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Abstract

Graph classification is a widely studied problem and has
broad applications. In many real-world problems, the number
of labeled graphs available for training classification models
is limited, which renders these models prone to overfitting.
To address this problem, we propose two approaches based
on contrastive self-supervised learning (CSSL) to alleviate
overfitting. In the first approach, we use CSSL to pretrain
graph encoders on widely-available unlabeled graphs with-
out relying on human-provided labels, then finetune the pre-
trained encoders on labeled graphs. In the second approach,
we develop a regularizer based on CSSL, and solve the su-
pervised classification task and the unsupervised CSSL task
simultaneously. To perform CSSL on graphs, given a col-
lection of original graphs, we perform data augmentation to
create augmented graphs out of the original graphs. An aug-
mented graph is created by consecutively applying a sequence
of graph alteration operations. A contrastive loss is defined
to learn graph encoders by judging whether two augmented
graphs are from the same original graph. Experiments on
various graph classification datasets demonstrate the effec-
tiveness of our proposed methods. The code is available at
https://github.com/UCSD-AI4H/GraphSSL.

Introduction
Graph classification (Zhang et al. 2019; Di et al. 2019) is a
widely studied problem in machine learning and data mining
and finds broad applications. For example, given a molecule
graph of a protein, judge whether this protein is non-enzyme.
Given a chemical compound graph, judge whether the com-
pound is mutagen or non-mutagen. In many real-world
graph classification problems, the number of graphs avail-
able for training is oftentimes limited. For instance, it is dif-
ficult to obtain a lot of protein graphs in many biomedical
studies due to the financial cost. It is well known that when
the amount of training data is limited, the model tends to
overfit to the training data and perform less well on test data.

To address the overfitting problem in graph classifi-
cation, we propose two approaches: CSSL-Pretrain and
CSSL-Reg, both based on contrastive self-supervised learn-
ing (CSSL) (He et al. 2019; Chen et al. 2020a,b). In
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CSSL-Pretrain, we use CSSL to pretrain graph encoders
on widely-available unlabeled graphs without relying on
human-provided labels, then finetune the pretrained en-
coders on labeled graphs. In CSSL-Reg, we develop a reg-
ularizer based on CSSL, and solve the supervised classi-
fication task and the unsupervised CSSL task simultane-
ously. Self-supervised learning (SSL) (Gidaris, Singh, and
Komodakis 2018; Pathak et al. 2016; Zhang, Isola, and
Efros 2016) is an unsupervised learning approach which de-
fines auxiliary tasks on input data without using any human-
provided labels and learns data representations by solving
these auxiliary tasks. Contrastive SSL (He et al. 2019; Chen
et al. 2020b,a) creates augmentations of original data exam-
ples and defines an auxiliary task which judges whether two
augmented data examples originate from the same original
data example. Recently, several self-supervised learning ap-
proaches (Peng et al. 2020; Qiu et al. 2020; Sun et al. 2019)
are proposed for representation learning on graphs. These
approaches focus on learning representations of local ele-
ments in graphs, such as nodes and subgraphs. In contrast,
our method focuses on learning graph-level representations
that are more suitable for tasks like graph classification.

To perform CSSL on graphs, we first create augmented
graphs from the original graphs, based on four basic graph
alteration operations including edge deletion, edge addition,
node deletion, and node addition. To create an augmented
graph, we apply a sequence of graph alteration operations
consecutively: the operation at step t is applied to the inter-
mediate graph generated after applying the operation at step
t−1. Given the augmented graphs, we define a CSSL task to
distinguish whether two augmented graphs are created from
the same original graph. In CSSL-Pretrain, we first pretrain
a graph encoder by solving the graph CSSL task, then use
this pretrained encoder as initialization and continue to fine-
tune it by minimizing the graph classification loss. CSSL-
Pretrain learns powerful graph representations on unlabeled
graphs (which are widely available) in an unsupervised way
without relying on human-provided labels. Since these rep-
resentations are learned without using labels, they are less
likely to be overfitted to the labels in the small-sized train-
ing dataset and hence help to reduce overfitting. In CSSL-
Reg, the CSSL loss serves as a regularization term and is
optimized jointly with the classification loss. CSSL-Reg en-
forces the graph encoder to jointly solve two tasks: an un-
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supervised CSSL task and a supervised graph classification
task. Due to the presence of the CSSL task, the model is less
likely to be biased to the classification task defined on the
small-sized training data. We perform experiments on five
datasets. Our proposed CSSL-Pretrain and CSSL-Reg out-
perform baseline approaches, which demonstrate the effec-
tiveness of our methods in alleviating overfitting.

