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Abstract

Unsupervised domain adaption has recently been used to re-
duce the domain shift, which would ultimately improve the
performance of semantic segmentation on unlabeled real-
world data. In this paper, we follow the trend to propose
a novel method to reduce the domain shift using strategies
of discriminator attention and self-training. The discrimina-
tor attention strategy contains a two-stage adversarial learn-
ing process, which explicitly distinguishes the well-aligned
(domain-invariant) and poorly-aligned (domain-specific) fea-
tures, and then guides the model to focus on the latter.
The self-training strategy adaptively improves the decision
boundary of the model for target domain, which implicitly fa-
cilitates the extraction of domain-invariant features. By com-
bining the two strategies, we find a more effective way to re-
duce the domain shift. Extensive experiments demonstrate the
effectiveness of our proposed method on numerous bench-
mark datasets.

Introduction
Semantic segmentation is a classic computer vision task that
aims to predict a semantic label for each pixel in an image.
Despite the notable progress in this field driven by the rapid
development of deep learning (Chen et al. 2018; Long, Shel-
hamer, and Darrell 2015; Ronneberger, Fischer, and Brox
2015; Wei et al. 2018), it remains challenging to apply seg-
mentation model trained on the labeled source data to the
unlabeled target/real-world data, which vary substantially
in their illumination, style, and the context in different do-
mains. One possible solution draws on supervised learning
to retrain or fine-tune the pre-trained model, which however
requires expensive and time-consuming pixel-level manual
annotations. An alternative way is to use unsupervised do-
main adaptation (UDA) to reduce the domain shift, so as to
train a model that is able to segment the target images with-
out labels.

The key component of semantic segmentation using UDA
methods is to align the features from different domains
(Chen et al. 2019; Hoffman et al. 2018; Tsai et al. 2018;
Vu et al. 2019). Although the main idea is straightforward
— matching the overall feature-level distributions of the
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source and the target domains, the difficulty of implemen-
tation varies with adapting features for different regions in
an image. For example, the adaption is easier in the case of
sky than in the cases of buildings, traffic lights, and side-
walks, because the regions of the sky are similar regardless
of the images while the latter group is characterized with dif-
ferent architectural styles or traffic rules. (Luo et al. 2019b)
believes that aligning the source domain and the target do-
main globally leads to negative transfer of information and
undermines the performance of the model in the originally
well-aligned regions. Therefore, they propose to generate a
local alignment score map and allow different weights for
regions with different local alignment scores.

Following the spirit of (Luo et al. 2019b), in this work, we
propose a strategy called discriminator attention (DA), to di-
rectly evaluate whether the local features are hard-adapted.
The proposed DA strategy includes two stages of adversarial
learning — discovering and correcting. In the discovering
phase, a discriminator network (also known as the discov-
erer, D) aligns the intermediate features of the segmenta-
tion network and uses the confidence of local alignment to
form an attention map that reweights the feature maps for la-
bel prediction. In the correcting stage, another discriminator
network (called corrector, C) further aligns the output of the
segmentation network based on the previous attention map.
As illustrated in Figure 1 (b), the model pays more attention
to hard-adapted regions for domain alignment.

Considering that the distribution of real-world data (tar-
get domain) is over-complex, we further introduce a self-
training strategy to guarantee that the decision boundary of
the model is suitable for the target domain. As shown in Fig-
ure 1 (c), the decision boundary of the segmentation network
after UDA still tends to favor the distribution of source do-
main data, but the tendency is corrected after we apply the
self-training strategy. Specifically, we adaptively improve
the model’s decision boundary by training the segmentation
network with pseudo labels generated from the previous pre-
dictions.

In summary, we propose an effective and intuitive unsu-
pervised domain adaptation method for semantic segmenta-
tion, combining the strategies of discriminator attention and
self-training (DAST). The main contributions can be sum-
marized as follows:

• We propose a novel two-stage adversarial learning (DA),
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Figure 1: Illustration of the traditional adversarial learning methods and ours. (a) Traditional adversarial learning methods
equally align the distribution among the entire images. (b) Our proposed discriminator attention can focus on the hard-adapted
regions and achieve a better alignment. (c) We introduce a self-training module to learn an adaptive classifier boundary for the
target domain, which can further improve the performance. (Best view in color)

which utilizes attention mechanism to attach higher
weights to hard-adapted regions and simultaneously align
the feature space and the output space.

