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Abstract

Measuring the dependence of data plays a central role in
statistics and machine learning. In this work, we summarize
and generalize the main idea of existing information-theoretic
dependence measures into a higher-level perspective by the
Shearer’s inequality. Based on our generalization, we then
propose two measures, namely the matrix-based normalized
total correlation and the matrix-based normalized dual total
correlation, to quantify the dependence of multiple variables
in arbitrary dimensional space, without explicit estimation of
the underlying data distributions. We show that our measures
are differentiable and statistically more powerful than preva-
lent ones. We also show the impact of our measures in four
different machine learning problems, namely the gene regu-
latory network inference, the robust machine learning under
covariate shift and non-Gaussian noises, the subspace outlier
detection, and the understanding of the learning dynamics of
convolutional neural networks, to demonstrate their utilities,
advantages, as well as implications to those problems.

Introduction
Measuring the strength of dependence between random vari-
ables plays a central role in statistics and machine learning.
For the linear dependence case, measures such as the Pear-
son’s ρ, the Spearman’s rank and the Kendall’s τ are compu-
tationally efficient and have been widely used. For the more
general case where the two variables share a nonlinear rela-
tionship, one of the most well-known dependence measures
is the mutual information and its modifications such as the
maximal information coefficient (Reshef et al. 2011).

However, real-world data often contains three or more
variables which can exhibit higher-order dependencies. If bi-
variate based measures are used to identify multivariate de-
pendence, wrong conclusions may drawn. For example, in
the XOR gate, we have y = x1 ⊕ x2 with x1, x2 being bi-
nary random processes with equal probability. Although x1,
x2 individually are independent to y, the full dependence is
synergistically contained in the union of {x1,x2} and y.

On the other hand, in various practical applications, the
observational data or variables of interest lie on a high-
dimensional space. Thus, it is desirable to extend the theory
of scalar variable dependence to an arbitrary dimension.
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Despite that tremendous efforts have been made based on
the seven postulates (on measure of dependence on pair of
variables) proposed by Alfréd Rényi (Rényi 1959), the prob-
lem of measuring dependence (especially in a nonparametric
manner) still remains challenging and unsatisfactory (Fer-
nandes and Gloor 2010). This is not hard to understand.
Note that, most of the existing measures are defined as some
functions of a density. Thus, a prerequisite for them is to
estimate the underlying data distributions, a notoriously dif-
ficult problem in high-dimensional space.

Moreover, current measures primarily focus on two spe-
cial scenarios: 1) the dependence associated with each di-
mension of a random vector (e.g., the multivariate maxi-
mal correlation (MAC) (Nguyen et al. 2014)); and 2) the
dependence between two random vectors (e.g., the Hilbert
Schmidt Independence Criterion (HSIC) (Gretton et al.
2005)). The former is called multivariate correlation analy-
sis in machine learning, and the latter is commonly referred
to as random vector association in statistics.

Our main contributions are multi-fold:

• We provide a unified view of existing information-
theoretic dependence measures and illustrate their inner
connections. We also generalize the main idea of these
measures into a higher-level perspective by the Shearer’s
inequality (Chung et al. 1986).

• Motivated by our generalization, we suggest two mea-
sures, namely the matrix-based normalized total correla-
tion (T ∗α) and the matrix-based normalized dual total cor-
relation (D∗α), to quantify the dependence of data by mak-
ing use of the recently proposed matrix-based Rényi’s α-
entropy functional estimator (Sanchez Giraldo, Rao, and
Principe 2014; Yu et al. 2019)1.

• We show that T ∗α and D∗α enjoy several appealing prop-
erties. First, they are not constrained by the number of
variables and variable dimension. Second, they are dif-
ferentiable, which make them suitable to be used as loss
functions to train neural networks.

• We show that our measures offer a remarkable perfor-
mance gain to benchmark methods in applications like
gene regulatory network (GRN) inference and subspace

1Code of our measures and supplementary material of this work
are available at: https://bit.ly/AAAI-dependence.
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outlier detection. They also provide insights to challeng-
ing topics like the understanding of the dynamics of learn-
ing of Convolutional Neural Networks (CNNs).

• Motivated by (Greenfeld and Shalit 2020) that trains a
neural network by encouraging the distribution of the pre-
diction residuals e is statistically independent of the distri-
bution of the input x, we show that our measure (as a loss)
improves robust machine learning against the shift of the
input distribution (a.k.a., the covariate shift (Sugiyama
et al. 2008)) and non-Gaussian noises. We also establish
the connection between our loss to the minimum error en-
tropy (MEE) criterion (Erdogmus and Principe 2002), a
learning principle that has been extensively investigated
in signal processing and process control.

