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Abstract

Data heterogeneity has been identified as one of the key fea-
tures in federated learning but often overlooked in the lens
of robustness to adversarial attacks. This paper focuses on
characterizing and understanding its impact on backdooring
attacks in federated learning through comprehensive experi-
ments using synthetic and the LEAF benchmarks. The initial
impression driven by our experimental results suggests that
data heterogeneity is the dominant factor in the effectiveness
of attacks and it may be a redemption for defending against
backdooring as it makes the attack less efficient, more chal-
lenging to design effective attack strategies, and the attack
result also becomes less predictable. However, with further
investigations, we found data heterogeneity is more of a curse
than a redemption as the attack effectiveness can be signifi-
cantly boosted by simply adjusting the client-side backdoor-
ing timing. More importantly, data heterogeneity may result
in overfitting at the local training of benign clients, which
can be utilized by attackers to disguise themselves and fool
skewed-feature based defenses. In addition, effective attack
strategies can be made by adjusting attack data distribution.
Finally, we discuss the potential directions of defending the
curses brought by data heterogeneity. The results and lessons
learned from our extensive experiments and analysis offer
new insights for designing robust federated learning methods
and systems.

Introduction
Federated Learning (FL) is widely successful in training ma-
chine learning (ML) models collaboratively across clients
without sharing private data (McMahan et al. 2016; Zhao
et al. 2018; Bonawitz et al. 2019). In FL, models are trained
locally at clients to preserve data privacy and the trained
model weights are sent to a central server for aggregation
to update the global model. During the aggregation, privacy
mechanisms such as differential privacy (Abadi et al. 2016)
and secure aggregation (Bonawitz et al. 2017) are often em-
ployed to strengthen the privacy. There are two types of poi-
soning attacks: performance degradation attacks where the
goal of the adversary is to reduce the accuracy/F1 scores
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of the model (such as Byzantine attacks) and backdoor at-
tacks aiming at creating targeted misclassifications without
affecting the overall performance on the main tasks (Chen
et al. 2017; Xie et al. 2019; Bagdasaryan et al. 2018).
Defending against such attacks usually requires complete
control of the training process or monitoring the training
data (Steinhardt, Koh, and Liang 2017), which is challeng-
ing in FL due to the privacy requirements. In this paper,
we choose the popular and sophisticated backdoor attacks
as an example for our study. Although some work exists to
defend against backdoor attacks, including activation clus-
tering (Chen et al. 2018) and k-means clustering (Shen,
Tople, and Saxena 2016), these approaches require access
to the training data making them inapplicable for FL set-
tings. Some attack strategies tailored for FL have also been
studied including sybil attacks (Fung, Yoon, and Beschast-
nikh 2018), model replacement (Bagdasaryan et al. 2018),
GANs based attacks (Zhang et al. 2019), and distributed at-
tacks (Xie et al. 2019). However, a comprehensive study on
the effectiveness of backdoor attacks under a variety of data
distribution among parties remains at unexplored.

The training data in FL is generated by clients and thus
heterogeneous inherently (Bonawitz et al. 2019; Chai et al.
2020; Zhao et al. 2018; Sattler et al. 2019). As the training
is conducted locally at each client, the data cannot be bal-
anced nor monitored like in conventional data-centralized
or distributed ML. Such uncontrollable and severe data het-
erogeneity is one of the key challenges of FL as it is rarely
seen in conventional ML. Despite its uniqueness and im-
portance, data heterogeneity has been largely overlooked
through the lens of robustness to backdoor attacks. Existing
FL backdoor attacks either assume IID training data distri-
bution among clients or only conduct a simplified study on
non-IID data (Bagdasaryan et al. 2018; Bhagoji et al. 2019;
Xie et al. 2019). None of them provides a comprehensive
study nor understanding on how data heterogeneity impacts
the backdoor attacks and defenses.

In this paper, we focus on quantifying and understanding
the implications brought by data heterogeneity in FL back-
door attacks through extensive empirical experiments and
comprehensive analysis.

