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Abstract

We present any-precision deep neural networks (DNNs),
which are trained with a new method that allows the learned
DNNs to be flexible in numerical precision during infer-
ence. The same model in runtime can be flexibly and di-
rectly set to different bit-widths, by truncating the least signif-
icant bits, to support dynamic speed and accuracy trade-off.
When all layers are set to low-bits, we show that the model
achieved accuracy comparable to dedicated models trained
at the same precision. This nice property facilitates flexible
deployment of deep learning models in real-world applica-
tions, where in practice trade-offs between model accuracy
and runtime efficiency are often sought. Previous literature
presents solutions to train models at each individual fixed ef-
ficiency/accuracy trade-off point. But how to produce a model
flexible in runtime precision is largely unexplored. When the
demand of efficiency/accuracy trade-off varies from time to
time or even dynamically changes in runtime, it is infeasi-
ble to re-train models accordingly, and the storage budget
may forbid keeping multiple models. Our proposed frame-
work achieves this flexibility without performance degrada-
tion. More importantly, we demonstrate that this achievement
is agnostic to model architectures and applicable to multiple
vision tasks. Our code is released at https://github.com/SHI-
Labs/Any-Precision-DNNs.

Introduction
While state-of-the-art deep learning models can achieve very
high accuracy on various benchmarks, runtime cost is an-
other crucial factor to consider in practice. In general, the
capacity of a deep learning model is positively correlated
with its complexity. As a result, accurate models mostly run
slower, consume more power, and have larger memory foot-
print as well as model size. In practice, it is inevitable to
balance efficiency and accuracy to get a good trade-off when
deploying any deep learning models.

To alleviate this issue, a number of approaches have been
proposed to address it from different perspectives. We ob-
serve active researches (Liu et al. 2018a; Cai, Zhu, and
Han 2018; Chen et al. 2019) in looking for more efficient
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Figure 1: Illustrations of deep neural networks (DNN) in
different numerical precisions: a) weights and activations
of typical full-precision DNN are in 32-bit floating values;
b) binary DNN with 1-bit weights and activations as an
example low-precision DNN; c) different layers in mixed-
precision DNN can be in arbitrary bit-width and ni is fixed
after training; d) the proposed any-precision DNN can have
pre-trained weights in full-precision while in runtime the
weights and activations can be quantized into arbitrary bit-
width k.

deep neural network architectures to support practical us-
age (Howard et al. 2019; Yu and Huang 2019; Tan and Le
2019). People also consider to adaptively modify general
deep learning model inference to dynamically determine the
execution during the feed-forward pass to save some compu-
tation at the cost of potential accuracy drop (Figurnov et al.
2017; Teerapittayanon, McDanel, and Kung 2016; Wu et al.
2018; Veit and Belongie 2018).

Besides these explorations, another important line of re-
search proposes a low-level solution to use less bits to rep-
resent deep learning model and its runtime data to achieve
largely reduced runtime cost. It has been shown in various
literatures that full-precision is over-abundant in many ap-
plications that we can use 8-bit or even 4-bit models without
obvious performance degradation.

Some previous works went further in this direction. For
example, BNN, XNOR-Net, and others (Courbariaux et al.
2016; Rastegari et al. 2016; Zhou et al. 2016) are pro-
posed to use as low as 1-bit for both the weights and acti-
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vations of the deep neural networks to reduce power-usage,
memory-footprint, running time, and model size. However,
ultra low-precision models always observe obvious accu-
racy drop (Courbariaux et al. 2016). While many meth-
ods have been proposed to improve accuracy of the low-
precision models, so far we see no silver bullet. Stepping
back from uniformly ultra-low precision models, mixed-
precision models have been proposed to serve as a better
trade-off (Wang et al. 2019; Dong et al. 2019). Effective
ways have been found to train accurate models with some
layers processing in ultra-low precision and some layers in
high precision.We illustrate these different paradigms in Fig-
ure 1.a-c.