Background Knowledge
Problem Formulation
We consider the problem of estimating the total amount of
dependence of the dm-dimensional components of the ran-
dom variable y = [y1;y2; · · · ;yL] ∈ Rd, in which them-th
component ym ∈ Rdm and d =

∑L
m=1 dm. The estimation

is based purely on N i.i.d. samples from y, i.e., {yi}Ni=1.
Usually, we expect the derived statistic to be strictly between
0 and 1 for improved interpretability (Wang et al. 2017).

Obviously, when L = 2, we are dealing with random
vector association between y1 ∈ Rd1 and y2 ∈ Rd2 . No-
table measures in this category include the HSIC, the Ran-
domized Dependence Coefficient (RDC) (Lopez-Paz, Hen-
nig, and Schölkopf 2013), the Cauchy-Schwarz quadratic
mutual information (QMI CS) (Principe et al. 2000) and
the recently developed mutual information neural estimator
(MINE) (Belghazi et al. 2018). On the other hand, in case
of di = 1 (i = 1, 2, · · · , L), the problem reduces to the
multivariate correlation analysis on each dimension of y.
Examples in this category are the multivariate Spearman’s
ρ (Schmid and Schmidt 2007) and the MAC.

Different from the above mentioned measures, we seek a
general measure that is applicable to multiple variables in
an arbitrary dimensional space (i.e., without constrains on L
and di). But, at the same time, we also hope that our measure
is interpretable and statistically more powerful than existing
counterparts in quantifying either random vector association
or multivariate correlation.

A Unified View of Information-Theoretic Measures
From an information-theoretic perspective, a dependence
measure M that quantifies how much a random vector y =
{y1;y2; · · · ;yL} ∈ Rd deviates from statistical indepen-
dence in each component can take the form of:

M(y) = diff

(
Pr
(
y1,y2, · · · ,yL

)
:
L∏
i=1

Pr
(
yi
))

, (1)

where diff refers to a measure of difference such as diver-
gence or distance.

If one instantiates diff () with Kullback–Leibler (KL) di-
vergence, Eq. (1) reduces to the renowned Total Correla-

tion (Watanabe 1960):

T (y) = DKL

(
Pr
(
y1,y2, · · · ,yL

)
||

L∏
i=1

Pr
(
yi
))

,

=

[
L∑
i=1

H(yi)

]
−H(y1,y2, · · · ,yL), (2)

where H denotes entropy or joint entropy.
Most of the existing measures approach multivariate de-

pendence through TC by a decomposition into multiple
small variable sets2 (proof in supplementary material):

T (y) =
L∑
i=1

H(yi)−H(yi|y[i−1]). (3)

In fact, these measures only vary in the way to estimate
H(yi) and H(yi|y[i−1]). For example, multivariate correla-
tion (Joe 1989) and MAC (Nguyen et al. 2014) use Shan-
non discrete entropy, whereas CMI (Nguyen et al. 2013)
resorts to the cumulative entropy (Rao et al. 2004) which
can be directly applied on continuous variables. Although
such progressive aggregation strategy helps a measure scales
well to high dimensionality, it is sensitive to the ordering
of the variables, i.e., Eq. (3) is not permutation invariant.
One should note that, there are a total of L! possible per-
mutations, which makes the decomposition scheme always
achieve sub-optimal performances.

There are only a few exceptions avoid to the use of
TC. A notable one is the Copula-based Kernel Dependence
Measures (C-KDM) (Póczos, Ghahramani, and Schneider
2012), which instantiates diff () in Eq. (1) with the Maxi-
mum Mean Discrepancy (MMD) (Gretton et al. 2012) and
measures the discrepancy between Pr

(
y1,y2, · · · ,yL

)
and∏L

i=1 Pr
(
yi
)

by first taking an empirical copular trans-
form on both distributions. Although C-KDM is theoreti-
cally sound and permutation invariant, the value of C-KDM
is not upper bounded, which makes it suffer from poor inter-
pretability.

Last and not the least, the above mentioned measures can
only deal with scalar variables. Thus, it still remains chal-
lenging when each variable is of an arbitrary dimension.

Generalization of TC with Shearer’s Inequality
One should note that, TC is not the only non-negative mea-
sures of multivariate dependence. In fact, it can be seen as
the simplest member of a large family, all obtained as special
cases of an inequality due to Shearer (Chung et al. 1986).