We define Heterogeneity Index to quantify the extent
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of heterogeneity in training data. From our initial inves-
tigation driven by both synthetic and the practical LEAF
benchmark (Caldas et al. 2018), we surprisingly found that
data heterogeneity seems to be a redemption for defending
against backdoor attacks. Redemption 1: the attack effec-
tiveness (usually measured as Attack Success Rate or ASR)
reduces sharply when the heterogeneity of training data in-
creases. Redemption 2: we found the malicious data distri-
bution is an overlooked important factor when defining an
attack strategy given the training data is heterogeneous. A
poor selection of malicious data distribution can result in
poor attack effectiveness. Redemption 3: we further dis-
covered that malicious data distribution plays as a dominant
factor in the effectiveness of backdooring. E.g., contrary to
the common belief in existing works that higher attack scale
(defined as the number of compromised clients) and local
attack budget (defined as the quantity of backdoored data
per client) always lead to higher attack effectiveness, our
study demonstrates that this is not always the case as ma-
licious data distribution often outperforms the impact of at-
tack scale/budget. This discovery indicates that data hetero-
geneity makes the design of effective attack strategies more
challenging as the attack effectiveness is less correlated to
the straightforward attack scale/budget but rather the less in-
tuitive malicious data distribution.

Further investigations, however, reveal that data hetero-
geneity actually brings curses for the robustness of FL.
Curse 1: data heterogeneity makes the client-side training
very sensitive to the backdoor attack timing. With a proper
attack timing, e.g., at the last local batch, the effectiveness
of attack can be significantly boosted with only a fraction
of attack budget. Curse 2: what’s worse is that data het-
erogeneity makes the most promising skewed-feature based
defense strategies such as cosine similarity fall short. Such
defending method detects compromised clients by realizing
their features are more overfitted than the benign clients.
However, with data heterogeneity, benign clients may also
have overfitted features that look similar to those of compro-
mised clients. This allows the backdoor attackers to disguise
themselves and fool the skewed-feature checking. Curse 3:
more effective attack strategies can be derived by making the
backdoor clients’ data distribution close to the overall data
distribution with the help of distribution distance measures
such as the Chi-Square statistics. To defend these curses
brought by data heterogeneity, we discuss how existing de-
fense mechanisms fit here and the potential directions on
data-heterogeneity aware defending strategies.

In summary, our empirical experimental studies show that
data heterogeneity appears to be a redemption for the ro-
bustness of FL as it makes the attack less effective and
more challenging to design good attack strategies. However,
our further investigations reveal that data heterogeneity also
brings several curses for FL backdooring as it is harder to de-
tect and the attack effectiveness can be significantly boosted
by adjusting the local attack timing and malicious data dis-
tribution. The defending strategies we propose help alleviate
these curses. The results and lessons learned from our thor-
ough experiments and comprehensive analysis offer new in-
sights for designing robust FL methods and systems.

Related Works
Data Heterogeneity in Federated Learning. While data
heterogeneity is not new in the ML, the extent of data het-
erogeneity is much more prevalent in FL compared to data
centralized learning (Chai et al. 2020; Li et al. 2020). (Li
et al. 2019) theoretically demonstrates the bounds on con-
vergence due to heterogeneity, while (Sattler et al. 2019)
providing empirical results on how changing heterogeneity
affects model performance. (Li et al. 2020) discusses the
challenges of heterogeneity for FL and (Zhao et al. 2018)
demonstrates how the clients’ local model weights diverge
due to data heterogeneity.

Backdoor Attack. Backdoor attacks for deep learning
models are presented in (Chen et al. 2017), where an ad-
versary can insert a pattern in a few training samples from
a source class and relabel them to a target class, causing a
targeted missclassification. One of the earlier papers (Bag-
dasaryan et al. 2018) proposes the model replacement tech-
nique, whereby they eventually replace the global model
with a backdoored model stealthily. (Bhagoji et al. 2019)
demonstrates that boosting model weights can help attack-
ers and shows that FL is highly susceptible to backdoor at-
tacks. (Fung, Yoon, and Beschastnikh 2018) introduces sybil
attacks in the context of FL using label-flipping and back-
dooring. (Zhang et al. 2019) uses GANs to attack the global
model, while (Xie et al. 2019) takes a different approach by
focusing on decentralized, colluding attackers, and creating
efficient trigger patterns. Our paper takes a different angle
by focusing on analyzing the impact of data heterogeneity
on attack effectiveness. This subject is rarely studied even
though data heterogeneity is a critical aspect of FL.