The major contributions of this paper are as follows:
• We propose CSSL-Pretrain, which is an unsupervised pre-

training method of graph encoders based on contrastive
self-supervised learning, to learn graph representations
that are resilient to overfitting.

• We propose CSSL-Reg, which is a data-dependent regu-
larizer based on CSSL, to reduce the risk that the graph
encoder is biased to the data-deficient classification task
on the small-sized training data.

• Experiments on various datasets demonstrate the effec-
tiveness of our approaches.
The rest of the paper is organized as follows. Section 2

reviews related works. Section 3 and 4 present the methods
and experiments respectively. Section 5 concludes the paper
and discusses future works.

Related Works
Graph Representation Learning
In graph applications, learning useful representations of
nodes, edges, and the entire graph is crucial for downstream
applications such as graph classification, node classification,
graph completion, etc. Classic approaches for graph rep-
resentation learning can be categorized as: (1) embedding
methods: for example, DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014) leveraged truncated random walk to learn node
embeddings, LINE (Tang et al. 2015) used edge sampling to
learn node embeddings in large-scale graphs, HARP (Chen
et al. 2017) utilized hierarchical representation learning to
capture global structures in graphs; (2) matrix-factorization-
based methods: for example, NetMF (Qiu et al. 2018) dis-
covered a theoretical connection between DeepWalk’s im-
plicit matrix and graph Laplacians and proposed an embed-
ding approach based on this connection, HOPE (Ou et al.
2016) proposed an asymmetric transitivity preserving graph
representation learning method for directed graphs.

Recently, graph neural networks (GNNs) have achieved
remarkable performance for graph modeling. GNN-based
approaches can be classified into two categories: spec-
tral approaches and message-passing approaches. The spec-
tral approaches generally use graph spectral theory to de-
sign parameterized filters. Based on Fourier transform on
graphs, Bruna et al. (2013) defined convolution operations
for graphs. To reduce the heavy computational cost of
graph convolution, Defferrard, Bresson, and Vandergheynst
(2016) utilized fast localized spectral filtering. Graph con-
volution network (GCN) (Kipf and Welling 2016) trun-
cated the Chebyshev polynomial to the first-order approx-
imation of the localized spectral filters. The message-
passing approaches basically aggregate the neighbours’ in-
formation through convolution operations. GAT (Veličković

et al. 2017) leveraged attention mechanisms to aggregate
the neighbours’ information with different weights. Graph-
SAGE (Hamilton, Ying, and Leskovec 2017) generalized
representation learning to unseen nodes using neighbours’
information. Graph pooling methods such as DiffPool (Ying
et al. 2018) and HGP-SL (Zhang et al. 2019) were developed
to aggregate node-level representations into graph-level rep-
resentations.

Contrastive Self-supervised Learning
Contrastive self-supervised learning (He et al. 2019; Chen
et al. 2020a) has arisen much research interest recently
and has been widely applied for image classification (He
et al. 2019; Chen et al. 2020a), text classification (Zhou,
Li, and Xie 2021; Fang et al. 2020), visual question an-
swering (He et al. 2020a), etc. MoCo (He et al. 2019)
and SimCLR (Chen et al. 2020a) learned image encoders
by predicting whether two augmented images were created
from the same original image. Hénaff et al. (2019) studied
data-efficient image recognition based on contrastive predic-
tive coding (Oord, Li, and Vinyals 2018), which predicted
the future in latent space by using powerful autoregressive
models. Srinivas, Laskin, and Abbeel (2020) proposed to
learn contrastive unsupervised representations for reinforce-
ment learning. Khosla et al. (2020) investigated supervised
contrastive learning, where clusters of points belonging to
the same class were pulled together in embedding space,
while clusters of samples from different classes were pushed
apart. Klein and Nabi (2020) proposed a contrastive self-
supervised learning approach for commonsense reasoning.
He et al. (2020b); Yang et al. (2020) proposed a Self-Trans
approach which applied contrastive self-supervised learning
on top of networks pretrained by transfer learning.