Given a set of L random variables y1,y2, · · · ,yL. De-
note ϕ the family of all subsets of [L] with the property that
every member of [L] lies in at least k members of ϕ, the
Shearer’s inequality states that:

H(y1,y2, · · · ,yL) ≤ 1

k

∑
S∈ϕ

H(yi, i ∈ S). (4)

2Throughout this work, we use [n] := {1, 2, · · · , n} and [n] \
{i} := [n]\ i. For brevity, we frequently abbreviate the variable set
{y1,y2, · · · ,yn} with y[n], and {y1, · · · ,yi−1,yi+1, · · · ,yn}
with y[n]\i.
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Obviously, TC (i.e., Eq. (2)) is obtained when ϕ =
(
L
1

)
.

Another important inequality arises when we take ϕ =(
L
L−1
)
, in which the Shearer’s inequality suggests an alter-

native non-negative multivariate dependence measure as:

D(y) =

[
L∑
i=1

H(y[L]\i)

]
− (L− 1)H(y1,y2, · · · ,yd).

(5)
Eq. (5) is also called the dual total correlation (DTC) (Sun

1975) and has an equivalent form (Austin 2018; Abdallah
and Plumbley 2012) (see proof in supplementary material):

D(y) = H(y1,y2, · · · ,yd)−
[
L∑
i=1

H(yi|y[L]\i)

]
. (6)

The Shearer’s inequality suggests the existence of at least
(L− 1) potential mathematical formulas to quantify the de-
pendence of data, by just taking the gap between the two
sides. Although all belong to the same family, these formulas
emphasize different parts of the joint distributions and thus
cannot be simply replaced by each other (see an illustrate
figure in the supplementary material). Finally, one should
note that, the Shearer’s inequality is just a loose bound on
the sum of partial entropy terms. It has been recently refined
further in (Madiman and Tetali 2010). We leave a rigorous
treatment to the tighter bound as future work.

Matrix-based Dependence Measure
Our Measures and their Estimation
We exemplify the use of Shearer’s inequality in quantifying
data dependence with TC and DTC in this work. First, to
make TC and DTC more interpretable, i.e., taking values in
the interval of [0 1], we normalize both measures as follows:

T ∗(y) =

[∑L
i=1 H(yi)

]
−H(y1,y2, · · · ,yL)[∑L

i=1 H(yi)
]
−max

i
H(yi)

, (7)

D∗(y) =

[∑L
i=1 H(y[L]\i)

]
− (L− 1)H(y1,y2, · · · ,yL)

H(y1,y2, · · · ,yL)
.

(8)
Eqs. (7) and (8) involve entropy estimation in high-

dimensional space, which is a notorious problem in statis-
tics and machine learning (Belghazi et al. 2018). Although
data discretization or entropy term decomposition has been
used before to circumvent the “curse of dimensionality”,
they all have their own intrinsic limitations. For data dis-
cretization, selecting a proper data discretization strategy is
a tricky problem and an improper discretization may lead
to serious estimation error. For entropy term decomposition,
the resulting measure is no longer permutation invariant.

Different from earlier efforts, we introduce the re-
cent proposed matrix-based Rényi’s α-entropy func-
tional (Sanchez Giraldo, Rao, and Principe 2014; Yu et al.
2019), which evaluate entropy terms in terms of the normal-
ized eigenspectrum of the Hermitian matrix of the projected

data in the reproducing kernel Hilbert space (RKHS), with-
out explicit evaluation of the underlying data distributions.
For brevity, we directly give the following definition.
Definition 1. (Sanchez Giraldo, Rao, and Principe 2014)
Let κ : Y × Y 7→ R be a real valued positive definite
kernel that is also infinitely divisible (Bhatia 2006). Given
Y = {y1, y2, · · · , yN}, where the subscript i denotes the
exemplar index, and the Gram matrixK obtained from eval-
uating a positive definite kernel κ on all pairs of exem-
plars, that is (K)ij = κ(yi, yj), a matrix-based analogue to
Rényi’s α-entropy for a normalized positive definite (NPD)
matrix A of size N ×N , such that tr(A) = 1, can be given
by the following functional:

Sα(A) =
1

1− α log2 (tr(A
α)) =

1

1− α log2
[ N∑
i=1

λi(A)
α
]
,

(9)
where Aij = 1

N
Kij√
KiiKjj

and λi(A) denotes the i-th eigen-

value of A.
Definition 2. (Yu et al. 2019) Given a collection of N sam-
ples {si = (y1i , y