Backdoor Defense. There have been various proposals
to defend DNN from susceptible adversarial attacks such
as filtering techniques (Steinhardt, Koh, and Liang 2017)
and fine-pruning (Liu, Dolan-Gavitt, and Garg 2018), but
are mainly focused on traditional data-centralized ML meth-
ods. Clustering techniques specifically for FL are proposed
in (Tran, Li, and Madry 2018; Chen et al. 2018; Shen, Tople,
and Saxena 2016) and in (Fung, Yoon, and Beschastnikh
2018), FoolsGold is proposed to defend against sybil at-
tacks by using cosine similarities. (Ma, Zhu, and Hsu 2019)
proposes defending with differential privacy without com-
promising user confidentiality. The authors of (Sun et al.
2019) extend this by demonstrating weak differential pri-
vacy and norm-clipping mitigate attacks, but do not provide
any strong defense mechanisms. None of these defenses ex-
plore defending effectiveness under various extent of data
heterogeneity.

Experiment Setups for FL Backdooring
Federated Learning Setup. We use LEAF (Caldas et al.
2018), an open-source practical FL benchmark, for our ex-
periments. Most existing works simulate data heterogene-
ity by partitioning a dataset among clients using probabil-
ity distributions, but LEAF 1 provides more realistically
distributed datasets. In this paper, we use the FEMNIST
dataset provided by LEAF as an example for CNN model,

1LEAF: https://github.com/TalwalkarLab/leaf
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Dataset Model Train/Test split Clients
Total/Per Round

Learning Rate
/Batch Size

Local Epochs/
Total Rounds

FEMNIST 2 conv 2 dense 49,644/4,964 179/17 0.004/10 1/2000
Sent140 100 cell lstm 2 dense 6,553/655 50/10 0.0003/4 1/10

CIFAR10 4 conv 2 dense 50,000/10,000 200/20 0.0005/32 1/500

Table 1: Training Setup.

Figure 1: An overview of the FL backdooring procedure.

which is a handwritten character classification task for 62
classes. We use Sent140 from LEAF as an example for
LSTM model, a sentiment classification task for 2 classes
(positive/negative) on tweets. As the total dataset contains
millions of data points, LEAF (Caldas et al. 2018) suggests
sampling the dataset and provides a reference implementa-
tion. We also use CIFAR10 (partitioned across 200 clients)
for reference as it is commonly used in FL literature. More
details of the dataset, model, training settings, and learning
hyperparameter parameters are summarized in Table 1.

Control and Quantify Heterogeneity. FEMNIST,
Sent140, and CIFAR10 have their default data distributions.
To explore the impact of different heterogeneity on FL back-
dooring, we control the heterogeneity by varying the num-
ber of maximum classes per client following (Zhao et al.
2018; Fung, Yoon, and Beschastnikh 2018). Less number of
classes per client results in less evenly distributed data and
thus is more heterogeneous To better quantify heterogeneity,
we define Heterogeneity Index (HI) as a normalized hetero-
geneity measure:

HI(c) = 1− 1
Cmax−1 ∗ (c− 1), (1)

where c adjusts the maximum number of classes per client
(i.e. the parameter controlling heterogeneity), and Cmax is
the total number of classes in the dataset. The scaling per-
formed here is to normalize the value between 0 and 1, with
1 being the highest data heterogeneity, vice versa. We also
perform our experiments with Gaussian and Dirichlet distri-
butions (see Appendix) and the results are consistent with
HI .

Threat Model. We use the same threat model in litera-
ture (Xie et al. 2019; Sun et al. 2019; Chen et al. 2018).
Specifically, an adversary (impersonated by a malicious
client) can manipulate its model updates sent to the aggrega-
tor as well as its local training process in every aspect such as
the training data, learning hyperparameters, model weights,
and any local privacy mechanisms. The attacker has the ca-
pacity to compromise multiple parties and multiple attackers
can collude towards the same goal. The aggregation algo-
rithm, as well as the local training mechanisms of benign