Self-supervised Learning on Graphs
Recently, several self-supervised learning approaches are
proposed for representation learning on graphs. Peng et al.
(2020) learned node representations by randomly select-
ing pairs of nodes in a graph and training a neural net to
predict the contextual position of one node relative to the
other. GCC (Qiu et al. 2020) defined the pre-training task
as subgraph instance discrimination in and across networks
and leveraged contrastive learning to learn structural repre-
sentations. InfoGraph (Sun et al. 2019) defined SSL tasks
which maximize mutual information between graph rep-
resentations and sub-structural representations. These ap-
proaches focused on learning representations of local ele-
ments in graphs, such as nodes and subgraphs. In contrast,
our method focuses on learning graph-level representations
that are more suitable for tasks like graph classification.

Methods
To alleviate overfitting in graph classification, we propose
two methods based on contrastive self-supervised learning
(CSSL): CSSL-Pretrain and CSSL-Reg. In CSSL-Pretrain,
we use CSSL to pretrain the graph encoder. In CSSL-Reg,
we use the CSSL task to regularize the graph encoder.
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Figure 1: Graph alteration operations.

Contrastive Self-supervised Learning on Graphs
In this section, we discuss how to perform contrastive self-
supervised learning on graphs, which is the basis of CSSL-
Pretrain and CSSL-Reg. Self-supervised learning (SSL) (Gi-
daris, Singh, and Komodakis 2018; Pathak et al. 2016;
Zhang, Isola, and Efros 2016) is a learning paradigm that
aims to capture the intrinsic patterns and properties of input
data without using human-provided labels. The basic idea
of SSL is to construct some auxiliary tasks solely based on
the input data itself without using human-annotated labels
and make the network to learn meaningful representations
by performing the auxiliary tasks well, such as rotation pre-
diction (Gidaris, Singh, and Komodakis 2018), image in-
painting (Pathak et al. 2016), automatic colorization (Zhang,
Isola, and Efros 2016), context prediction (Nathan Mund-
henk, Ho, and Chen 2018), etc. The auxiliary tasks in SSL
can be constructed using many different mechanisms. Re-
cently, a contrastive mechanism (Hadsell, Chopra, and Le-
Cun 2006) has gained increasing attention and demonstrated
promising results in several studies (He et al. 2019; Chen
et al. 2020b). The basic idea of contrastive SSL is: generate
augmented examples of original data examples, create a pre-
dictive task that predicts whether two augmented examples
are from the same original data example or not, and learn the
representation network by solving this task.

To perform CSSL on graphs, given a collection of origi-
nal graphs, we perform graph augmentation to generate aug-
mented graphs from the original graphs, then learn a net-
work to predict whether two augmented graphs originate
from the same original graph or not. To perform graph aug-
mentation, we use four types of basic graph alteration opera-
tions, as illustrated in Figure 1. The four types of operations
include:

• Edge deletion: randomly select an edge and remove it
from the graph. For example, in Figure 1(b), we randomly
select an edge (which is the one between node 1 and 3),
and delete it.
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Figure 2: Illustration of contrastive SSL on graphs.

• Node deletion: randomly select a node and remove it
from the graph; remove all edges connecting to this node.
For example, in Figure 1(c), we randomly select a node
(which is 4), delete this node and all edges connected with
node 4.

• Edge addition: randomly select two nodes, if they are not
directly connected but there is a path between them, add
an edge between these two nodes. For example, in Figure
1(d), node 2 and 3 are not directly connected, but there is
a path between them (2→ 1→ 3). We connect these two
nodes with an edge.

• Node addition: randomly select a strongly-connected
subgraph S, remove all edges in S, add a node n, and
add an edge between n and each node in S. For example,
in Figure 1(e), node 1, 3, 4 form a complete subgraph. We
insert a new node 5, connect node 1, 3, 4 to node 5, and
remove the edges among node 1, 3, 4.

Given an original graph G, to create an augmentation of G,
we apply a sequence of graph alteration operations consecu-
tively. At step 1, we randomly sample an operation o1(·) that
is applicable to G, perform this operation and get an altered
graph G1 = o1(G). At step 2, we randomly sample another
operation o2(·) that is applicable to G1, perform this opera-
tion and get G2 = o2(G1). This procedure continues until
the maximum number of steps is reached. At each step t, an
applicable operation is randomly sampled and applied to the
intermediate graph Gt−1 generated at step t− 1.