When we look at this spectrum of deep learning models in
terms of its numerical precision, from full-precision at one
end to low-precision at the other, and mixed-precision in be-
tween, we have to admit that efficiency/accuracy trade-off
always exists in reality and to deploy a model in a specific
application scenario we have to find the right trade-off point.
Previous methods can provide a specific operating point but
what if we demand flexibility as well? It would be a highly
favorable property if we can dynamically change the effi-
ciency/accuracy trade-off point given a single model. Prefer-
ably, we want to be able to adjust the model, without the
need of re-training or re-calibration, to run in high accuracy
mode when resources are sufficient and switch to low accu-
racy mode when resources are limited.

In this paper, we propose a method to train deep learning
models to be flexible in numerical precision, namely any-
precision deep neural networks. After training, we can freely
quantize the model layers into various precision levels, with-
out fine-tuning or calibration and without any data. We illus-
trate this in Figure 1.d. When running in low-precision, full-
precision or other precision levels in between, it achieves
comparable accuracy to models specifically trained under
the matched settings. Furthermore, given fixed computa-
tional budget, it can potentially find better operating point
than one trained rigorously.

To summarize, our contributions are:
• We introduce the concept of any-precision DNN. In run-

time we can quantize its layers into different bit-widths.
Its accuracy changes smoothly with respect to its preci-
sion level without drastic performance degradation;

• We propose a novel model-agnostic method to train any-
precision DNN and validate its effectiveness over multiple
vision tasks, with multiple widely used benchmarks, and
with multiple neural network architectures;

• We demonstrate the proposed training framework trains
better low-bit models with knowledge distillation.

Related Work
Low-Precision Deep Neural Networks. Recent pro-
gresses in deep learning inference hardware motivate the
research of using low-bit integer instead of float-point val-
ues to represent network weights and activations. Binarized
Neural Networks (Courbariaux et al. 2016) and XNOR-
Net (Rastegari et al. 2016) are early works in this direction
to use only 1-bit to represent the weights and activations

in DNNs. When training these 1-bit networks, a float-point
value copy of the parameters are maintained under the hood
to calculate approximated gradients. Usually a sign func-
tion is used to quantize the float-point value copy to binary
value in the feed-forward pass. Using only 1-bit numerical
precision leads to obvious drop in accuracy in most scenar-
ios, Zhou et al. (Zhou et al. 2016) proposed DoReFa-Net to
specifically train arbitrary bitwidth in weights, activations,
and gradients. Since gradients are also in low-bits, proper
implementation could accelerate both the forward and back-
ward passes.

One of the essential problem in learning low-precision
DNNs is the quantization operator. Quantization of the real-
value parameters in the feed-foward pass and approxima-
tion of the gradients through the quantization operator in
the backward pass heavily influence the final model accu-
racy. For example, the sign function adopted in Binarized
NN (Courbariaux et al. 2016) discards the value distribution
variations across layers and hurt the performance. In XNOR-
Net (Rastegari et al. 2016), a scaling factor is added to each
layer to minimize the information loss. Choi et al. (Choi
et al. 2018) proposed a parameterized clipping activation for
quantization to support arbitrary bits quantization of activa-
tion. Zhang et al. (Zhang et al. 2018) and Jung et al. (Jung
et al. 2019) pointed out that having an uniform quantization
pattern across layers is suboptimal and propose a learnable
quantizer for each layer to improve the model accuracy.

In the backward pass, most prior works use the Straight-
Through Estimator (STE) (Bengio, Léonard, and Courville
2013) to approximate the gradients over the quantizers.
Cai et al. (Cai et al. 2017) proposed to use a half-wave
gaussian quantization operator to replace the sign function
for better learning efficiency and a piece-wise continuous
function in the backpropagation step to alleviate the gra-
dient mismatch issue in the prior design. Liu et al. (Liu
et al. 2018b) also attacked the gradient mismatch problem
by introducing a piecewise polynomial function to approxi-
mate the sign function. Another interesting recent work from
Ding et al. (Ding et al. 2019) addressed this problem by in-
troducing a new loss function over the value distribution of
layer activations.

Besides the performance gap to full-precision model,
training binary networks have been reportedly to be un-
stable. Tang et al. (Tang, Hua, and Wang 2017) carefully
analyzed the training process and concluded that using
PReLu (He et al. 2015) activation function, a low learning
rate, and the bipolar regularization on weights could lead to a
more stable training process with better optimum. Zhuang et
al. (Zhuang et al. 2018) looked at the overall training strat-
egy and propose a progressive training process. They sug-
gested to first train the net with quantized weights and then
quantized activations, first train with high-precision and then
low-precision, and jointly train the low-bit model with the
full-precision one.