2
i , · · · , yLi )}Ni=1, each sample contains L

(L ≥ 2) measurements y1 ∈ Y1, y2 ∈ Y2, · · · , yL ∈ YL
obtained from the same realization, and the positive definite
kernels κ1 : Y1 × Y1 7→ R, κ2 : Y2 × Y2 7→ R, · · · ,
κL : YL × YL 7→ R, a matrix-based analogue to Rényi’s
α-order joint-entropy among L variables can be defined as:

Sα(A
[L]) = Sα

(
A1 ◦A2 ◦ · · · ◦AL

tr(A1 ◦A2 ◦ · · · ◦AL)

)
, (10)

where (A1)ij = κ1(y
1
i , y

1
j ), (A2)ij = κ2(y

2
i , y

2
j ), · · · ,

(AL)ij = κL(y
L
i , y

L
j ), and ◦ denotes the Hadamard prod-

uct.
Based on the above definition, we propose a pair of mea-

sures, namely the matrix-based normalized total correlation
(denoted by T ∗α) and the matrix-based normalized dual total
correlation (denoted by D∗α):

T ∗α(y) =

[∑L
i=1 Sα(A

i)
]
− Sα

(
A[L]

)[∑L
i=1 Sα(A

i)
]
−max

i
Sα(Ai)

, (11)

D∗α(y) =

[∑L
i=1 Sα

(
A[L]\i)]− (L− 1)Sα

(
A[L]

)
Sα
(
A[L]

) .

(12)
As can be seen, both T ∗α and D∗α are independent of the

specific dimensions of y1,y2, · · · ,yL and avoid estimation
of the underlying data distributions, which makes them suit-
able to be applied on data with either discrete or continuous
distributions. Moreover, it is simple to verify that both T ∗α
and D∗α are permutation invariant to the ordering of vari-
ables.

Properties and Observations of T ∗
α and D∗

α

We present more useful properties and observations of T ∗α
and D∗α. In particular, we want to underscore that they are
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differentiable and can be used as loss functions to train neu-
ral networks. Note that, when L = 2, both T ∗α and D∗α
reduce to the matrix-based normalized mutual information,
which we denote by I∗α. See the supplementary material for
proofs and additional supporting results.
Property 1. 0 ≤ T ∗α ≤ 1 and 0 ≤ D∗α ≤ 1.

Remark. A major difference between our T ∗α and D∗α to
others is that our bounded property is satisfied with a finite
number of realizations. An interesting and rather unfortu-
nate fact is that although the statistics of many measures
satisfies this desired property, their corresponding estima-
tors hardly follow it (Seth and Prı́ncipe 2012).

Property 2. T ∗α and D∗α reduce to zero iff y1,y2, · · · ,yL
are independent.

Property 3. T ∗α and D∗α have analytical gradients and are
automatically differentiable.

Remark. This property complements the theory of the
matrix-based Rényi’s α-entropy functional (Sanchez Gi-
raldo, Rao, and Principe 2014; Yu et al. 2019), as it opens
the door to challenging machine learning problems involv-
ing neural networks (as will be illustrated later in this work).

Property 4. The computational complexity of T ∗α and D∗α
are respectivelyO(LN2)+O(N3) andO(LN3), and grows
linearly with the number of variables L.

Remark. In case of L = 2, both T ∗α and D∗α costO(N3) in
time. As a reference, the computational complexity of HSIC
is between O(N2) and O(N3) (Zhang et al. 2018). How-
ever, HSIC only applies for two variables and is not upper
bounded. We leave reducing the complexity as future work.
But the initial exploration results, shown in the supplemen-
tary material, suggest that we can reduce the complexity by
taking the average of the estimated quantity over multiple
random subsamples of size K � N .

Observation 1. T ∗α and D∗α are more statistically power-
ful than prevalent random vector association measures, like
HSIC, dCov, KCCA and QMI CS, in identifying indepen-
dence and discovering complex patterns between y1 and y2.

We made this observation with the same test data as has
been used in (Josse and Holmes 2016; Gretton et al. 2008).

The first test data is generated as follows (Gretton
et al. 2008). First, we generate N i.i.d. samples from two
randomly picked densities in the ICA benchmark densi-
ties (Bach and Jordan 2002). Second, we mixed these ran-
dom variables using a rotation matrix parameterized by an
angle θ, varying from 0 to π/4. Third, we added d − 1 ex-
tra dimensional Gaussian noise of zero mean and unit stan-
dard deviation to each of the mixtures. Finally, we multi-
plied each resulting vector by an independent random d-
dimensional orthogonal matrix. The resulting random vec-
tors are dependent across all observed dimensions.

