feature. The global contexts are next fused by con-
catenation to form the acoustic intermediate representation
ht. The same audio sub-network can be adopted in the cor-
responding student model to generate h3. Thus, we can see
that the multi-feature fusion can be easily integrated in our
proposed framework to further improve the audio tagging
results.

Evaluation

We first introduce the experimental setup, and then proceed
with the evaluations by performing a step-by-step model jus-
tification and a comparison with the state-of-the-art audio
tagging approaches.



Feature [[ Source [ mAP [ mAUC
Log-mel spectrogram Audio | 0.5918 | 0.9162
VGG - 1000 Visual | 0.4512 | 0.8525
VGG - 4096 Visual | 0.5225 | 0.8752
Log-mel spec. + VGG-1000 || Fusion | 0.6763 | 0.9396
Log-mel spec. + VGG-4096 || Fusion | 0.6824 | 0.9375
(a) DCASE17
Feature [[ Source [ mAP [ mAUC
Log-mel spectrogram Audio | 0.8637 | 0.9512
VGG - 1000 Visual | 0.6930 | 0.8991
VGG - 4096 Visual | 0.7750 | 0.9298
Log-mel spec. + VGG-1000 || Fusion | 0.8818 | 0.9617
Log-mel spec. + VGG-4096 || Fusion | 0.9222 | 0.9773
(b) DCASELS8

Table 1: Comparison of audio tagging based on audio only,
visual only, and their fusion.

Experimental Setup

We evaluated our proposed method on two public audio
datasets, namely the DCASE17 sound event detection for
smart cars and the DCASE1S8 sound event detection in do-
mestic environments. Both datasets are subsets of the Au-
dioSet (Hershey et al. 2017). The DCASE17 dataset con-
tains more than 50K audio clips annotated with 17 sound
events of smart cars, while the DCASE18 dataset focuses
on 10 classes of sound events in domestic environments. All
the samples are 10-second sound clips drawn from YouTube
videos. Following previous work, we use mean average pre-
cision (mAP), and mean area under ROC curve (mAUC) as
the evaluation metrics (Yin et al. 2019).

The balancing factors A, 7, and w in the loss functions
are empirically set to 1 throughout the experiments. For op-
timization, we train the neural networks using the Adam op-
timizer with a batch size of 32. The learning rate is set to
0.001. To reduce the impact of randomness in neural net-
works. We train each of the models three times with random
seeds and take their average as the final prediction scores as
the final results (Krogh and Vedelsby 1994).

Model Justification

We perform a step-by-step model justification to demon-
strate our choice of the input visual features and the ef-
fectiveness of our proposed multi- to single-modal mutual
learning solution, both of which are the key components in
our audio tagging framework.

Evaluation on features In terms of the visual modality,
we investigate two types of deep features generated by the
pre-trained VGG16 model on the ImageNet in Table 1 (Si-
monyan and Zisserman 2014). VGG-1000 represents the
1000-dimensional feature vector generated by the output
layer, while VGG-4096 represents the 4096-dimensional
feature vector generated by the last layer before the output
layer. Though the use of VGG-1000 has been investigated
by Aytar et al., which obtained promising results on acoustic
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.. mAP
Training Strategy mAP | mAUC Dec.
Proposed mutual learning 0.6421 | 0.9292 —

- w/o mutual learning 0.6359 | 0.9239 | -1.0%
- w/o single-modal tran. loss || 0.6317 | 0.9234 | -1.6%
- w/o cross-modal tran. loss 0.6353 | 09280 | -1.1%
(a) DCASE17
Training Strate mAP mAUC mAP
& &y Dec.
Proposed mutual learning 0.8855 | 0.9645 -
- w/o mutual learning 0.8760 | 0.9599 | -1.1%
- w/o single-modal tran. loss || 0.8702 | 0.9625 | -1.7%
- w/o cross-modal tran. loss 0.8775 | 09618 | -0.9%
(b) DCASE18

Table 2: Mean average precision comparison of the student
network trained using different strategies.

scene classification, VGG-4096 turned out to be more effec-
tive for audio tagging. This is based on the observation that
VGG-4096 outperformed VGG-1000 on both DCASE17
and DCASEI18 datasets by 15.8% and 11.8% in terms of
the mAP, respectively. By fusing the log-mel spectrograms
and the VGG-4096 deep feature, the mAP and the mAUC
have been improved by 15.3% and 2.3% on the DCASE17
dataset and by 6.8% and 2.7% on the DCASE18 dataset, re-
spectively, compared with the audio baseline method using
the log-mel spectrograms only.