Next, we define the contrastive learning loss on aug-
mented graphs. If two augmented graphs are created from
the same original graph, they are labeled as being simi-
lar; otherwise, they are labeled as dissimilar. Augmented
graphs created from different original graphs (OGs) could
be the same. Though it is possible that augmented graphs
created from different original graphs (OGs) could be the
same, the probability is very low since augmentation opera-
tions are applied randomly. We learn a network to fit these
similar/dissimilar binary labels. The network consists of two
modules: a graph embedding module f(·) which extracts the
latent representation h = f(x) of a graph x and a multi-
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Figure 3: Illustration of MoCo.

layer perceptron g(·) which takes h as input and generates
another latent representation z = g(h) used for predicting
whether two graphs are similar. Given a similar pair (xi,xj)
and a set of graphs {xk} that are dissimilar from xi, a con-
trastive loss (Hadsell, Chopra, and LeCun 2006; Chen et al.
2020a) can be defined as follows:

− log
exp(sim(zi, zj)/τ)

exp(sim(zi, zj)/τ) +
∑

k exp(sim(zi, zk)/τ)
(1)

where sim(·, ·) denotes cosine similarity between two vec-
tors and τ is a temperature parameter.

Figure 2 presents an illustrative example. Three aug-
mented graphs (AGs) are created from two original graphs
(OGs): AG (i) and (ii) are from OG (i); AG (iii) is from
OG (ii). To create AG (i), three random alteration opera-
tions are performed consecutively, including edge deletion,
node deletion, and edge addition. Each operation is applied
to the intermediate graph resulting from the last operation.
AG (ii) is created by applying node deletion, node addition,
and edge addition. AG (iii) is created by applying edge dele-
tion, edge addition, and edge deletion. AG (i) and (ii) are
labeled as “similar” since they originate from the same orig-
inal graph. AG (ii) and (iii) are labeled as “dissimilar” since
they are created from different original graphs.

We use MoCo (He et al. 2019) to perform efficient op-
timization of the loss in Eq.(1), based on a queue that is
independent of minibatch size. This queue contains a dy-
namic set of augmented graphs (called keys). In each it-
eration, the latest minibatch of graphs are added into the
queue; meanwhile, the oldest minibatch is removed from the
queue. In this way, the queue is decoupled from minibatch
size. Figure 3 shows the architecture of MoCo. The keys are
encoded using a momentum encoder. Given an augmented
graph (called a query) in the current minibatch and a key in
the queue, they are considered as a positive pair if they orig-
inate from the same graph, and a negative pair if otherwise.
A similarity score is calculated between the encoding of the
query and the encoding of each key. Contrastive losses are
defined on the similarity scores and binary labels.

CSSL-based Pretraining
Having presented CSSL on graphs, we study two approaches
of using graph CSSL for alleviating overfitting in graph clas-

Figure 4: Illustration of CSSL-Pretrain.

Figure 5: Illustration of CSSL-Reg.

sification. The first approach is to use graph CSSL to pre-
train a graph encoder and use this pretrained encoder to ini-
tialize the graph classification model. We call this approach
CSSL-Pretrain. Given a collection of unlabeled graphs, we
define a graph CSSL task on these graphs, then perform this
task using a network consisting of a graph encoder and a
CSSL-specific prediction head. The head is a multi-layer
perceptron which takes graph representations generated by
the graph encoder as inputs and predicts whether two aug-
mented graphs are similar. After training, the CSSL-specific
prediction head is discarded. Next, we finetune the pre-
trained graph encoder in the graph classification task. The
graph classification network consists of a graph encoder and
a classification head. The classification head takes the graph
representations generated by the encoder as inputs and pre-
dicts the class label. We use the encoder pretrained by CSSL
to initialize the encoder in the classification model and con-
tinue to train it on the original graphs and their class labels.