• Our method is complementary to existing domain adapta-
tion techniques, such as self-training.

• Our method achieves superior performance on the adap-
tation from SYNTHIA (Ros et al. 2016)/GTA5 (Richter
et al. 2016) dataset to real-world dataset, Cityscapes
(Cordts et al. 2016).

Related Works
In this section, we briefly summarize the methods related to
the key ideas of the proposed DAST, including adversarial
learning, discriminator confidence and self-training.

Adversarial Learning. Being the most explored ap-
proach in the field of unsupervised domain adaptation for
semantic segmentation, adversarial learning mostly aligns
information either on feature level or pixel level to reduce
the domain shift1.

For the feature-level alignment, Hoffman et al. (Hoffman
et al. 2016) first apply adversarial learning to align the fea-
ture distributions between different domains to train a se-
mantic segmentation model for the real-world images. Later
on, Tsai et al. (Tsai et al. 2018) find that to align the out-
put space distribution is more effective than to align the dis-
tribution of the intermediate feature space. Luo et al. (Luo
et al. 2019b) utilize co-training to keep semantic consistency
from multiple views of the features, which encourages the
category-level alignment of different domains. Vu et al. (Vu
et al. 2019) use adversarial learning to match the entropy of
output predictions in source and target domains, which pro-
vides an alternative way of output space alignment. Tsai et

1We take output-level alignment as a special case of feature-
level alignment

al. (Tsai et al. 2019) construct different modes of images
through patch-level clustering, and obtain a discriminator
that pays more attention to high-level patterns, so as to opti-
mize the domain alignment.

The pixel-level alignment is also known as image-to-
image translation or style transfer. Benefiting from genera-
tive adversarial network (GAN), pixel-level alignment trans-
lates source images to the target domain, or vice versa, to
facilitate learning a segmentation model across different do-
mains, such as classic CycleGAN (Zhu et al. 2017). Re-
cently, researchers have added the flavor of feature-level
alignment to the pixel-level alignment, in order to achieve
more accurate segmentation. Hoffman et al. (Hoffman et al.
2018) and Chen et al. (Chen et al. 2019) align the interme-
diate features to optimize image-to-image translation. Li et
al. (Li, Yuan, and Vasconcelos 2019) construct a two-way
learning process, which iteratively improves the segmenta-
tion and image-translation. Chang et al. (Chang et al. 2019)
use pixel-level adversarial learning to disentangle the image
features and train the segmentation model with content-only
information. Choi et al. (Choi, Kim, and Kim 2019) adopt
AdaIN (Huang and Belongie 2017) to embed the image in-
formation of unlabeled target images into the training pro-
cess, making the model suitable to segment the target im-
ages.

Discriminator Confidence. Discriminator confidence is
the output of the discriminator network in a fully convolu-
tional manner. Hung et al. (Hung et al. 2019) use discrimi-
nator confidence to select the regions with small differences
between the segmentation prediction and the label to form
a pseudo label for the model training. (Kurmi, Kumar, and
Namboodiri 2019; Wang et al. 2019) explore it in the inter-
mediate layer as an attention map for domain adaptation in
image classification. Inspired by these works, we implement
the attention map in the proposed DA module using the dis-
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criminator confidence scores from the intermediate features.
Self-Training. Self-training or self-distillation has shown

impressive results in recent years (Dong et al. 2019; Zhai
et al. 2019; Zhang et al. 2019). In the field of UDA for
semantic segmentation, CNN based self-training methods
mainly fine-tune a trained segmentation model using the tar-
get images and the pseudo labels, which implicitly forces
the model to extract the domain-invariant features. Zou et
al. (Zou et al. 2018) perform self-training by adjusting class
weights to generate more accurate pseudo labels to train
the segmentation model. French et al. (French, Mackiewicz,
and Fisher 2018) adopt the mean-teacher framework, which
introduces a consistency regularization to realize domain
adaptation between the mean-teacher (target domain) and
the student (source domain). In the proposed method, we
find that self-training could be combined with the DA mod-
ule to further improve the decision boundary of the segmen-
tation model for unlabeled target images.

Method
In this section, we first provide an overview of our method.
Then, we describe the overall objective function. Finally, we
discuss the proposed discriminator attention in more detail.