Evaluation on multi- to single-modal mutual learning
Our proposed visual-assisted audio tagging framework con-
sists of three main components to perform effective knowl-
edge transfer from multi-modal to single-modal networks.
To demonstrate the effectiveness of our proposed method
in each step, we train the networks by removing one of the
components at each time (i.e., mutual learning, single-modal
transfer loss, and cross-modal transfer loss) and report the
results in Table 2. As can be seen, without mutual learn-
ing, the mAP obtained by the student network decreased by
1.0% and 1.1% respectively on the two datasets. This indi-
cates that a student is able to learn more effectively from
a teacher, which adapts its supervision according to the stu-
dent at the same time. The single-modal transfer loss and the
cross-modal transfer loss address the temporal inconsistency
between audio and video by aligning the global contexts of
different modalities in the high-level feature space. Without
them in the overall losses, the mAP obtained by the student
network can decrease as much as 1.7%, thus verifying the
effectiveness of our proposed approach.

Comparison with the State-of-the-art

We compare our method to both the state-of-the-art trans-
fer learning methods and the state-of-the-art audio tagging
methods to demonstrate the effectiveness of our proposed
approach. The Sup. Data column in Tables 3, 4, and 5 indi-
cates if a supplementary large-scale YouTube video dataset
is required in addition to the task-specific training dataset. It



DCASE17 DCASEI18
Method Sup. Data mAP | mAUC mAP | mAUC
Standard Back-propagation X 0.5918 0.9162 0.8637 0.9512
Knowledge Distillation (Hinton, Vinyals, and Dean 2015) X 0.6138 0.9203 0.8642 0.9563
Enhanced Feature (Watanabe et al. 2017) X 0.5961 0.9144 0.8619 0.9549
FitNets (Romero et al. 2014) X 0.6250 0.9184 0.8639 0.9583
Mutual Learning (Zhang et al. 2018) X 0.6229 0.9217 0.8633 0.9566
Proposed - Student X 0.6421 0.9292 0.8855 0.9645

Table 3: Comparison to the state-of-the-art teacher-student network based knowledge transfer.

Feature Sup. Data DCASE17 DCASE18
mAP [ mAUC mAP [ mAUC
"Log-mel spectrogram (Kong et al. 2018) X 0.5918 0.9162 0.8637 0.9512
ZSoundNet (Aytar, Vondrick, and Torralba 2016) v 0.4256 0.8581 0.7426 0.9168
SVGGish (Hershey et al. 2017) v 0.5786 0.9179 0.8408 0.9582
*Log-mel spec. + SoundNet v 0.6149 0.9216 0.8633 0.9553
>Log-mel spec. + VGGish v 0.6480 0.9278 0.8824 0.9678
Proposed - Student X 0.6421 0.9292 0.8855 0.9645

Table 4: Comparison to the state-of-the-art pre-trained model based deep acoustic representations learnt from videos.

DCASET7 DCASETS
Proposed - Student Sup- Data || b1 HAUC [ mAP Gain || mAP | mAUC | mAP Gain
"Log-mel spectrogram + (VGG-4096) X 0.6421 | 0.9292 8.5% 0.8855 | 0.9645 2.5%
ZSoundNet + (VGG-4096) % 04419 | 08709 | 38% || 0.7676 | 0.9295 | 3.4%
*VGGish + (VGG-4096) % 0.5965 | 0.9248 | 3.1% || 0.8580 | 0.9635 | 2.0%
*Log-mel spec. + SoundNet + (VGG-4096) % 0.6366 | 0.9269 | 3.5% || 0.8845 | 0.9626 | 2.5%
SLog-mel spec. + VGGish + (VGG-4096) % 0.6690 | 0.9353 | 32% || 0.9059 | 0.9704 | 2.7%

Table 5: Integration of the deep acoustic representations in our cross-modal teacher-student mutual learning network.

is also worth mentioning that we have applied network en-
sembles (Krogh and Vedelsby 1994) to reduce the random-
ness in all the methods for a fair comparison. We train each
of the models three times with random seeds and take their
average as the final predictions. Thus, the result difference
shown in the tables can be considered as significant in our
experiments.

Comparison to teacher-student network based transfer
learning Table 3 shows the comparison of our proposed
method to the state-of-the-art teacher-student network based
transfer learning techniques. Watanabe et al. proposed to
train a teacher network with enhanced features and use the
soft targets of the teacher network to train the student net-
work. Hinton er al. proposed to combine the losses to both
the ground-truth labels and the soft labels of the teacher net-
work to train the student network. In our experiments, we
set the two losses with equal weights. Additionally, as the
audio tagging is a multi-label classification, we use the bi-
nary cross entropy instead of the KL divergence as the loss
function between the student and the teacher predictions.
FitNets and Mutual Learning improved the knowledge dis-
tillation proposed by Hinton et al. in different ways. FitNets
proposed to use the intermediate representations learned by
the teacher as hints to improve the training process and fi-
nal performance of the student. In our experiments, we used
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the acoustic intermediate representation in the student net-
work as the guided layer and the concatenation of the acous-
tic and the visual intermediate representations in the teacher
network as the hint layer (see Figure 2). A fully-connected
regressor was adopted to model the loss between the hint
and the guided layers. The Mutual Learning method, on
the other hand, proposed to train the teacher and the stu-
dent networks collaboratively instead of a one-way knowl-
edge transfer (Zhang et al. 2018). However, as all the pre-
vious teacher-student learning techniques are designed for
knowledge transfer within a single modality, they performed
less satisfactorily for cross-modal knowledge transfer. Our
proposed method outperformed the previous teacher-student
networks and obtained the best mAP of 0.6421 and 0.8855
on the DCASE17 and DCASE18 datasets, respectively.

