
Deep Wasserstein Graph Discriminant Learning for Graph Classification

Tong Zhang1*, Yun Wang1*, Zhen Cui1†, Chuanwei Zhou1,
Baoliang Cui2, Haikuan Huang2, Jian Yang1

1Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education,
Jiangsu Key Lab of Image and Video Understanding for Social Security,

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
2 Alibaba Group, Hangzhou, China

{tong.zhang, yun.wang, zhen.cui, cwzhou}@njust.edu.cn, moqing.cbl@taobo.com, haikuan.hhk@alibaba-inc.com,
csjyang@njust.edu.cn

Abstract

Graph topological structures are crucial to distinguish
different-class graphs. In this work, we propose a deep
Wasserstein graph discriminant learning (WGDL) framework
to learn discriminative embeddings of graphs in Wasserstein-
metric (W-metric) matching space. In order to bypass the cal-
culation of W-metric class centers in discriminant analysis, as
well as better support batch process learning, we introduce a
reference set of graphs (aka graph dictionary) to express those
representative graph samples (aka dictionary keys). On the
bridge of graph dictionary, every input graph can be projected
into the latent dictionary space through our proposed Wasser-
stein graph transformation (WGT). In WGT, we formulate
inter-graph distance in W-metric space by virtue of the opti-
mal transport (OT) principle, which effectively expresses the
correlations of cross-graph structures. To make WGDL bet-
ter representation ability, we dynamically update graph dic-
tionary during training by maximizing the Wasserstein Dis-
criminant loss, i.e. the ratio of inter-class versus intra-class
Wasserstein distance. To evaluate our WGDL method, com-
prehensive experiments are conducted on six graph classifi-
cation datasets. Experimental results demonstrate the effec-
tiveness of our WGDL, and state-of-the-art performance.

Introduction
Graph modeling has become an active topic in the machine
learning field due to its huge application potential in re-
cent years. Generally, a graph consists of a set of nodes and
edges, where the nodes can represent any types of entities
and the edges describe their connection relationship. Due
to the flexible structure and powerful representation ability,
graphs have been widely used to characterize ubiquitous ir-
regular data in the real world such as citation graphs and so-
cial networks. Accordingly, there exist various graph-related
pattern recognition tasks, among which graph classification
is one of the most fundamental tasks.

Numerous algorithms have been proposed for graph clas-
sification in the past decade years. Graph kernel-based al-
gorithms and graph neural networks (GNNs) are two main-
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streams of methods. Graph kernels (Shervashidze et al.
2011; Borgwardt and Kriegel 2005; Shervashidze et al.
2009) often have explicit expressions and are easy to train
because they usually have convex optimization solutions.
However, as these methods often take hand-crafted (shal-
low) features as input, their representation ability in captur-
ing complex interactions between nodes might be limited. In
contrast, GNNs learn representation from graphs by stack-
ing multiple neural network layers, in each of which multi-
hop node aggregation is performed. In this way, GNNs are
powerful in capturing graph structural information, and thus
have achieved promising results in graph classification.

Although considerable success has been achieved by pre-
vious works above, however, few of them directly consid-
ered topology correspondence between graphs. Topological
characteristics play a crucial role in identifying a graph, and
well capturing topology correspondence may be of great
significance to learn discriminative graph representation.
However, topology correspondence may not be easily mod-
eled as it requires understanding semantic structure among
nodes. Based on this consideration, Wasserstein distance
(W-distance) (Cuturi 2013) may be leveraged to measure the
topology correlation between two graphs. With an optimal
transport (OT) matrix considering all probabilistic couplings
between two probability distributions, W-distance provides
a powerful tool to compute distances between two complex
distributions. From this perspective, W-metric would be a
good selection to measure the correspondence of topology
distributions spanned by those graph nodes.

To do discriminative analysis of graphs in W-metric
space, however, we have to confront three aspects of issues:
i) The integration of W-metric into GNNs is necessary, but
difficult due to the non-Euclidean property. ii) There exists
a high complexity in computing inter-class and intra-class
scatter, as the explicit calculation on mean and covariance
of graphs are rather difficult in W-metric space. iii) The
minibatch-based processing of deep learning architectures
makes it difficult to access the global covariance of all sam-
ples within one or across different classes.