Method Overview
In this work, we focus on the problem of unsupervised do-
main adaptation for semantic segmentation, where we have
the access to the labeled source dataset {xs,ys} and unla-
beled target dataset {xt}. As shown in Figure 2, the over-
all network architecture is mainly composed of a segmen-
tation network (segmentor S), and two discriminator net-
works (discoverer D and corrector C). The network back-
bone of the segmentor S can be any fully-convolutional net-
work for semantic segmentation. For better description and
discussion, S is divided into a feature extractor E and a la-
bel predictor P , where S = E ◦ P . Discriminators (D and
C) are CNN-based classifiers with a fully convolutional out-
put, which could provide confidence scores for all output
locations to evaluate the local alignment of the different do-
mains.

In the source flow, E extracts a feature map fs from a
source domain image xs, where fs = E(xs). The predictor
P then takes fs as an input to form a pixel-level semantic
segmentation ps, where ps = P (fs), which will be used to
calculate a segmentation loss Lseg under the supervision of
the source label ys. On the other hand, fs and ps will be
input into the discoverer D and the corrector C for feature-
level and output-level adversarial learning, respectively.

In the target flow, for a given image xt, E outputs a fea-
ture map ft which is first input to the discoverer D. By opti-
mizing the adversarial loss LD

adv , D aligns the feature dis-
tribution of ft and fs and provides a confidence score of
alignment for each location in ft to form an attention map α,
where α = |(D(ft)|. α reweights ft into a new feature map
f̂t = α(ft), which is input to P to yield the pixel-level pre-
diction pt with more focus on poorly-aligned regions, where
pt = P (f̂t). The corrector C is then introduced to perform

an adversarial learning between pt and ps. To further en-
hance the adaptation of poorly-aligned regions, we reweight
the adversarial loss LC

adv with the attention map α.
In addition, we apply a self-training strategy to improve

the decision boundary of the segmentation model. Similar
to (Li, Yuan, and Vasconcelos 2019), we introduce a super
parameter q of the pixel portion. We generate the pseudo la-
bel p̂t using the top q of pixels in pt with higher probability
values and mask out other pixels which will not participate
in gradient back-propagation.

The training process of the proposed method is summa-
rized in Algorithm 1. In practice, we set the initial q to 50%
and the maximum iteration K of self-training to 3 (the per-
formance converges).

Algorithm 1 Training process of proposed method

Input:
The source domain sample, (xs, ys)
The target domain sample, xt
The initial network, S(segmenter), D(discoverer),
C(corrector)

Output:
The trained network, S′K+1, D

′
K+1, C

′
K+1

1: train S′0 ← S,D′0 ← D,C ′0 ← C with loss Lseg and
Ladv

2: for k = 0 to K do
3: input xt into S′k and generate pseudo label ptwith a

fixed portion qk
4: train S′k+1 ← S′k, D

′
k+1 ← D′k, C

′
k+1 ← C ′k

with loss Lseg , Ladv and Lp seg

5: end for
6: return S′K+1, D

′
K+1, C

′
K+1

Objective Functions
The overall loss function mainly consists of four loss terms:

Loverall(E,P,D,C) = Lseg(E,P ) + λdLD
adv(E,D)

+λcLC
adv(E,P,C) + µLp seg(E,P ).

The first term Lseg(E,P ) guides the segmenter S (S = P ◦
E) to perform a dense prediction of the segmentation in the
source domain,

min
E,P
Lseg(E,P )

= min
E,P

Exs,ys∼p(Xs,Ys)(`ce(P ◦ E(xs),ys))

where `ce(·, ·) indicates the multi-class cross entropy loss
used in this work.