Comparison to pre-trained model based transfer learn-
ing Table 4 shows the comparison of our proposed method
to the state-of-the-art pre-trained model based transfer learn-
ing approaches. SoundNet (Aytar, Vondrick, and Torralba
2016) and VGGish (Hershey et al. 2017) are two of the most
advanced models that generate deep acoustic features learnt
from large-scale YouTube videos. The SoundNet represen-
tation was trained on two million unlabeled videos super-
vised by the semantics extracted from the vision. While the
VGGish representation was trained on a preliminary version
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Figure 4: Average precision comparison on the 17 sound event classes of DCASE17 obtained by the conventional audio network,
and our proposed student audio network trained with or without the pre-trained VGGish representation.

Methods [[ Precision | Recall [ FI
(Lee, Park, and Nam 2017) 37.6 45.7 41.2
(Adavanne and Virtanen 2017) 47.5 39.6 43.2
(Salamon, McFee, and Li 2017) 44.7 47.0 45.9
(Vu, Dang, and Wang 2017) 54.2 49.5 51.8
(Xu et al. 2018) 53.8 60.1 56.7
(Lee et al. 2017) 70.3 479 | 57.0
(Yin et al. 2019) 56.0 60.6 | 582
Proposed - Student 57.7 64.2 | 60.8

Table 6: Audio tagging performance comparison (in %) on
the DCASE17 test dataset.

of YouTube-8M supervised by machine-generated labels de-
rived from a combination of metadata (title, description,
comments, efc.), context, and vision. The VGGish represen-
tation outperformed the SoundNet representation as the for-
mer was trained based on more accurate and diverse labels.
However, the performance gain tends to be less satisfac-
tory when considering the large number of supplementary
videos required for training. Comparatively, our proposed
student network obtained a competitive mAP of 0.6421 and
0.8855 on the two datasets based on log-mel spectrograms
only without utilizing any supplementary YouTube datasets
during training. Moreover, as introduced in the model gen-
eralization section, our method is parallel to the pre-trained
model based transfer learning where the learnt deep acoustic
representations can be easily integrated into our framework.
Next, we evaluate the effectiveness of the generalization of
our proposed model.

Table 5 reports the results obtained by the student net-
work after integrating the deep acoustic representations in
our proposed framework. The mAP Gain is computed w.r:.
the corresponding result in Table 4 marked with the same
superscript. Please note that the (VGG-4096) visual feature
was only used during training. The paired methods in Ta-
bles 4 and 5 used the same acoustic features during infer-
ence. As can be seen, our proposed method consistently im-
proved the mAP by 2.0% ~ 8.5% when performing sound
event detection based on the same acoustic features, com-
pared to the previous methods. This indicates the effective-
ness of our proposed multi- to single-modal teacher-student
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mutual learning and its generalization.

Comparison to the top audio tagging systems in the
DCASE challenge Finally, we compare our best model
to the state-of-the-art, top-ranked systems in the DCASE
challenge. We use a global confidence threshold of 0.25 for
all the 17 sound events and report the results in Table 6.
Lee et al. proposed to use an ensemble of convolutional
neural networks to detect the weakly labeled audio events.
Xu et al. presented a gated convolutional neural network
with attention-based temporal aggregation method for audio
event detection. Yin et al. further improved Xu’s gated CNN
by applying multi-level feature fusion. Our method obtained
the best recall and F1 score on the DCASE17 test set. We
were able to improve the F1 score by 4.5%, compared to the
F1 score of 0.582 obtained by the second best method.
Figure 4 shows the comparison of the per-class average
precision. Audio Network refers to the Log-mel spectro-
gram in Table 4. Student Audio Network and Student Au-
dio+VGGish Network refer to the Log-mel spectrogram and
the Log-mel spec.+VGGish in Table 5, which are our pro-
posed student networks. Generally speaking, our proposed
solution performs consistently well among different sound
events. Student Audio Network and Student Audio+VGGish
Network outperformed the conventional Audio Network by
8.5% and 13.0% in terms of mAP, respectively. The im-
provement is significant as all the three networks perform
audio-based sound event detection without any additional
input from other modalities during the inference phase.

Conclusions

We investigate the use of video frames only in the training
phase to improve the accuracy of audio tagging. We propose
a novel teacher-student mutual learning framework to effec-
tively transfer the knowledge of a multi-modal teacher net-
work to a single-modal student network. Experiments on the
DCASE17 and the DCASE18 sound event detection datasets
showed that our proposed method outperformed the conven-
tional multi-label learning by 8.5% and 2.5% based on log-
mel spectrograms and by 13.0% and 4.9% based on a fusion
of log-mel spectrograms and Google’s VGGish acoustic rep-
resentations, in terms of the mean average precision.
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