The second test data is generated as follows (Székely et al.
2007). A matrix Y 1 ∈ RN×5 is generated from a mul-
tivariate Gaussian distribution with an identity covariance
matrix. Then, another matrix Y 2 ∈ RN×5 is generated as
Y 2
ml = Y 1

mlεml, m = 1, 2, · · · , N , l = 1, 2, · · · , 5, where
εml are standard normal variables and independent of Y 1.
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Figure 1: Power test against prevalent random vector associ-
ation measures. Our measure is the most powerful one when
α = 1.01 and other values (see supplementary material).

In each test data, we compare all measures with a thresh-
old computed by sampling a surrogate of the null hypothesis
H0 based on shuffling samples in y2 with 100 times. That is,
the correspondences between y1 and y2 are broken by the
random permutations. The threshold is the estimated quan-
tile 1− τ where τ is the significance level of the test (Type I
error). If the estimated measure is larger than the computed
threshold, we reject the null hypothesis and argue the exis-
tence of an association between y1 and y2, and vice versa.

We repeated the above procedure 500 independent trials.
Fig. 1 demonstrated the averaged acceptance rate of the null
hypothesisH0 (in test data I with respect to different rotation
angle θ) and the averaged detection rate of the alternative hy-
pothesis H1 (in test data II with respect to different number
of samples).

Intuitively, in the first test data, a zero angle means the
data are independent, while dependence becomes easier to
detect as the angle increases to π/4. Therefore, a desirable
measure is expected to have acceptance rate of H0 nearly to
1 at θ = 0. But the rate is expected to rapidly decaying as θ
increases. In the second test data, a desirable measure is ex-
pected to always have a large detection rate ofH1 regardless
of the number of samples.

Observation 2. T ∗α and D∗α are more interpretable
than their multivariate correlation counterparts in quan-
tifying the dependence in each dimension of y =
{y1,y2, · · · ,yd} ∈ Rd.

This observation was made by comparing T ∗α and D∗α
against three popular multivariate correlation measures.
They are multivariate Spearman’s ρ, C-KDM and IDD (Ro-
mano et al. 2016). Fig. 2 shows the average value of the an-
alyzed measures on the following relationships induced on
d ∈ [1, 9] and n = 1000 points:
Data A: The first dimension y1 is uniformly distributed in
[0, 1], and yi = (y1)i for i = 2, 3, · · · , d. The total depen-
dence should be 1, because {y2,y3, · · · ,yd} depend non-
linearly only on y1.
Data B: There is a functional relationship between y1

and the remaining dimensions: y1 = ( 1
d−1

∑d
i=2 y

i)
2
,

where {y2,y3, · · · ,yd} are uniformly and independently
distributed. In this case, the strength of the overall depen-
dence should decrease with the increase of dimension.
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Figure 2: Raw measure scores on synthetic data with differ-
ent relationships.

di = 1 di ∈ Z+

L = 2

ρ, MIC

GRN Inference
HSIC, dCov, QMI CS

Robust ML

L > 2

C-KDM, IDD
Outlier Detection Understanding CNNs

Table 1: Four dependence scenarios. Popular measures in
each scenario and potential applications.

Machine Learning Applications
We present four solid machine learning applications to
demonstrate the utility and superiority of our proposed
matrix-based normalized total correlation (T ∗α) and matrix-
based normalized dual total correlation (D∗α). The applica-
tions include the gene regulatory network (GRN) inference,
the robust machine learning under covariate shift and non-
Gaussian noises, the subspace outlier detection and the un-
derstanding of the dynamics of learning of CNNs. The logic
behind the organization of these applications is shown in Ta-
ble 1. We want to emphasize here that the use of normal-
ization depends on the priority given to interpretability. For
example, when the measure is employed as a loss function,
the normalization does not contribute to performance. How-
ever, when we use it to quantify information flow or neural
interactions in CNNs, a bounded value is preferred.

Gene Regulatory Network Inference
Gene expressions form a rich source of data from which to
infer GRN, a sparse graph in which the nodes are genes and
their regulators, and the edges are regulatory relationship be-
tween the nodes. In the first application, we resorted to the
DREAM4 challenge (Marbach et al. 2012) data set for re-
constructing GRN. There are 5 networks (Net.) in the in-
silico (simulated) version of this data set, each contains ex-
pressions for 10 genes with 136 data points. The goal is to
reconstruct the true network based on pairwise dependence
between genes. We compared five test statistics (Pearsons’
ρ, mutual information with respectively bin estimator and
KSG estimator (Kraskov, Stögbauer, and Grassberger 2004),
maximal information coefficient (MIC) (Reshef et al. 2011)
and Iα), and quantitatively evaluate reconstruction qualify
by Area Under the ROC curve (AUC). Table 2 clearly indi-
cates our superior performance.