The second and third terms are the adversarial losses of
the discoverer D and the corrector C, respectively. Follow-
ing LSGAN (Mao et al. 2017), we use the least square loss
to replace the sigmoid cross entropy in the vanilla GAN, be-
cause the sigmoid-based loss usually stops updating when
the discriminator reaches the optimum (Hong et al. 2019).
LD
adv(E,D) and LC

adv(E,P,C) correspond to the two-stage
adversarial learning in our discriminator attention module.
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Figure 2: Overview of our proposed method. The randomly selected images from the source and target domain are used to train
a cross-domain segmentation network by adversarial training. Two fully convolutional discriminator network named discover
and corrector are used to obtain a better alignment. The discoverer could align the intermediate features of the segmentation
network and form an attention map using the confidence of local alignment. The corrector can focus on the hard-adapted regions
and optimize the overall adversarial learning based on the previous attention map. In addition, we utilize self-training to train
an adaptive classifier boundary for the target domain. (Best view in color)

In the first stage, domain-invariant features extracted by
E are expected to confuse the discoverer D, which aims to
minimize the loss LD

adv(E,D) by alternatively optimizing
D and E,

min
D
LD
adv(D) = min

D
Exs∼p(Xs)[(D(fs)− 0)2]

+Ext∼p(Xt)[(D(ft)− 1)2]

min
E

LD
adv(E) = min

E
Ext∼p(Xt)[(D(E(xt))− 0)2]

After D is optimized, for a given target image xt, an at-
tention map is generated to distinguish the easy-adapted and
hard-adapted regions, α = |D(ft)|.

In the second stage, we expect that P ◦E outputs segmen-
tation predictions that are able to confuse C.

min
C
LC
adv(C) = min

C
Exs∼p(Xs)[(C(ps)− 0)2]

+Ext∼p(Xt)[(C(pt)− 1)2]

min
E,P

LC
adv(E,P )

= min
E,P

Ext∼p(Xt)[(C(P ◦ E(xt))− 0)2]

The fourth loss term is related to self-training strategy,
which adaptively improves the decision boundary of the seg-
menter S (S = P ◦ E) to fit the target distribution,

min
E,P
Lp seg(E,P ) = min

E,P
Ext∼p(Xt)(`ce(pt, p̂t)).

In the overall loss, λd, λc, µ are the hyper-parameters used
to balance the relative importance of different terms. During
training, we set λd = 0.01, λc = 0.01, µ = 1.

Design of Attention Mechanism
For the target image feature ft, the confidence scores of the
discoverer α = |D(ft)| show whether ft locally matches the
distribution of fs. A low αij represents a well-aligned re-
gion in xt and a high αij represents a poorly-aligned region.
Therefore, we use α as an attention map of ft to encourage
the model to focus on matching features of those poorly-
aligned regions. Moreover, to prevent the gradient explosion
at the early stage of the experiment, we add a tanh activation
to α as a normalization layer. Finally, we expand tanh(α) to
fit the dimension of ft for the subsequent element-wise mul-
tiplication,

α′ = expand(tanh(α))

Since the magnitude of tanh(α) is less than 1, its gradi-
ent may disappear in the late stage of the training process.
We thus adopt the residual attention mechanism (Wang et al.
2017) to calculate the new feature map,

f ′t = ft + ft � α′

Experiments and Results
In this section, we will present our experiments and results.
We first describe the benchmark datasets and experimental
setups. Then, we report our main results and compare them
with the state-of-the-art methods on the benchmark datasets.

Datasets
We evaluate the proposed DAST method on the challeng-
ing synthetic-2-real setups: SYNTHIA (Ros et al. 2016) and
GTA5 (Richter et al. 2016) datasets are used as the source
domain dataset and Cityscapes (Cordts et al. 2016) is used
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mIoU
Source only V - 60.7 13.7 56.9 12.9 20.1 19.0 15.4 6.5 77.7 16.2 56.8 40.0 3.3 63.6 15.3 9.5 0.0 8.1 0.1 26.1

CLAN V A 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6
BDL V RSA 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3

FDA-MBT V RSA 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2
Baseline V A 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

Ours(DA) V A 89.3 40.4 79.2 34.9 22.8 23.1 24.0 16.8 79.9 28.7 67.9 45.1 17.8 82.1 25.7 31.9 4.1 19.7 3.1 38.8
Ours(DAST) V SA 90.5 49.2 81.9 34.0 27.0 26.5 26.6 21.5 83.0 37.3 76.3 52.0 23.1 83.5 29.9 42.0 12.1 19.8 25.8 44.3
Source only R - 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

CLAN R A 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
SIBAN R A 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6
BDL R RSA 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
DPR R RSA 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

UIDA R SA 90.6 37.1 82.6 30.1 19.1 29.5 32.4 20.6 85.7 40.5 79.7 58.7 31.1 86.3 31.5 48.3 0.0 30.2 35.8 46.3
DTST R RSA 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2