A similar joint training strategy has been observed to be
effective in this work as well. Since our work is along an or-
thogonal direction of low-precision DNNs training and de-
sign, our method can be complementary to train better and
flexible DNNs.
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Post-training Quantization. Quantization of a pre-
trained model with fine-tuning or calibration on a dataset
is another related research topic in the area. Although meth-
ods in this area are working on a different problem from
ours, we partially share the motivation to have the flexibil-
ity of quantization control in the runtime. Without special
treatment, many models collapse even in 8-bit precision in
post-training quantization. One recent work from Nagel et
al. (Nagel et al. 2019) identified two issues leading to the
large accuracy drop, the large variation in the weight ranges
across channels and biased output errors due to quantization
errors affecting following layers. With their method, they are
able to alleviate the bias and equalize the weight ranges by
rescaling and reparameterization. In this paper, the model
we produced can be readily quantized into lower precision
without further process.

In the research area of deep neural networks architec-
ture search, the slimmable neural networks by Yu et al. (Yu
et al. 2018) is related to ours in terms of methodology. They
presented method to train a single neural network with ad-
justable number of channels in each layer at runtime. Their
exploration is limited to the search space of network archi-
tecture instead of weights.

Any-Precision Deep Neural Networks
Overview
Neural networks are generally constructed layer by layer.
We denote input to the i-th layer in a neural network model
as xi, the weights of the layer as wi and the biases as bi.
The output from this layer can be calculated as

yi = F(xi|wi,bi). (1)
Without loss of generality, we take one channel in a fully-
connected layer as a concrete example in the following de-
scription and drop the subscript i for simplicity, i.e.,

y = w · x + b, (2)
where y,w ∈ RD and b is a scalar.

For better computation efficiency, we would like to avoid
the float-value dot product of D-dimensional vectors. In-
stead we use N -bit fixed-point integers to represent the
weights as wQ and input activations as xQ. Hereafter, we
assume wQ and xQ are stored as signed integers in its bit-
wise format. Note that in some related works (Courbariaux
et al. 2016), elements of wQ and xQ could be represented
as vectors of {−1, 1} and the conversion between these two
formats are trivial. With N -bit integers weights and activa-
tions, as discussed in prior arts (Zhou et al. 2016; Rastegari
et al. 2016), the computation can be accelerated by leverag-
ing bit-wise operations (and, xnor, bit-count), or even dedi-
cated DNN hardwares.

Early works (Tang, Hua, and Wang 2017) show that by
adding a layer-wise real-value scaling factor s could largely
help reduce the output range variation and hence achieve
better model accuracy. Since the scaling factor is shared
across channels within the same layer, the computational
cost is fractional. Following this setting, with the quantized
weights and inputs, we have

y′ = s ∗ (wQ · xQ) + b. (3)

… ……

Convolutional Kernels

Scaling 
Factor

&
Bias

One layer in a trained Resnet-20

8-bit: 1 0 0 1 0 1 0 0

4-bit: 1 0 0 1

2-bit: 1 0

1-bit: 1

Quantized Weight in varied bits

Figure 2: Quantization of a kernel weight in the trained
model into different precision levels: since we follow an uni-
form quantization pattern, when representing weight values
in signed integers, the quantization can be implemented as
simple bit-shift.

The activations y′ are then quantized into N -bit fixed-point
integers as the input to the next layer.

Inference
We will discuss our quantization functions in details in the
next section. Here we describe the runtime of a trained any-
precision DNN.

Once training is finished, we can keep the weights at a
higher precision level for storage, for example, at 8-bit. As
shown in Figure 2, we can simply quantize the weights into
lower bit-width by bit-shifting. We experimentally observe
that with the proposed training framework, the model accu-
racy changes smoothly and consistently on-par or even out-
perform dedicated models trained at the same bit-width.

Training
A number of quantization functions have been proposed in
the literature for weights and activations respectively. Given
a pre-trained DNN model, one can quantize its weights into
low-bit and apply certain quantization function to activa-
tions accordingly. However, when the number of bits gets
smaller, the accuracy quickly drops due to the rough approx-
imation in weights and large variations in activations. The
most widely adopted framework to obtain low-bit model is
quantization-aware training. The proposed method follows
the quantization-aware training framework.