Data ρ MI (bin) MI (KSG) MIC Iα
Net. 1 0.62 0.59 0.74 0.75 0.78
Net. 2 0.52 0.58 0.76 0.74 0.87
Net. 3 0.44 0.61 0.83 0.76 0.84
Net. 4 0.45 0.60 0.75 0.75 0.75
Net. 5 0.38 0.61 0.88 0.89 0.97

Table 2: GRN inference results (AUC score) on DREAM4
challenge. The first and second best performances are in
bold and underlined, respectively.

Robust Machine Learning

Robust machine learning under domain shift (Quionero-
Candela et al. 2009) has attracted increasing attentions in
recent years. This is justified because the success of deep
learning models is highly dependent on the assumption that
the training and testing data are i.i.d. and sampled from the
same distribution. Unfortunately, the data in reality is typ-
ically collected from different but related domains (Wilson
and Cook 2020), and is corrupted (Chen et al. 2016b).

Let (x, y) be a pair of random variables with x ∈ Rp and
y ∈ R (in regression) or y ∈ Rq (in classification), such that
x denotes input instance and y denotes desired signal. We
assume x and y follow a joint distribution Psource(x, y). Our
goal is, given training samples drawn from Psource(x, y), to
learn a model f predicting y from x that works well on a dif-
ferent, a-priori unknown target distribution Ptarget(x, y). We
consider here only the covariate shift, in which the assump-
tion is that the conditional label distribution is invariant (i.e.,
Ptarget(y|x) = Psource(y|x)) but the marginal distributions of
input P (x) are different between source and target domains
(i.e., Ptarget(x) 6= Psource(x)). On the other hand, we also
assume that y (in the source domain) may be contaminated
with non-Gaussian noises (i.e., ỹ = y + ε). We focus on
a fully unsupervised environment, in which we have no ac-
cess to any samples x or y from the target domain, i.e., the
source-to-target manifold alignment becomes burdensome.

Our work in this section is directly motivated by (Green-
feld and Shalit 2020), which introduces the criterion of mini-
mizing the dependence between input x and prediction error
e = y − f(x) to circumvent the covariate shift, and uses
the HSIC as the measure to quantify the independence. We
provide two contributions over (Greenfeld and Shalit 2020).
In terms of methodology, we show that by replacing HSIC
with our new measures (i.e., I∗α), we improve the prediction
accuracy in the target domain. Theoretically, we show that
our new loss, namely min I∗α(x; e) is not only robust against
covariate shift and also non-Gaussian noises on y based on
Theorem 1.

Theorem 1. Minimizing the (normalized) mutual informa-
tion I(x; e) is equivalent to minimizing error entropy H(e).

Remark. The minimum error entropy (MEE) criterion (Er-
dogmus and Principe 2002) has been extensively studied in
signal processing to address non-Gaussian noises with both
theoretical guarantee and empirical evidence (Chen et al.
2009, 2016a). We summarize in supplementary material two
insights to further clarify its advantage.
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Method Fashion MNIST
Source Target

CE 90.90± 0.002 73.73± 0.086
HSIC 91.03± 0.003 76.56± 0.034

Hα(e) 91.10± 0.013 75.48± 0.069
I∗α(x; e) 91.17± 0.040 76.79± 0.040

Table 3: Test accuracy (%) on Fashion-MNIST

Learning under covariate shift. We first compare the
performances of cross entropy (CE) loss, HSIC loss with
our error entropy Hα(e) loss and I∗α(x; e) loss under covari-
ate shift. Following (Greenfeld and Shalit 2020), the source
data is the Fashion-MNIST dataset (Xiao, Rasul, and Voll-
graf 2017), and images which are rotated by an angle θ sam-
pled from a uniform distribution over [−20◦, 20◦] constitute
the target data. The neural network architecture is set as:
there are 2 convolutional layers (with, respectively, 16 and
32 filters of size 5× 5) and 1 fully connected layers. We add
batch normalization and max-pooling layer after each con-
volutional layer. We choose ReLU activation, batch size 128
and the Adam optimizer (Kingma and Ba 2014).