clients are trusted. Our threat model assumes that only the
attacker clients have malicious intent, i.e., the benign clients
train their models as expected, without manipulating the data
or the training procedure. Objective and Method of Back-
dooring Attacks. We focus on backdoor attacks, where the
objective of the attacker is to inject a trigger to cause a tar-
geted misclassification without compromising the model ac-
curacy or disrupting convergence (Bagdasaryan et al. 2018;
Xie et al. 2019). In classification applications, backdoor at-
tacks are achieved by adding one or more extra patterns to
benign images for vision tasks and appending a trigger string
for NLP tasks so that the classifier deliberately misclassi-
fies the backdoored samples as a (different) target class. We
adopt the decentralized attack method proposed in (Xie et al.
2019) (for details, see Appendix). We randomly select a con-
figured number of clients as malicious clients, where data
points are backdoored by injecting a trigger pattern. Fig. 1
provides an overview of the attack process. We keep the
learning hyperparameters the same for both malicious and
benign clients. For testing successful backdoor injection, we
apply the trigger on 50% of the test dataset and evaluate the
global model on it. If the classification result is the same
as the label of the target class, we report a successful at-
tack. And the portion of successful attacks is defined as At-
tack Success Rate (ASR). It is worth noting that we do not
consider data points that are originally from the target class
when calculating ASR.

Relation to Model Poisoning. When the scaling factor
is large, backdooring is effectively doing model replace-
ment (aka model poisoning), see analysis provided in liter-
ature (Bagdasaryan et al. 2018). We show the scaling factor
analysis in Appendix.

Data Heterogeneity Seems to Be a Redemption
Redemption 1: Data Heterogeneity Reduces Attack
Effectiveness of Backdooring
Our initial study suggests data heterogeneity seems to be a
redemption for defending backdoor attacks in FL as it re-
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Figure 2: Attack Success Rate (ASR) vs. Heterogeneity Index (HI).

Figure 3: Attack Success Rate (ASR) vs. malicious data distribution (each bar represents a unique malicious data distribution).

Figure 4: Attack Success Rate (ASR) scalability in terms of attack scale and total attack budget.

duces the attack effectiveness and also challenges the design
of good attack strategies. To understand how data hetero-
geneity affects backdoor attacks in FL, we first conduct a set
of experiments by simply varying Heterogeneity Index from
0 to 1 to observe how the extent of data heterogeneity affects
the effectiveness of attacks measured as ASR. We fix all
other configurable parameters across experiments, i.e., 50%
malicious clients per round and 50% of data points per batch
is backdoored at each client (we evaluate other ratios of ma-
licious clients and malicious data points in later sections),
and the rest of configurations are the same as explained in
the Experiment Setup section. We run the experiment for
each Heterogeneity Index 10 times with different malicious
data distribution and report ASR as a box-and-whisker plot
shown in Fig. 2 The results clearly suggest that the overall
attack effectiveness reduces when higher heterogeneity ex-
ists in the training data as the medium ASR decreases when
Heterogeneity Index increases. Another interesting observa-
tion is that the box and whisker become much wider as Het-
erogeneity Index becomes higher, which indicates that the
attack effectiveness also becomes less stable when higher
heterogeneity presents in training data.

Backdoor attacks essentially make the model learn the
trigger features. In FL, each client performs its own local
training and the local model learns towards reaching the op-
tima of the feature space of that client’s local data. When
the training data is more heterogeneous across clients, some
features at a client may be more pronounced due to the more

skewed local data, i.e., results in overfitting. Such more aug-
mented features may suppress backdoor features (e.g., in the
extreme case, the backdoor features may become noise com-
pared to the augmented features), and thus make the attack
less effective.

Redemption 2: An Overlooked Key Factor:
Malicious Data Distribution
In Fig. 2, even though the trend that data heterogeneity re-
duces attack effectiveness is clear, from the box-and-whisker
plot, we can see that some malicious data distribution is
more effective than others. This indicates that the malicious
data distribution can be an important factor in attack effec-
tiveness. Given this has not been studied in the literature, we
perform empirical experiments to verify this. In this set of
experiments, we follow the similar setup as in Redemption
1, except that we fix the Heterogeneity Index. Specifically,
we use the original training data distribution from LEAF,
i.e., Heterogeneity Index is 0.2 and 0.0 for FEMNIST and
Sent140, respectively. For CIFAR10, we choose a distribu-
tion with Heterogeneity Index equal to 0.5. We report the
average ASR for 20 rounds of attack across 25 different
malicious data distributions in Fig. 3, where each bar rep-
resents a unique malicious data distribution. Note that the
data distribution of benign clients remains the same. The
results indeed demonstrate that the attack effectiveness de-
pends on malicious data distribution as the ASR changes sig-
nificantly when different malicious data distribution is used.
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(a) ASR vs. attack timing. (b) Global (upper case) and local (lower case) attack timing.