CSSL-based Regularization
The second approach we propose is CSSL-Reg, where we
use the graph CSSL task to regularize the graph classifi-
cation model. Given the training graphs, we encode them
using a graph encoder. Then on top of the graph encod-
ings, two tasks are defined. One is the classification task,
which takes the encoding of a graph as input and predicts
the class label of this graph. The prediction is conducted
using a classification head. The other task is graph CSSL.
Given the augmented graphs stemming from the training
graphs, CSSL predicts whether two augmented graphs are
from the same original graph. The loss of the CSSL task
serves as a data-dependent regularizer to alleviate overfit-
ting. The CSSL task has a predictive head. The two tasks
share the same graph encoder. Formally, CSSL-Reg solves
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Dataset PT∗ D&D NCI1 NCI109 Mut∗∗
# classes 2 2 2 2 2
# train 890 942 3288 3301 3469
# validation 111 117 411 412 433
# test 112 119 411 414 435
Avg. # nodes 39.1 284.3 29.9 29.7 30.3
Avg. # edges 72.8 715.7 32.3 32.1 30.8

Table 1: Statistics of datasets. *PT denotes PROTEINS.
**Mut denotes Mutagenicity.

the following optimization problem:

L(c)(D,L;W(e),W(c)) + λL(p)(D,W(e),W(p)) (2)

where D represents the training graphs and L represents
their labels. W(e), W(c), and W(p) denote the graph en-
coder, classification head in the classification task, and pre-
diction head in the CSSL task respectively. L(c) denotes the
classification loss and L(p) denotes the CSSL loss. λ is a
tradeoff parameter.

Graph Encoder
At the core of CSSL-Pretrain and CSSL-Reg is to better
learn a graph encoder using CSSL. Our methods can be used
to learn any graph encoder. In this work, we perform the
study using the Hierarchical Graph Pooling with Structure
Learning (HGP-SL) encoder (Zhang et al. 2019), while not-
ing that other graph encoders are also applicable. HGP-SL
is composed of interleaving layers of graph convolution and
graph pooling. Graph convolution learns multiple layers of
latent embeddings of each node in the graph by leveraging
the embeddings of neighboring nodes. The graph pooling
operation selects a subset of informative nodes to form a
subgraph. A node is considered less informative if its rep-
resentation can be well reconstructed by those of its neigh-
bors. Given the structure of the pooled subgraph, HGP-SL
performs structure learning to refine the structure of the sub-
graph. HGP-SL calculates the similarity of two nodes in
the subgraph and connects them if the similarity score is
large enough. Given the refined subgraph, graph convolution
and pooling are conducted again. The layers of convolution,
pooling, and structure refinement repeat multiple times. A
readout function is used to aggregate representations of in-
dividual nodes into a single representation of the graph. A
multi-layer perceptron serves as the classification head to
predict the class label from the graph-level representation.

Experiments
Dataset
We used 5 graph classification datasets1 in the experiments.
Each data example consists of a graph and a class label.
In PROTEINS and D&D, each graph represents a protein.
A binary label is associated with each graph, representing
whether the protein is a non-enzyme. NCI1 and NCI109

1Datasets are publicly available at https://ls11-www.cs.tu-
dortmund.de/staff/morris/graphkerneldatasets

contain graphs representing chemical compounds with la-
bels denoting whether they can inhibit the growth of cancer
cells. The graphs in Mutagenicity represent chemical com-
pounds. Each graph is labeled as mutagen or non-mutagen.
We randomly split each dataset into three parts: 80% for
training, 10% for validation, and 10% for testing. Pretrain-
ing is only performed on training datasets. The random split
is repeated for 10 times and the average performance with
standard deviation is reported. The statistics of these datasets
are summarized in Table 1.

Experimental Setup
CSSL-Pretrain For CSSL pretraining, the queue size in
MoCo is set as 1024 for the D&D and PROTEINS dataset,
and 4096 for the NCI1, NCI109, and Mutagenicity dataset.
The MoCo momentum is set as 0.999 and the tempera-
ture τ is set as 0.07. The initial learning rate is searched
in {1e−3, 1e−4, 1e−5} and decayed with the cosine decay
schedule (Loshchilov and Hutter 2016). We find it benefi-
cial to utilize a small batch size (16 or 32), a small learning
rate (1e−5), and train for more epochs (1k ∼ 3k).