For I∗α(x; e) and Hα(e), we set α = 2. For the HSIC
loss, we take the same hyper-parameters as in (Greenfeld
and Shalit 2020). The results are summarized in Table 3.
Our Hα(e) performs comparably to HSIC, but our Iα(x; e)
improves performances in both source and target domains.

Learning in noisy environment. We select the widely
used bike sharing data set (Fanaee-T and Gama 2014) in
UCI repository, in which the task is to predict the number
of hourly bike rentals based on the following features: holi-
day, weekday, workingday, weathersit, temperature, feeling
temperature, wind speed and humidity. Consisting of 17, 379
samples, the data was collected over two years, and can be
partitioned by year and season. Early studies suggest that
this data set contains covariate shift due to the change of
time (Subbaswamy, Schulam, and Saria 2019).

We use the first three seasons samples as source data
and the forth season samples as target data. The model of
choice is a multi-layered perceptron (MLP) with three hid-
den layer of size 100, 100 and 10 respectively. We com-
pare our I∗α(x; e) andHα(e) with mean square error (MSE),
mean absolutely error (MAE) and HSIC loss, assuming y is
contaminated with additive noise as ỹ = y + ε. We consider
two common non-Gaussian noises with the noise level con-
trolled by parameter ρ: the Laplace noise ε ∼ Laplace(0, ρ);
and the shifted exponential noise ε = ρ(1 − η) with η ∼
exp(1). We use batch-size of 32 and the Adam optimizer.

We compared our I∗α(x; e) and Hα(e) against MSE loss,
MAE loss and HSIC loss. Fig. 3 demonstrates the averaged
performance gain (or loss) of different loss functions over
MSE loss in 10 independent runs. In most of cases, I∗α(x; e)
improves the most. HSIC is not robust to Laplacian noise,
whereas MAE performs poorly under shifted exponential
noise. On the other hand, Hα(e) also obtained a consistent
performance gain over MSE, which further corroborates our
theoretical arguments.
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Figure 3: Comparisons of models trained with MSE, MAE,
HSIC loss, I∗α(x; e) and Hα(e). Each bar denotes the rela-
tive improvement (RI) on prediction accuracy over MSE.

Subspace Outlier Detection
Our third application is the outlier detection, in which we
aim to identify data objects that do not fit well with the gen-
eral data distributions (in Rd). Despite diverse paradigms,
such as the density-based methods (Breunig et al. 2000) and
the distance-based methods (Bay and Schwabacher 2003),
have been developed so far, they usually suffer from the
notorious “curse of dimensionality” (Keller, Muller, and
Bohm 2012). In fact, the principle of concentration of dis-
tance (Beyer et al. 1999) reveals that for a query point p, its
relative distance (or contrast) D to the farthest point and the
nearest point converges to 0 with the increase of dimension-
ality d:

lim
d→∞

Dmax −Dmin

Dmin
→ 0. (13)

This means that the discriminative power between the near-
est and the farthest neighbor becomes rather poor in high-
dimensional space.

On the other hand, real data often contains irrelevant at-
tributes or noises. This phenomenon degrades further the
performance of most existing outlier detection methods
if the outliers are hidden in subspaces of all given at-
tributes (Kriegel, Schubert, and Zimek 2008). Therefore, the
subspace methods that explore lower-dimensional subspace
in order to discover outliers provide a promising avenue.

Empirical evidence suggests that, the larger the deviation
of this subspace from the mutual independence in each di-
mension, the higher the potential that it is easier to distin-
guish outliers from normal observations (Müller et al. 2009).
Therefore, measuring the total amount of dependence of a
subspace becomes a pivotal aspect. To this end, we plug our
dependence measure (either T ∗α or D∗α) into a commonly
used Apriori subspace search scheme (Nguyen et al. 2013)
to assess the quality of each subspaces (the larger the bet-
ter). Next, we detect outliers with a widely-used Local Out-
lier Factor (LOF) method (Breunig et al. 2000) on the top 10
subspaces with highest dependence score.