Figure 5: Comparison of different attack timing on FEMNIST.

Figure 6: Comparison between evenly vs. last batch attack timing under various Heterogeneity Index.

Such behavior can be explained as the effectiveness of learn-
ing backdoor trigger depends on the difference in feature
space between training data distribution and malicious data
distribution, which we provide further analysis in the Curse
3 section. This brings a redemption for the robustness of FL
as an improper selection of malicious data distribution may
result in poor attack effectiveness.

Redemption 3: Effective Attack Strategies are
More Challenging to Make
Since malicious data distribution is an important factor in FL
backdoor attacks, the natural question is how would it com-
pare to other factors such as the number of attackers and the
total number of poisoned datapoints. To understand this, we
conduct experiments by varying the configuration tuple (at-
tack scale, total attack budget, malicious data distribution)
and organize the results into a heat map in Fig. 4. To make
a fair comparison, when we increase the number of attack-
ers, we keep the total number of poisoned datapoints (attack
budget) the same and spread evenly across devices. All other
parameters are the same as defined in the experimental setup.

The results are quite surprising as there is no clear pat-
tern in the heat maps of all three benchmarks, which is
in contrary to the conclusion made by almost all existing
work (Bagdasaryan et al. 2018; Fung, Yoon, and Beschast-
nikh 2018; Sun et al. 2019; Xie et al. 2019) that higher at-
tack scale and total attack budget always lead to more effec-
tive attacks. These counter-intuitive results suggest that the
overlooked malicious data distribution is actually a domi-
nant factor in FL backdoor attacks. Different from homo-
geneous training data case, where malicious data distribu-
tion can be simply configured as IID (the total distribution
is a public secret) to maximize the attack effectiveness, ma-
licious data distribution is more difficult to find a reference
when training data is heterogeneous. Unlike the attack scale
and the total attack budget, malicious data distribution is not

straightforward to configure, which makes designing effec-
tive attack strategies more challenging and the attack effec-
tiveness is thus less predictable. Because of this, data hetero-
geneity brings another redemption for the robustness of FL.
To demonstrate the observed behaviour is not unique to our
chosen attack mechanism, we further evaluated the backdoor
attacks proposed in (Sun et al. 2019) and (Chen et al. 2018)
and the results (see Appendix) are consistent with Fig. 4.

Data Heterogeneity Brings Unseen Curses
Despite of the redemption brought by data heterogeneity, our
further investigations reveal that data heterogeneity can re-
sult in several curses for FL backdooring as the attack ef-
fectiveness can be significantly boosted by applying proper
local attack timing and malicious data distribution, and the
backdooring can camouflage itself much easier compared to
the homogeneous data case.

Curse 1: Local Attack Timing: a New Vulnerability
One important observation is that the local attack timing at
each client is important for attack effectiveness, especially
with data heterogeneity. To demonstrate this, we compare
four different local attack timing strategies: 1) evenly dis-
tribute the local attack budget across 10 batches (i.e., the de-
fault attack strategy in almost all literature); 2) only attack
the first 5 batches; 3) attack the middle 5 batches; 4) attack
the last 5 batches. To make a fair comparison, all the four
cases have the same local attack budget, i.e., backdoor 10%
data per batch in evenly strategy while backdoor 20% data
per batch for the other three timing strategies. We use de-
fault data heterogeneity of LEAF (i.e., HI=0.2) and all other
configures are the same as Redemption 1. The ASR com-
parison results are presented in Fig 5a and we can see the dif-
ference is quite large between different strategies with last 5
being the highest. Similar to the reason that data heterogene-
ity results in less effective attack due to overfitting, here later
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Figure 7: Cosine Similarity Comparison between benign and malicious clients under different Heterogeneity Index.