We take the same fully-connected layer as an example.
In training, we maintain the float-point value weights w for
the actual layer weights wQ. In the feed-forward pass, given
input xQ, we follow Equation 3 to compute the raw output
y′. Prior arts show the importance of the batch normalization
(BN) (Ioffe and Szegedy 2015) layer in low-precision DNN
training and we follow accordingly. y′ is then passed into a
BN layer and then quantized into yQ as the input to the next
layer.

Weights. We use a uniform quantization strategy similar
to Zhou et al. (Zhou et al. 2016) with a scaling factor to
approximate the weights. Given the floating point weight w,
we first apply the tanh function to normalize it into [−1, 1]
and then transform it into w′ ∈ [0, 1], i.e.,

w′ =
tanh(w)

2max(|tanh(w)|)
+ 0.5. (4)
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We then quantize normalized value into N -bit integers wQ
′

and scaling factor s, where

wQ
′ = INT(round(w′ ∗MAXN)) and s′ = 1 /MAXN.

(5)
Hereafter MAXN denotes the upper-bound of N -bit integer
and INT(·) converts a floating point value into an integer.

Finally the values are re-mapped back to approximate the
range of floating point values to obtain

wQ = 2 ∗wQ
′ − 1 and s = E(|w|) /MAXN, (6)

where E is the mean of absolute value of all floating-valued
weights in the same layer. Eventually, we approximate w
with s∗wQ and execute the feed-forward pass with the quan-
tized weights as shown in Equation 3, the scaling factor can
be applied after the dot-product of all integers vectors.

In the backward pass, gradients are computed with re-
spect to the underlying float-value variable w and updates
are applied to w as well. In this way, the relatively unre-
liable and nuance signals would be accumulated gradually
and hence this will stabilize the overall training process.
Since not all operations involved are nice smooth functions
to support back-propagation, we use the straight through es-
timator (STE) (Bengio, Léonard, and Courville 2013) to ap-
proximate the gradients. For example, the round operation
in Equation 5 has zero derivative almost everywhere. With
STE, we assign ∂round(x) / ∂x := 1.

Activations. For activation quantization in the feed-
forward pass, we obtain the N -bit fixed-point representation
by first clipping the value to be within [0, 1] and then

yc
′ = clip(y′, 0, 1),

yQ = INT(round(yc
′ ∗MAXN)) ∗ 1

MAXN
,

(7)

In practice, we only calculate the integer part as yQ and ab-
sorb the constant scaling factor into the persistent network
parameters in the next layer.

Let L denote the final loss function and the gradient with
respect to the activation yQ is then approximated to be

∂L

∂yQ
≈ ∂L

∂yc
′ , (8)

where
∂L

∂yc
′ =

{
∂L
∂y′ , if 0 ≤ y′ ≤ 1,

0, otherwise.
(9)

The gradient of the round function is approximated with
STE to be 1.

Dynamic Model-wise Quantization. In prior low-
precision models, the bit-width N is fixed during the
training process. In runtime, if we alter N the model
accuracy drops drastically. To encourage flexibility in the
produced model, here we propose to dynamically change N
within the training stage to align the training and inference
process. However, the distribution of activations varies
under different bit-width N , especially when N is small

Figure 3: Activation distributions under different bit-widths
for weights and inputs: we randomly generate a single-
channel fully-connected layer and 1000 16-dimensional in-
puts; we then quantize the weights and inputs into 1, 2, 4, 8
bits respectively and summarize the distributions of activa-
tions under different bit-widths; as observed in the figure,
the 1-bit quantization leads to significant distribution shift
compared to 8-bit model and the discrepancy under 2-bit is
also obvious.

(e.g., 1-bit), as shown in Figure 3. As a result, without
special treatment, the dynamically changed N creates
conflicts in learning the model that it fails to converge in
our experiments.