We use again the AUC to quantitatively evaluate outlier
detection results of our method against three competitors:
1) LOF in full-space; 2) Feature Bagging (FB) (Lazare-
vic and Kumar 2005) that applies LOF on randomly se-
lected subspaces; and 3) LOF on subspaces generated by
IDD. We omit the results of LOF on the subspaces gen-
erated by C-KDM due to relatively poor performance. We
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Data Set (N × d) LOF FB IDD T ∗α D∗α
Diabetes (568× 8) 0.68 0.63 0.55 0.68 0.68
breastW (683× 9) 0.46 0.53 0.76 0.71 0.71
Cardio (1831× 21) 0.68 0.65 0.62 0.75 0.70
Musk (3062× 166) 0.42 0.40 0.67 0.73 0.83

Speech (3686× 400) 0.36 0.38 0.50 0.58 0.54

Table 4: Outlier detection results (AUC score) on real data.
The first and second best performances are in bold and un-
derlined, respectively.

test on 5 publicly available data sets from the Outlier De-
tection DataSets (ODDS) library (Rayana 2016). These data
cover a wide range of number of samples (N ) and data di-
mensionality (d). The prevalence of anomalies ranges from
1.65% (in speech) to 35% (in breastW). The results are re-
ported in Table 4. As can be seen, our T ∗α and D∗α achieve
remarkable performance gain over LOF on all attributes, es-
pecially when the d is large. Under a Wilcoxon signed rank
test (Demšar 2006) with 0.05 significance level, both T ∗α and
D∗α significantly outperform LOF. This observation corrobo-
rates our motivation of reliable subspace search. By contrast,
the random subspace selection scheme in FB does not show
obvious advantage, and the subspace quality generated by
IDD is lower than ours.

Understanding the Dynamics of Learning of CNNs
Understanding the dynamics of learning of deep neural
networks (especially CNNs) has received increasing atten-
tion in recent years (Shwartz-Ziv and Tishby 2017; Saxe
et al. 2018). From an information-theoretic perspective,
most studies aim to unveil fundamental properties associ-
ated with the dynamics of learning of CNNs by monitoring
the mutual information between pairwise layers across train-
ing epochs (Yu et al. 2020).

Different from the layer-level dependence, we provide
here an alternative way to quantitatively analyze the dynam-
ics of learning in a feature-level. Specifically, suppose there
are Nt feature maps in the t-th convolutional layer. Let us
denote them by C1, C2, · · · , CNt . We use two quantities to
capture the dependence in feature maps: 1) the pairwise de-
pendence between the i-th feature map and the j-th feature
map (i.e., I∗α(C

i;Cj)); 2) the total dependence among all
feature maps (i.e., T ∗α(C

1, C2, · · · , CNt)).
We train a standard VGG-16 (Simonyan and Zisserman

2015) on CIFAR-10 (Krizhevsky 2009) with SGD optimizer
from scratch. The T ∗α in different layers across different
training epochs is illustrated in Fig. 4. There is an obvious
increasing trend for T ∗α in all layers during the training, i.e.,
the total amount of dependence amongst all feature maps
continuously increases as the training moves on, until ap-
proaching to the value of nearly 1. A similar observation
is also made by HSIC. Note that, the co-adaptation phe-
nomenon has also been observed in fully connected layers
and eventually inspired the Dropout (Hinton et al. 2012).

Fig. 5 shows the histogram of I∗α in each layer. Similar to
the general trend of T ∗α , we observed that the most frequent
values of I∗α change from nearly 0 to nearly 1. Moreover,
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Figure 4: T ∗α across training epochs for different convolu-
tional layers.
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Figure 5: The histogram of I∗α (in log-scale) in (a) averaged
from the 1st to the 7th CONV layers; and (b) averaged from
the 8th to 13th CONV layer. Feature maps reach high depen-
dence with less than 20 epochs of training in lower layers,
but need more than 100 epochs in upper layers.

such movement in lower layers occurs much earlier than that
in upper layers. This behavior is in line with (Raghu et al.
2017), which states that the neural networks first train and
stabilize lower layers and then move to upper layers.

Conclusion
We suggest two measures to quantify from data the depen-
dence of multiple variables with arbitrary dimensions. Dis-
tinct from previous efforts, our measures avoid the estima-
tion of the data distributions and are applicable to all de-
pendence scenarios (for i.i.d. data). The proposed measures
more easily (e.g., with less data) identify independence and
discover complex dependence patterns. Moreover, the dif-
ferentiable property enables us to design new loss functions
for training neural networks.

In terms of specific applications, we demonstrated that the
new loss min I∗α(x; e) is robust against both covariate shift
and non-Gaussian noises. We also provided an alternative
way to analyze the dynamics of learning of CNNs based on
the dependence amongst feature maps, and obtained mean-
ingful observations.

In the future, we will explore other properties of our mea-
sures. We are interested in applying them to other challeng-
ing problems, such as disentangled representation learning
with variational autoencoders (VAEs) (Kingma and Welling
2014). We also performed a preliminary investigation on a
new robust loss, termed the deep deterministic information
bottleneck (DIB), in the supplementary material.
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