Figure 8: ASR trend with ChiSq Distance

attack helps backdoor features to be easily overfitted while
earlier attack may let the backdoor features easier to be for-
gotten (Liu, Dolan-Gavitt, and Garg 2018). To understand
the behaviors of considering both local and global attack
timing, we combine different global attack timing strategies
with different local attack timing strategies (evenly, last).
Note that last is attacking only the last batch as we found
it performs similar as last 5 but with 80% less attack budget
but with the same attack scale. The comparison results are
shown in Fig. 5b, where we can see the local attack timing
defines the ASR while global attack timing has little impact.
Another important observation is that in LATTER(last), the
total attack budget is only 0.2% of the total training data, one
order of magnitude lower than literature (Sun et al. 2019;
Bagdasaryan et al. 2018; Xie et al. 2019). Such extremely
low budget but highly effective attack makes the local attack
timing under data heterogeneity a new vulnerability. We fur-
ther investigate how data heterogeneity impacts the effects
of local attack timing. We perform the same experiments by
varying HI and present the results in Fig 6.

In the evenly strategy, as expected, higher heterogeneity
results in less attack effectiveness as discussed in Redemp-
tion 1. For last strategy, it is overall more robust under dif-
ferent heterogeneity and the improvement over evenly in-
creases with data heterogeneity. Therefore, the local attack
timing can be manipulated by attackers to increase attack
effectiveness, especially in high data heterogeneity case.

Curse 2: Failure of Skewed-Feature Based Defense
One of the most effective ways to detect FL backdoor attacks
is through differentiation between benign features and mali-
cious features (skewed-feature based defense) as they have
quite different footprints. For instance, cosine similarity can
be used to detect anomalous weights (Fung, Yoon, and
Beschastnikh 2018; Bagdasaryan et al. 2018). However, data
heterogeneity may increase the weight divergences among
the benign clients (Zhao et al. 2018) thus may make it less
distinguishable from malicious clients. To illustrate this, we
use cosine similarity as an example. Specifically, we com-
pute the cosine similarity of the last dense layer weights of

each client against the last dense layer weights of the previ-
ous round’s global model under different data heterogeneity.
We use the last attack timing strategy and the same exper-
iment setup as in Redemption 1. We use box-and-whisker
plot to show the distribution of the cosine similarity values
of benign clients and malicious clients respectively in Fig. 7.
From the results, it is clear that higher data heterogeneity
(i.e., higher HI) causes more weights dissimilarity in benign
clients (i.e., lower cosine similarity). Such high data weights
dissimilarity in benign data may be even higher than the dis-
similarity of backdoored data, which allows malicious data
stealth themselves under the radar of skewed-feature based
defense.

Curse 3: Malicious Data Distribution as Leverage
In our experiments from Figure 2, we discovered that ma-
licious data distribution is a dominant factor for the attack
effectiveness and it is more difficult to control compared to
attack scale and budget. With further investigation, we found
a simple yet efficient way to generate malicious data distri-
butions that are more effective in attack. Specifically, we find
the distribution distance between malicious data distribution
and overall training data distribution is strongly correlated
with the attack effectiveness. We tested a number of diver-
gence metrics such as KL divergence, Jensen-Shannon di-
vergence, Wasserstein distance and B-Distance, and all of
them can serve as a good metric here. We use the simple
Chi-squared distance (ChiSq or χ2) as an example for illus-
tration, which is defined as

χ2 =
∑c

i=1
(Oi−Ei)

2

Ei
, (2)

where Ei is the frequency of class i in the training dataset
and Oi is frequency of class i in the malicious dataset. The
smaller the χ2 value, the more similar the two distributions
are. Intuitively, when drawing a sample from the malicious
dataset, it quantifies how close the drawn sample is com-
pared to the training dataset.

To demonstrate the correlation, we do a scatter plot be-
tween ASR and ChiSq and perform a linear regression us-
ing the scatter points, see Figure 8. The experiments follow
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Figure 9: ASR comparison between different total attack
budget, attack scale, and ChiSq distance.

Dataset ASR w/o Defense ASR w/ Defense
CIFAR10 0.76 0.26
FEMNIST 0.96 0.21
Sent140 1.0 0.36

Table 2: Attack Success Rate comparison between without
and with the proposed active defense.

the same setup as in Redemption 2. The regression curve
demonstrates a good correlation between ASR and ChiSq
and the points are more clustered when ChiSq distance is
smaller. To verify this, we perform experiments by varying
the configuration tuples (total attack budget, ChiSq) and (at-
tack scale, ChiSq) respectively and organize the results into
heat maps, see Fig. 9. The results show that overall lower
ChiSq attack achieves better ASR and can even outperform
attacks with higher budget but also higher ChiSq. Although
these results are “expected”, it is contrary to the findings in
Fig. 4, which indicates that the existing works on robustness
of FL have not been fully evaluated on stronger attacks.