For finetuning the classification model, we search the
initial learning rate in {1e−2, 1e−3, 1e−4} and utilize the
Adam optimizer (Kingma and Ba 2014) to optimize the
model. Following (Zhang et al. 2019), we adopt early stop-
ping based on the validation loss. Specifically, we stop train-
ing if the validation loss does not decrease for 100 consecu-
tive epochs. We select the model with the smallest validation
loss as the final model.

CSSL-Reg We search the regularization parameter λ
in {1, 0.1, 0.01, 0.001, 0.0001}. The Adam optimizer
is used and the initial learning rate is searched in
{1e−2, 1e−3, 1e−4}. We set the queue size in Moco as
512 for the D&D and PROTEINS dataset, and 2048 for the
NCI1, NCI109, and Mutagenicity dataset. The settings of
batch size, patience for early stopping, MoCo momentum,
and temperature τ are the same as those in CSSL-Pretrain.

Graph Encoder Following (Zhang et al. 2019), the di-
mension of node representation is set to 128. The number
of HGP-SL layers is set as 3. The pooling ratio is searched
in [0.1, 0.9] and the dropout ratio is searched in [0.0, 0.5].

Baselines
We compare with the following categories of baselines.

• Graph Kernel Methods. This category of methods com-
pares the similarity of two graphs in a kernel space and
performs classification based on the similarity between
graphs. We compare with three algorithms: GRAPHLET
(Shervashidze et al. 2009), Shortest-Path (SP) Kernel
(Borgwardt and Kriegel 2005), and Weisfeiler-Lehman
(WL) Kernel (Shervashidze et al. 2011).

• Graph Neural Networks. GCN (Kipf and Welling 2016),
GraphSAGE (Hamilton, Ying, and Leskovec 2017), and
GAT (Veličković et al. 2017) are three GNN models de-
signed for learning node representations in graphs. Node
representations are aggregated into a representation of the
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Categories Method PROTEINS D&D NCI1 NCI109 Mutagenicity
Kernels GRAPHLET 72.23±4.49 72.54±3.83 62.48±2.11 60.96±2.37 56.65±1.74

SP 75.71±2.73 78.72±3.89 67.44±2.76 67.72±2.28 71.63±2.19
WL 76.16±3.99 76.44±2.35 76.65±1.99 76.19±2.45 80.32±1.71

GNNs GCN 75.17±3.63 73.26±4.46 76.29±1.79 75.91±1.84 79.81±1.58
GraphSAGE 74.01±4.27 75.78±3.91 74.73±1.34 74.17±2.89 78.75±1.18
GAT 74.72±4.01 77.30±3.68 74.90±1.72 75.81±2.68 78.89±2.05

Pooling Set2Set 79.33±0.84 70.83±0.84 69.62±1.32 73.66±1.69 80.84±0.67
DGCNN 79.99±0.44 70.06±1.21 74.08±2.19 78.23±1.31 80.41±1.02
DiffPool 79.90±2.95 78.61±1.32 77.73±0.83 77.13±1.49 80.78±1.12
EigenPool 78.84±1.06 78.63±1.36 77.24±0.96 75.99±1.42 80.11±0.73
gPool 80.71±1.75 77.02±1.32 76.25±1.39 76.61±1.39 80.30±1.54
SAGPool 81.72±2.19 78.70±2.29 77.88±1.59 75.74±1.47 79.72±0.79
EdgePool 82.38±0.82 79.20±2.61 76.56±1.01 79.02±1.89 81.41±0.88
HGP-SL 84.91±1.62 80.96±1.26 78.45±0.77 80.67±1.16 82.15±0.58

Self-supervised InfoGraph 75.18±0.51 74.24±0.86 70.93±1.78 75.70±1.51 72.32±1.70
GCC-freezing 74.48±3.12 75.63±3.22 66.33± 2.65 66.18±3.83 68.11±2.78
GCC-finetuning 69.49±1.42 75.46±2.44 71.00±1.78 69.90±1.04 74.43±1.35

CSSL-Freeze A1-specific 84.64±0.96 78.74±0.92 72.60±1.43 76.40±0.54 77.03±0.66
A1-all 78.57±1.64 75.96±1.60 72.02±1.32 75.19±1.00 77.08±0.63
A3-specific 80.36±1.99 78.49±0.94 72.70±1.94 76.42±0.71 77.08±0.48
A3-all 76.34±1.92 77.73±1.73 71.56±0.93 75.70±1.16 76.85±0.84