One of the widely adopted technique to adjust inter-
nal feature/activation distribution is Batch Normalization
(BatchNorm) (Ioffe and Szegedy 2015). It works by normal-
izing layer output across batch dimension as following

x̂i = γ
xi − µ√
σ2 + ε

+ β, i = 1..B, (10)

where B is the batch size, i denotes the index within current
batch, ε is a small value added to avoid numerical issue. µ
and σ2 are mean and variance respectively defined as

µ =

B∑
i=1

xi and σ2 =
1

B

B∑
i=1

(xi − µ)2. (11)

During training, BatchNorm layer keeps calculating running
averages for µ and σ2, i.e.,

µ = λµ+ (1− λ)µt and σ2 = λσ2 + (1− λ)σ2
t , (12)

where µt and σ2
t are the values before the current update, the

decay rate λ is a hyper-parameter set a-prior. But even with
the BatchNorm layer, dynamically changed N will lead to
failure of convergence in training due to the value distribu-
tion variations shown in the toy example in Figure 3.

In our proposed framework, we adopted dynamically
changed BatchNorm layer to work with different N in
training. More specifically, assume we have a list of bit-
width candidates {nk}Kk=1, we keep |K| copies of Batch-
Norm layer parameters and internal states ΦK

k=1. When the
current training iteration works with N = nk, we reset the
BatchNorm layers with data from Φk to use and update the
corresponded copy.
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Algorithm 1 Training of the proposed any-precision DNN

Require: Given candidate bit-widths P ← {nk}Kk=1
1: Initialize the modelM with floating-value parameters
2: Initialize K BatchNorm layers: ΦK

k=1
3: for t = 1, ..., Titers do
4: Sample data batch (x, y) from train set Dtrain

5: for np in P do
6: Set quantization bit-width N ← np
7: Feed-forward pass: ynp ←M(x)
8: Set BatchNorm layers:M.replace(Φp)
9: L← L+ loss(ynp , y)

10: end for
11: Back-propagate to update network parameters
12: end for

Similar technique has been adopted by Yu et al. (Yu and
Huang 2019) when dealing with varied network architec-
tures. Parameters of all BatchNorm layers are kept after
training and used in inference. Note that compared with the
total number of network parameters, the additional amount
from BatchNorm layers is negligible. We summarize the
proposed method in Algorithm 1. With the proposed algo-
rithm, we can train DNN being flexible for runtime bit-width
adjustment.

Another optional component in our method is adding
knowledge distillation (Hinton, Vinyals, and Dean 2015)
in training. Knowledge distillation works by matching the
outputs of two networks. In training a network, we can use
a more complicated model or an ensemble of models to pro-
duce soft targets by adjusting the temperature of the final
softmax layer and then use the soft targets to guide the net-
work learning.

In our framework, we apply this idea by generating soft
targets from a high-precision model. More specifically, in
each training iteration, we first set the quantization bit-width
to the highest candidate nK and run feed-forward pass to ob-
tain soft targets ysoft. Later, instead of accumulating cross-
entropy loss for each precision candidate, we use KL diver-
gence of the model prediction and ysoft as the loss. In our
experiments, we observe that in general knowledge distilla-
tion leads to better performance at low-bit precision levels.

Experiments

We first validate our method with several network architec-
tures and datasets on image classification task. These net-
works include a 8-layer CNN (named Model C in (Zhou
et al. 2016)), AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012), MobileNetV2 (Sandler et al. 2018), Resnet-8,
Resnet-18, Resnet-20 and Resnet-50 (He et al. 2016). The
datasets include Cifar-10 (Krizhevsky, Hinton et al. 2009),
Street View House Numbers (SVHN) (Netzer et al. 2011),
and ImageNet (Deng et al. 2009). We also evaluate our
method on the image segmentation task to demonstrate its
generalization.

Implementation Details
We implement the whole framework in PyTorch (Paszke
et al. 2017). On Cifar-10, we train AlexNet, MobileNetV2
and Resnet-20 models for 400 epochs with initial learning
rate 0.001 and decayed by 0.1 at epochs {150, 250, 350}. On
SVHN, the 8-layer CNN named CNN-8 and Resnet-8 mod-
els are trained for 100 epochs with initial learning rate 0.001
and decayed by 0.1 at epochs {50, 75, 90}. We combine the
training and extra training data on SVHN as our training
dataset. All models on Cifar-10 and SVHN are optimized
with the Adam optimizer (Kingma and Ba 2014) without
weight decay. On ImageNet, we train Resnet-18 and Resnet-
50 dedicated models for 120 epochs with initial learning
rate 0.1 decayed by 0.1 at epochs {30, 60, 85, 95, 105} with
SGD optimizer. For any-precision model, we trained 80
epochs with initial learning 0.3 decayed by 0.1 at epochs
{45, 60, 70}.