Defending the Curses Brought by Data
Heterogeneity

In this section, we discuss the challenges and potential direc-
tions of defending the curses brought by data heterogeneity
in FL backdoor attacks.

Defending Curse 1: Cut the Short Path of Overfit-
ting. Backdooring the last batch of a malicious client re-
sults in overfitting of the local model on triggered data sam-
ples. Accumulating the overfitted model weights of mali-
cious clients to the global model may lead to high ASR. To
defend against such a strategy, evading the overfitted weight
updates during the aggregation process is critical. There is
a rich line of work for addressing this problem in tradi-
tional ML (Shen, Tople, and Saxena 2016; Wang et al. 2019;
Liu, Dolan-Gavitt, and Garg 2018), but all of them require
knowledge from the training data, which is infeasible in FL
due to privacy requirement. Therefore, we propose an ac-
tive defense mechanism in which the aggregator assumes all
clients are malicious. The aggregator maintains a global (but
small) IID dataset to train the updated weights of all the par-
ticipating clients before aggregation. The overfitting due to
backdoor triggers is thus minimized and the model becomes
more generalizable. This mechanism is inspired by a previ-
ous paper (Zhao et al. 2018), where the goal is to increase
task accuracy while we focus on mitigating attack effective-

ness. The evaluation results are presented in Table 2, where
we use an IID dataset with a size equal to 10% of the total
dataset on the aggregator. The results show ASR is signifi-
cantly reduced after applying this defense. The limitation of
this method is that if secure aggregation is used, it may be
difficult to train individual client on the IID dataset.

Defending Curse 2: An Overfitting Mitigating Mech-
anism for Client Selection. Given skewed-feature based
defense is difficult to distinguish whether the overfitting is
from data heterogeneity or malicious attack, we suggest di-
versifying the selection of clients so that even if the local
model is overfitted by backdoor triggers, the overfitted lo-
cal model weights have less chance to be accumulated to
the global model. We implemented a scheduling policy as
proof of concept to avoid selecting the same client in nearby
rounds (e.g., a client needs to wait at least 20 rounds to be
selected again) so that the malicious clients are spreading
out further away, which allows FL to forget backdoors eas-
ier over time. The results show that with the help of this
defend policy, ASR decreases across every heterogeneity
level and none of them achieves over 23% ASR. We also
plan to investigate more complex detection methods such
as using activation clustering (Chen et al. 2018), spectral
signatures (Tran, Li, and Madry 2018), and gradient shap-
ing (Hong et al. 2020) in our future work and potentially
combine them with the client selection mechanism.

Defending Curse 3: Protect the Training Data Distri-
bution. As observed in Curse 3, attackers can design an
efficient attack by generating a similar malicious data dis-
tribution as the global data. Existing works that change or
augment training data still preserve its distribution and thus
difficult to be employed here (Shen, Tople, and Saxena 2016;
Liu, Dolan-Gavitt, and Garg 2018; Tran, Li, and Madry
2018; Wang et al. 2019). To defend such attack strategies,
we need to avoid revealing the global data distribution. We
also set up a simple experiment where we simulate faking
the actual global data distribution, and the malicious clients
end up building their attack based on a distribution that has a
high Chi-Squared value (e.g., about 0.8 in our experiments)
compared to the real global distribution. With this defend-
ing strategy, the ASRs are much lower – on average 0.46
(reduced from on average 0.8). When this is not possible,
we can try to mislead the attackers to believe a wrong global
data distribution. We can also try to disrupt the global data
distribution, such as having extra data reserved at the ag-
gregator (similar to the proposal in Defending Curse 1), or
through GAN like data anonymization (Hukkelås, Mester,
and Lindseth 2019), which can be used to design a more ro-
bust aggregation method.

Conclusion
In this paper, we perform extensive empirical experiments to
quantify and understand the impact brought by data hetero-
geneity in backdoor attacks of federated learning. We identi-
fied several redemptions and curses, and proposed some po-
tential remedy strategies. The results show that depending
on the extent of data heterogeneity the impacts of backdoor-
ing can vary significantly. The lessons learned here offer new
insights for designing defenses for Federated Learning.
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