FDA-MBT R RSA 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
Baseline R A 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

Ours(DA) R A 92.3 54.2 81.9 27.3 25.3 33.4 39.1 23.2 84.0 34.2 71.1 58.7 29.7 85.2 28.1 34.7 4.8 25.6 19.6 44.8
Ours(DAST) R SA 92.2 49.0 84.3 36.5 28.9 33.9 38.8 28.4 84.9 41.6 83.2 60.0 28.7 87.2 45.0 45.3 7.4 33.8 32.8 49.6

Table 1: Experimental results for GTA5→ Cityscapes. ”Source only” denotes the model only trained on source data without
adaptation. The architecture ”V” and ”R” represent the VGG-16 and ResNet-101 backbones, respectively. The mechanism
”R”, ”S”, and ”A” means image-to-image translation, self-training, and adversarial training, respectively. Our baseline model is
AdaptSegNet (Tsai et al. 2018). Other previous state-of-the-art methods include CLAN (Luo et al. 2019b), SIBAN (Luo et al.
2019a), BDL (Li, Yuan, and Vasconcelos 2019), DPR (Tsai et al. 2019), UIDA (Pan et al. 2020), DTST (Wang et al. 2020),
FDA-MBT (Yang and Soatto 2020).

as the target domain dataset. The details of these datasets
are described as follows: 1) GTA5 dataset. GTA5 dataset
consists of 24966 labeled urban scene images with a resolu-
tion of 1914 × 1052 collected from the video game Grand
Theft Auto V. 2) SYNTHIA dataset. SYNTHIA is another
more challenging synthetic image dataset. For this dataset,
we only use the SYNTHIA-RAND-CITYSCAPES subset,
which has 16 common categories with Cityscapes. It con-
tains 9400 labeled urban scene images with a resolution of
1280 × 760. 3) Cityscapes dataset. Cityscapes consists of
2975 real-world images in the training set and 500 in the
validation set with a resolution of 2048 × 1024. In all the
experiments of this work, we use the 2975 images in the
Cityscapes training set as the unlabeled target images and
test the model with mean Intersection-over-Union (mIoU)
on the 500 validation images. We only used the labels of
the Cityscapes images to evaluate the segmentation perfor-
mance and not for the training process.

Network Architecture
Inspired by (Choi, Kim, and Kim 2019; Tsai et al. 2018), we
adopt the DeepLab (Chen et al. 2017) framework with VGG-
16 (Simonyan and Zisserman 2014) and ResNet-101(He
et al. 2016) backbone as our segmentation network. The ini-
tial weight is pretrained on ImageNet (Deng et al. 2009). Af-
ter the last convolutional layer, the Atrous Spatial Pyramid
Pooling (ASPP) module is applied with the sampling rates
of {6, 12, 18, 24}. Finally, we utilize an upsampling layer to
rescale the final segmentation output to match the dimension
of the input image.

The discriminators (the discovererD and the corrector C)
are fully convolutional networks that retain the spatial in-
formation. Furthermore, D consists of 4 convolutional lay-
ers with channel numbers of {256, 128, 64, 1} and the val-
ues of kernel size, padding size, and stride are 3, 1, and
1, respectively. C aligns the semantic predictions of dif-
ferent domains. Following (Tsai et al. 2018), it consists
of 5 convolutional layers with kernel size, padding size,
and stride of 4, 1, 2, respectively, and its channel numbers
are {64, 128, 256, 512, 1}. Instead of regular ReLU, C uses
Leaky ReLU as the activation with a fixed negative slope of
0.2.

Implementation Details
The model is implemented using the PyTorch toolbox and
runs on a single Titan V GPU with 12 GB memory2. We in-
troduce different settings for the segmentation network and
the discriminators. 1) For the segmentation network, we use
the stochastic gradient descent (SGD) algorithm as the opti-
mizer. The initial learning rate is set as 2.5× 10−4, momen-
tum is 0.9 and weight decay is 5× 10−4. 2) For the discrim-
inators, we use the Adam algorithm as the optimizer. The
initial learning rate is set as 10−4 and β1 = 0.9, β2 = 0.99.
We also adopt the same polynomial decay with a power of
0.9 to update learning rate as mentioned in (Tsai et al. 2018).