For all models, following Zhou et al. (Zhou et al. 2016)
we keep first and last layer real-valued. In training, we train
the networks with bit-width candidates {1, 2, 4, 8, 32}. Note
that when the bit-width is set to 32, it is a full-precision
model that we use floating-valued weights and activations.
In testing, we evaluate the model at each bit-width in the
list respectively. By default, we recursively add knowledge
distillation (KD) in training. Concretely, we use the full-
precision model to get soft targets as supervision for the 8-bit
model, the ones from the 8-bit model for the 4-bit model, so
on and so forth.

Comparison to Dedicated Models
We compare our method to very competitive baseline mod-
els at each precision level. For each bit-width we tested, we
dedicatedly train a low-precision model following the same
training pipeline with fixed bit-width for weights and activa-
tions. We compare the accuracy we obtained from our ded-
icated low-bit models to other recent works in this field to
make sure the baseline models are strong. For example, on
Cifar-10, our 1-bit baseline achieved an accuracy of 92.07%
while the recent work from Ding et al. (Ding et al. 2019)
reported 89.90%.

Our results are summarized in Table 1. We observed that
binarizing depth-wise convolution layers in MobileNetV2
may lead to training divergence, which is verified by Hai et
al. (Phan et al. 2020). Therefore, we replace depth-wise con-
volutions with group convolutions in MobileNetV2 models.
As shown in the table, on all three datasets, the proposed
any-precision DNN generally achieved comparable perfor-
mance to the competitive dedicated models. At the same
time, our model is more compact. As shown in Table 2, com-
pared with five individual models, our any-precision model
(104MB) saved more than 50% parameters (220MB).

Post-Training Quantization Methods
We compare our method with three alternative post-training
quantization methods. We experiment with Resnet-50 on
ImageNet.

The first naive baseline directly quantizes dedicated mod-
els with bit-shifting. In other words, to obtain an (n− 1)-bit
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Datasets Models 1 bit 2 bit 4 bit 8 bit FP32
Dedi. Ours Dedi. Ours Dedi. Ours Dedi. Ours Dedi. Ours

Cifar-10
Resnet-20 92.07 92.15 93.55 93.97 93.71 93.95 93.66 93.80 94.08 93.98
AlexNet 92.56 93.00 94.06 94.08 94.02 94.26 93.82 94.24 93.74 94.22

MobileNetV2 80.17 80.06 89.69 90.74 92.01 92.27 92.44 92.32 94.01 93.84

SVHN Resnet-8 92.94 91.65 95.91 94.78 95.15 95.46 94.64 95.39 94.60 95.36
CNN-8 90.94 88.21 96.45 94.94 97.04 96.19 97.04 96.22 97.10 96.29

ImageNet Resnet-18 55.06 54.62 63.65 64.19 68.15 67.96 68.48 68.04 69.27 68.16
Resnet-50 61.08 63.18 69.44 73.24 71.24 74.75 74.71 74.91 75.95 74.96

Table 1: Comparison of the proposed any-precision DNN to dedicated models: the proposed method achieved the strong baseline
accuracy in most cases, even occasionally outperforms the baselines in low-precision. We hypothesize that the gain is mainly
from the knowledge distillation from high-precision models in training. Dedi.: Dedicated models.

Shared 1 2 4 8 32 Total
Ded 0 22.3 24.9 30.1 40.4 102.4 220.1
Ours 102.0 0.4 0.4 0.4 0.4 0.4 104.0

Table 2: Resnet-50 model size comparison (in MegaByte):
the proposed model only brings little overhead upon size of
a FP32 model but achieves the flexibility what could take 5
independent models instead. Ded: Dedicated models.