CSSL-Pretrain A1-specific 85.71±0.69 82.02±1.42 78.62±0.63 80.72±1.06 82.00±0.63
A1-all 81.79±1.50 80.84±1.24 78.03±1.14 77.51±1.37 82.23±0.73
A3-specific 82.77±1.70 80.84±1.54 79.44±0.67 81.01±1.01 82.41±0.59
A3-all 81.07±1.63 80.25±1.41 78.71±0.80 79.87±1.06 82.64±0.83

CSSL-Reg A1-specific 84.11±0.87 82.18±1.34 80.07±0.60 81.16±1.42 82.07±0.65
A1-all 83.57±1.07 80.50±1.34 79.32±0.75 77.80±1.46 80.83±1.66
A3-specific 85.80±1.01 79.66±1.71 80.09±1.07 79.69±1.70 81.61±1.05
A3-all 81.61±1.61 79.58±1.41 78.64±0.76 79.18±0.87 82.23±1.04

Table 2: Graph Classification Accuracy (%). “A1” denotes performing one random graph alteration operation to obtain an
augmented graph and “A3” denotes performing three consecutive random alteration operations to obtain an augmented graph.
“Specific” denotes using the training graphs in the target dataset to define CSSL losses and “all” denotes using training graphs
in all the five datasets to define CSSL losses.

entire graph via a readout function and the graph repre-
sentation is subsequently used for graph classification.

• Graph Pooling Methods. Approaches in this group com-
bine graph neural networks with pooling mechanisms.
We compare with eight pooling algorithms, including two
global pooling algorithms: Set2Set (Vinyals, Bengio, and
Kudlur 2015) and DGCNN (Zhang et al. 2018), and six
hierarchical graph pooling methods: DiffPool (Ying et al.
2018), EigenPool (Ma et al. 2019), gPool (Gao and Ji
2019), SAGPool (Lee, Lee, and Kang 2019), EdgePool
(Diehl 2019), and HGP-SL (Zhang et al. 2019).

• Self-supervised Learning Methods. We compare with
InfoGraph (Sun et al. 2019) which maximizes the mu-
tual information between the graph-level representation
and the representations of substructures at different scales
and GCC (Qiu et al. 2020) where the SSL task is subgraph
instance discrimination. The data and protocol used for
pretraining and finetuning in GCC and InfoGraph are the
same as our methods.

• CSSL-Freeze. We compare with the following setting
called CSSL-Freeze. Given a collection of unlabeled
graphs, we train the graph encoder using CSSL. Then the
graph encoder is directly plugged into the graph classi-

Datasets PT∗ D&D NCI1 NCI109 Mut∗∗
HGP-SL 7.4 15.6 7.8 3.6 5.2
CSSL-Pretrain 7.6 11.3 3.6 3.7 3.4
CSSL-Reg 8.3 2.6 4.1 1.8 3.0

Table 3: L1 difference between training accuracy and test-
ing accuracy. *PT denotes PROTEINS. **Mut denotes Mu-
tagenicity.

fication model without further finetuning. When training
the graph classification model, only the classification head
is trained and the weights of the graph encoder are frozen.