We train the discriminator attention module only for 150k
iterations and after that, we add self-training to fine-tune the
model with pseudo labels for an additional 20k in several

2Code: https://github.com/yufei1900/DAST segmentation
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mIoU mIoU*
Source Only V - 6.4 16.1 47.5 6.2 0.2 18.9 0.3 8.1 68.6 75.2 46.6 7.1 57.2 12.9 2.9 7.1 23.8 27.4

CLAN V A 80.4 30.7 74.7 - - - 1.4 8.0 77.1 79.0 46.5 8.9 73.8 18.2 2.2 9.9 - 39.3
BDL V RSA 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0 46.1

FDA-MBT V RSA 84.2 35.1 78.0 6.1 0.44 27.0 8.5 22.1 77.2 79.6 55.5 19.9 74.8 24.9 14.3 40.7 40.5 47.3
Baseline V A 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6

Ours(DA) V A 82.5 33.3 76.8 2.1 0.9 20.2 1.9 8.1 76.4 77.9 42.9 13.6 69.9 17.5 7.7 15.1 34.2 40.3
Ours(DAST) V SA 86.1 35.7 79.9 5.2 0.8 23.1 0.0 6.9 80.9 82.5 50.6 19.8 79.7 21.9 21.3 38.8 39.6 46.5
Source Only R - 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5 38.6

CLAN R A 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8
SIBAN R A 82.5 24.0 79.4 - - - 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 - 46.3
BDL R RSA 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4
DPR R RSA 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

UIDA R SA 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9
DTST R RSA 83.0 44.0 80.3 - - - 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 - 52.1

FDA-MBT R RSA 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5
Baseline R A 79.2 37.2 78.8 10.5 0.3 25.1 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 39.5 45.9

Ours(DA) R A 83.2 40.6 80.3 10.2 0.3 27.5 7.9 11.2 79.4 84.6 54.1 20.9 73.4 33.2 18.1 27.3 40.8 47.2
Ours(DAST) R SA 87.1 44.5 82.3 10.7 0.8 29.9 13.9 13.1 81.6 86.0 60.3 25.1 83.1 40.1 24.4 40.5 45.2 52.5

Table 2: Experimental results for SYNTHIA→ Cityscapes. The mIoU* denotes the mean IoU of 13 common classes. ”Source
only” denotes the model only trained on source data without adaptation. The architecture ”V” and ”R” represent the VGG-16
and ResNet-101 backbones, respectively. The mechanism ”R”, ”S”, and ”A” means image-to-image translation, self-training,
and adversarial training, respectively. Our baseline model is AdaptSegNet (Tsai et al. 2018).

Methods mIoU(VGG16) mIoU(Res101)
Baseline 35.0 41.4
+MSE 35.9 43.4

+MSE+2D 37.2 43.9
+MSE+2D+Atten. 38.8 44.8

Table 3: The ablation study results of discriminator atten-
tion adapted from GTA5 to Cityscapes. ”MSE” denotes the
mean square error loss function. ”2D” denotes the feature
distribution is aligned by 2 discriminators without attention.

rounds until the performance converges. During training, the
images from GTA5 are resized to 1280×720 resolution, the
images from SYNTHIA are resized to 1280×760 resolution,
and the images from Cityscapes are resized to 1024 × 512.
During validation, we upsample the segmentation predic-
tions to 2048×1024 to calculate evaluation metrics. We train
our model without any data augmentation steps.

Experimental Results
The previous methods of UDA for semantic segmentation
can be roughly divided into image-to-image translation (R),
self-training (S), adversarial training (A), and their combina-
tions. The experimental results compared with these meth-
ods are shown in Table 1 (GTA5 to Cityscapes) and Table
2 (SYNTHIA to Cityscapes). The proposed DAST achieves
the superior performance on two benchmark datasets.

GTA5→ Cityscapes. As shown in Table 1, our proposed
method with DA only significantly outperforms the baseline
by 3.8% and 3.4% in the mean IoU for two architectures and

exceed all the other models using a single strategy. Although
CLAN also aims to tackle the equally global alignment prob-
lem, our method is more effective and outperforms them by
2.2% and 1.6% for two architectures. Compared with the
composite methods, our DAST also achieves the state-of-
the-art performance.