Models \ Runtime bit 1 2 4 8 FP32
BS 0.100 0.136 42.70 74.68 75.95

BS+BC 0.106 0.352 57.12 73.73 75.95
ACIQ 0.116 0.324 71.64 1 75.83 75.95
Ours 63.18 73.24 74.75 74.91 74.96

Table 3: Comparison to other post-training quantization
methods: All models are Resnet-50 trained on ImageNet.
When bit-width drops from their original training setting,
our method consistently outperform them. BS: Bit-Shifting
from FP32 model. BC: BatchNorm Calibration from FP32
model.

model from a trained n-bit model, as what is done with any-
precision DNN shown in Figure 2, we simply drop the least-
significant bit of all weights. With no surprise, this strategy
fails dramatically on challenging large-scale benchmark as
shown in Table 3.

The second strategy follows the same bit-shifting to drop
bit with an added BatchNorm calibration process. In the cal-
ibration process, BatchNorm statistics will be re-calculated
by feed-forwarding a number of training samples. As shown
in Table 3, the BatchNorm calibration helped in 4-bit but
still failed in 1,2-bit settings.

With the proposed method, we can leverage this post-
training calibration technique to fill-in the gaps of training
candidate bit-width list, i.e., after training for 1,2,4,8,32-bits
precision levels, we can further calibrate the model under
the remaining 3,5,6,7-bit settings to get the missed copies
of BatchNorm layer parameters. So that, in runtime, we can
freely choose any precision level from 1 to 8 bits.

In addition, we compare with a recently proposed method

1We used the paper’s official code https://github.com/
submission2019/cnn-quantization, but we cannot reproduce the
claimed accuracy 73.8% on 4-bit model.

de
ns

ity
a) 2nd Conv-Layer b) 2nd BatchNorm-Layer

activation value activation value

Figure 4: Activation value distributions of several layers
in an any-precision AlexNet: low-bit quantization leads to
value distribution different from others after convolutional
layers but accordingly changed BatchNorm layer could rec-
tify the mis-match.

Train \ Test 1 2 3 4 5 6 7 8
1,2,4,8 91.80 93.48 93.22 93.70 93.58 93.52 93.53 93.61

1,8 91.95 89.57 92.97 93.23 93.35 93.34 93.36 93.39
2,8 10.00 93.58 93.50 93.83 93.91 93.90 94.00 93.93
4,8 10.00 72.78 93.22 93.80 93.75 93.79 93.81 93.79

Table 4: Classification accuracy of Resnet-20 with different bit-
width combinations in training on Cifar-10.

ACIQ (Banner, Nahshan, and Soudry 2019), which intro-
duced analytical weight clipping, adaptive bit allocation and
bias correction for post-training quantization. As shown in
Table 3, our method achieved much better accuracy under
low bit-width settings.

Dynamically Changed BatchNorm Layers
To understand how the dynamically changed BatchNorm
layers help in our framework, we visualize the activation
value distributions of several layers of an any-precision
AlexNet. More specifically, we look at how activation value
distribution changes from the 2nd convolutional layers and
the BatchNorm layers after them when the runtime preci-
sion level is set to 1,2,4,8-bit respectively. As shown in Fig-
ure 4, when running at 1-bit precision, the activation distri-
bution is obviously off from others after the convolutional
layers; the followed BatchNorm layer rectifies the distribu-
tions; then the next convolutional layer would create this dis-
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Models \ Bits 1 2 4 8 FP32
Resnet-20

on Cifar-10
w/o KD 91.67 93.72 93.83 93.94 93.82

KD 92.15 93.97 93.95 93.80 93.98
Resnet-50

on ImageNet
w/o KD 62.42 72.88 74.43 74.68 74.98

KD 63.18 73.24 74.75 74.91 74.96

Table 5: Impact of knowledge distillation on classification
accuracy.

Models \ Bits 1 2 4 8 FP32

Dedicated mIoU 59.5 71.5 74.1 75.6 76.2
Acc. 89.7 93.5 94.2 94.5 94.6

Ours mIoU 61.3 72.1 74.3 75.4 75.9
Acc. 90.6 93.7 94.3 94.4 94.6

Table 6: Segmentation performance comparison on Pascal
VOC 2012 segmentation dataset under mIoU and top-1 ac-
curacy.

tribution variation again. It is very clear that by keeping mul-
tiple copies of the BatchNorm layer parameters for different
bit-widths, we can minimize input variations to the convo-
lutional layers and hence have the same set of convolutional
layer parameters to support any-precision in runtime.