Results
The performance on graph classification is reported in Ta-
ble 2. From this table, we make the following observations.
First, CSSL-Reg and CSSL-Pretrain outperform baseline
approaches for graph classification. This demonstrates the
effectiveness of our methods in alleviating overfitting. To
further confirm this, we measure the difference between
accuracy on the training set and test set in Table 3. A
larger difference implies more overfitting: performing well
on the training set and less well on the test set. As can be
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seen, in most cases, the train-test difference under CSSL-
(Pretrain,Reg) is smaller than that under HGP-SL, which
demonstrates that our approaches can better alleviate over-
fitting. CSSL-Pretrain leverages widely-available unlabeled
graphs to learn better graph representations that are robust
to overfitting. CSSL-Reg encourages the graph encoder to
solve an additional task which reduces the risk of overfit-
ting to the data-deficient classification task on the small-
sized training data. Second, our methods outperform other
self-supervised learning methods in the literature. This is be-
cause our methods learn a holistic representation of the en-
tire graph by judging whether two augmented graphs origi-
nate from the same graph. To successfully make such a judg-
ment, the encoder needs to capture the global features of
the entire graph. However, in baseline SSL methods, self-
supervision is performed locally at individual nodes, which
loses the global picture on the entire graph. Therefore, the
learned representations are not suitable for classifying the
entire graph. Third, on 4 out of the 5 datasets, CSSL-Reg
performs better than CSSL-Pretrain. In Table 2, the train-
test difference under CSSL-Reg is smaller than that un-
der CSSL-Pretrain, which implies that CSSL-Reg can better
prevent overfitting. This is because in CSSL-Reg, the en-
coder is learned to perform the classification task and CSSL
task simultaneously. Thus the encoder is not completely bi-
ased to the classification task. In CSSL-Pretrain, the encoder
is first learned by performing the CSSL task, then finetuned
by performing the classification task. There is a risk that af-
ter finetuning, the encoder is largely biased to the classi-
fication task on the small-sized training data, which leads
to overfitting. Fourth, performing CSSL on all graphs in
the five datasets yields worse accuracy than CSSL on a sin-
gle target dataset. This is counter-intuitive because it is ex-
pected that more data helps to learn better representations
in CSSL. One possible reason is that the five datasets have
large domain discrepancy. Using graphs from different do-
mains to pretrain the encoder may render the encoder bi-
ased to those domains and eventually generalizes less well
on the target domain. Fifth, CSSL-Pretrain works better
than CSSL-Freeze. This is because in CSSL-Pretrain, the
encoder is finetuned using the class labels after pretrained
using CSSL. The finetuning can make the encoder more dis-
criminative and suitable for solving the classification prob-
lem. In CSSL-Freeze, the encoder is not finetuned. As a re-
sult, it may not be optimal for the classification task. Six, on
3 out of the 5 datasets, applying three consecutive random
operations yields better results than applying one operation
only. The reason is that applying three operations makes the
augmented graphs more difficult to judge whether they are
from the same original graph. Solving a more difficult task
makes the learned representations more robust and effective.

Figure 6 shows how the classification accuracy varies as
we increase the regularization parameter λ in CSSL-Reg. As
can be seen, starting from 0, when the regularizer parameter
is increasing, the accuracy increases. This is because a larger
λ imposes a stronger regularization effect, which helps to
reduce overfitting. However, if λ becomes too large, the ac-
curacy drops. This is because the regularization effect is too
strong, which dominates the classification loss.
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Figure 6: How the regularization parameter in CSSL-Reg
affects graph classification accuracy.

Datasets PT∗ D&D NCI1 NCI109 Mut∗∗
Edge Deletion 78.4 80.3 77.5 79.1 77.6
Node Deletion 80.0 79.6 76.4 77.8 78.4
Edge Addition 78.8 80.1 76.0 75.9 81.7
Node Addition 77.8 79.8 78.4 76.8 82.1
Random 84.1 82.2 80.1 81.2 82.1

Table 4: Performance of CSSL-Reg with deterministic selec-
tion of graph alteration operation. *PT denotes PROTEINS.
**Mut denotes Mutagenicity.

We also perform a study to verify the importance of ran-
domly selecting graph alteration operations during graph
augmentation. We compare with the following deterministic
selection setting. For each type of operation including edge
addition, edge deletion, node addition, and node deletion, we
create augmented graphs by applying this operation once.
Table 4 shows the average classification accuracy for each
operation in CSSL-Reg. As can be seen, the performance of
deterministic selection is worse than random selection. The
reason is that augmented graphs created by randomly apply-
ing alteration operations are more difficult to judge whether
they are from the same original graph. Solving a more chal-
lenging CSSL task can help to learn representations that are
more effective and robust.

Conclusions and Future Works
In this paper, we propose to use contrastive self-supervised
learning to alleviate overfitting in graph classification prob-
lems. We propose two approaches based on CSSL. The
first approach defines a CSSL task on widely-available un-
labeled graphs and pretrains the graph encoder by solving
the CSSL task. The second approach defines a regularizer
based on CSSL and the graph encoder is trained to simulta-
neously minimize the classification loss and the regularizer.
We demonstrate the effectiveness of our methods on various
graph classification datasets.

For future works, we will develop other self-supervised
learning methods on graphs, such as by predicting which
augmented graph is closer to the original graph.
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