SYNTHIA → Cityscapes. In the SYNTHIA dataset, the
spatial layout or local context differs substantially from that
in Cityscapes dataset. Despite the large domain shift be-
tween SYNTHIA and Cityscapes, our proposed method with
DA only outperforms other adversarial learning-based meth-
ods and brings 2.7% and 1.3% improvement compared to the
baseline over the 13 common classes for two architectures.
Among the composite methods, our DAST also achieves the
state-of-the-art performance.

Analysis
Ablation Studies
To verify the effectiveness of each part in discriminator at-
tention, we perform 3 ablation tests. As shown in Table 3,
the MSE loss function brings 0.9% and 2.0% improvement
compared to the baseline. The combination of 2 discrimina-
tors brings another 1.3% and 0.5% improvement. The intro-
duction of attention contributes 1.6% and 0.9% mIoU gain.
Our final model exceeds the baseline for most of the cate-
gories in terms of segmentation accuracy.

Hyper-parameters Analysis
As shown in Table 4, when q = 50%, the model achieves
49.6 of mIoU as the best performance on Cityscapes valida-
tion set.
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(a) Input image (b) Attention map (c) Source only (d) Baseline (f) Ours(DAST) (g) Ground truth(e) Ours(DA)

Figure 3: Visual results of segmentation map and attention map on VGG-16 backbone. (a) Input images. (b) Attention map
generated by our discriminator attention module. (c) Segmentation map predicted by source only model. (d) Segmentation map
predicted by baseline model. (e) Segmentation map predicted by our DA model. (f) Segmentation map predicted by our DAST
model. (g) Ground truth.

q 40% 50% 60%
mIoU 49.0 49.6 48.7

Table 4: The results of hyper-parameter q from 40% to 60%
adapted from GTA5 to Cityscapes on ResNet-101 backbone.

The best snapshot on the synthetic val set

Figure 4: mIoU comparison on the Cityscapes val set and
our synthetic val set by adapting from GTA5 to Cityscapes.

When to Start the Self-Training

Most previous studies suffer from biased models and overly-
optimistic estimates, because they often select the best result
from all evaluations of the intermediate snapshots on the
Cityscapes val set. To address the overoptimistic issue, we
establish a synthetic val set which consists of 500 randomly
selected GTA5 images transferred to Cityscapes style by the
method of (Yang and Soatto 2020). The performance of the
model on the synthetic val set can guide the choice of the
best snapshot and when to start the self-training. We use the
mean of the two styles (β = 0.5 and β = 0.9) as the fi-
nal results of the synthetic val set. As shown in Figure 4, the
synthetic val set can approximately fit the Cityscapes val set.

Visualization
We use four qualitative examples in Figure 3 to illustrate that
the attention map serves as a good indicator of hard-adapted
regions. For example, the hard-adapted regions —the“bus”,
“sidewalk” and “traffic light” that are wrongly predicted
in the source-only models (col (c))— are assigned with
higher confidence values in the attention map. Whereas the
easy-adapted regions—the ”road”, ”sky” and ”car” regions
that are correctly predicted in the source-only models—are
characterized with lower confidence values in the attention
map. This consistency proves that the attention map success-
fully distinguishes hard-adapted regions and easy-adapted
regions.

Figure 3 also reveals that the attention mechanism can im-
prove the segmentation results. Cols (d) and (e) demonstrate
the segmentation map predicted by the baseline model and
our model that introduces the attention mechanism, respec-
tively. It is obvious that our results improved by the attention
mechanism are visually closer to the ground truth (col (g))
than the baseline’s. Cols (f) demonstrates that self-training
could be combined with the DA module to further improve
the performance.

Conclusions
In this paper, we have proposed a novel method that com-
bines the discriminator attention and the self-training to
realize the unsupervised domain adaptation for semantic
segmentation. The discriminator attention module includes
two stages of adversarial learning, which utilize the atten-
tion map to attach higher weights to hard-adapted regions
and performs the feature-level and the output-level align-
ments between different domains. The self-training module
dynamically generates pseudo labels to adapt the decision
boundary of the segmentation network to fit the distribu-
tion of unlabeled target images. The experimental results
and the qualitative examples prove that our method outper-
forms the previous state-of-the-art methods on the bench-
mark datasets.
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