Ablation Studies
Candidate bit-width List. We study how the candidate
bit-width list used during training the any-precision DNN
influences the testing performance on other bit-widths.

Table 4 shows testing accuracy of models trained under
different bit-width combinations. We observe that training
with more candidate bit-width generally leads to better gen-
eralization to the others and the candidate bit-width list is
better to cover the extreme cases in runtime. For example,
the 1,8-bits combination performs more stable across differ-
ent runtime bit-width compared with 2,8-bits and 4,8-bits
combination. Since better coverage in training takes longer
for the model to converge, this observation can guide the
bit-width selection under limited training resources.

Knowledge Distillation. We study the influence of knowl-
edge distillation during any-precision training. The first case
is w/o KD, i.e., no KD is used as shown in Algorithm 1).
The second case is KD, i.e., the highest bit-width outputs are
supervised by groundtruth, and then every other bit-width
outputs are supervised by the output logits from the nearest
superior bit-width.

In Table 5, we observed on both Resnet-20 and Resnet-50,
KD outperforms the dedicated models in low-bit settings.
The hypothesis is that for lower-bit models, soft logits from
higher-bit models instead of groundtruth labels regularize
the training better.

Application to Semantic Segmentation
To demonstrate generalization of our method to other tasks,
we apply the any-precision scheme to semantic segmenta-
tion. We train Deeplab V3 (Chen et al. 2017) with Resnet-
50 on Pascal VOC 2012 segmentation dataset (Everingham
et al. 2015) with SBD dataset (Hariharan et al. 2011) as

groundtruth augmentation. We use the publicly available Py-
Torch training codebase 2. All models are pretrained from
the corresponding classification models on ImageNet. We
do not use any post-processing for segmentation.

We summarize our results in Table 6 under two evaluation
metrics mIoU and top-1 accuracy. Our low-bit models per-
form better than the dedicated counterparts. In 8,32-bit set-
tings, our models achieve comparable results. Similar to the
results on the classification tasks, we attribute this improve-
ment to the joint optimization and knowledge distillation.

Discussion
We study how the multiple bit-width joint training influences
parameter learning. With STE, the parameter being updated
in training is essentially the FP32 weight w. The gradient on
w comes from losses from different bit-widths. The neces-
sary condition for the joint training to work is that the gradi-
ents from different bit-widths are consistent with each other.

Inspired by (Zhao et al. 2018), we analyze gradient con-
sistency between bit-widths by computing Update Compli-
ance Average (UCA), which is defined as the average of co-
sine similarity of gradients from two bit-widths over multi-
ple training steps. During joint training, we observed that
different bit-widths share very large UCA ([0.9, 1]), indi-
cating consistent gradient directions and thus training con-
vergence. We also found that neighboring bit-widths share
larger UCA than the others, e.g., UCA between 1 and 2 bits
(0.929) are larger than 1 and the other bits (0.909 between 1
and 32 bits). This motivated us to employ recursive knowl-
edge distillation in joint training.

As indicated by UCA, we also observed a small gradi-
ent direction gap. We think this makes our model naturally
more robust to adversarial attacks than a single dedicated
model as a by-product from joint training. By switching
to different bit-widths, any-precision model under one bit-
width can show robustness to adversarial attacks targeting
at another bit-width. We experimented with FGSM attack-
ing method (Goodfellow, Shlens, and Szegedy 2015). Any-
precision models show improved defensive performance
compared with dedicated ones, e.g., classification accuracy
of FP32 model is improved by more than 10%. We believe
our any-precision scheme can serve as an add-on to other
defensive methods against adversarial attacks.

Conclusion
In this paper, we introduce any-precision DNN to address
the practical efficiency/accuracy trade-off dilemma from a
new perspective. Instead of seeking for a better operating
point, we enable runtime adjustment of model precision-
level to support flexible efficiency/accuracy trade-off with-
out additional storage or computation cost. The model can
be stored at 8-bit or higher and run in lower bit-width speci-
fied at runtime. Our flexible model achieves comparable ac-
curacy to dedicatedly trained low-precision models and sur-
passes other post-training quantization methods.

2https://github.com/kazuto1011/deeplab-pytorch
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