To address the aforementioned problems, we propose a
deep Wasserstein Graph Discriminant Learning (WGDL) to
deal with the graph classification task. In WGDL, graph dis-
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criminant learning is fully performed in W-metric space.
Specifically, we construct a graph dictionary as the refer-
ence set to avoid those explicit statistic computation on
mean and covariance of graph samples. Meantime, the use
of graph dictionary can be in favour of minibatch-based pro-
cessing during the training of neural network. Taking graph
dictionary as the bridge, every given input graph can be
transformed into dictionary space and produce succinct fea-
tures through our proposed Wasserstein graph transformer
(WGT). In this transformation, graph correlation is mea-
sured in W-metric space through the regularized W-distance
with optimal transport (OT) matrices. To learn more discrim-
inative features, graph dictionary is designed to be dynami-
cally updated during training. In the constrain of a maximum
Wasserstein discriminant loss (WD-Loss), i.e. ratio of inter-
class versus intra-class W-distance, the encoded dictionary
keys are optimized to be more compact in each class mean-
while have better inter-class dispersion. Finally, we con-
struct a fully end-to-end training network including graph
encoding, W-distance computation of graphs and dictionary
learning. We test the proposed method on six popular graph
classification datasets, and experimental results demonstrate
the effectiveness of our methods. The contributions of this
work can be summarized as follows:
- We propose a novel deep Wasserstein graph discrimi-

nant learning framework for graph discriminant analy-
sis, where graph convolution learning and graph distance
learning are performed in W-metric space.

- We propose a dynamic graph dictionary defined in W-
metric space, which should be the first time to our knowl-
edge. Further, we introduce a maximum ratio principle of
inter-class versus intra-class in W-metric space to learn
better representation ability for graph dictionary.

- We define a Wasserstein graph transformer by using the
optimal transport mechanism, which can convert those ir-
regular graphs into the normalized dictionary space under
W-metric.

- We verify the effectiveness of our method, and report
the state-of-the-art results on several graph classification
datasets.

Related Work
In this section, we first review the previous methods of
graph classification, then introduce those works related to
W-distance learning.

Graph Classification
Graph classification has been widely investigated in pre-
vious literatures, and existing methods can be roughly di-
vided into two main types, i.e. graph kernel based meth-
ods and graph neural networks (GNNs). Graph kernel based
methods enumerate substructures of a whole graph through
graph decomposition, and further build graph kernels based
on the similarities among these components. Graph ker-
nels proposed in the early stage include graphlets (Sher-
vashidze et al. 2009), shortest paths (Borgwardt and Kriegel
2005), Weisfeiler-Lehman kernel (Shervashidze et al. 2011),

and other graph kernels (Orsini, Frasconi, and De Raedt
2015; Kriege and Mutzel 2012). Although good perfor-
mances have been achieved, however, they may suffer from
the drawback of ”diagonal dominance issue”, which may
happen when substructures are assigned with large sizes. To
solve this problem, in recent years, Zhang et. al (Zhang et al.
2018) proposed the return probability-based graph kernel
which can effectively exploit various node attributes while
being scalable to large datasets.

GNNs are powerful neural networks designed to work
directly on the graph-structured data. Specifically, in-
spired by the success of the standard Convolutional neu-
ral network (CNN) (Krizhevsky, Sutskever, and Hinton
2012), various graph convolution operations have been
studied, yielding multiple graph CNN variants (Niepert,
Ahmed, and Kutzkov 2016; Defferrard, Bresson, and
Vandergheynst 2016), including graph convolutional net-
work (GCN) (Kipf and Welling 2016), PATCHY-SAN (re-
ferred to as PSCN) (Niepert, Ahmed, and Kutzkov 2016),
Diffusion-convolutional neural networks (DCNN) (Atwood
and Towsley 2016), and NgramCNN (Luo et al. 2017). Con-
sidering their powerful representation ability, these methods
are adapted to the graph classification task where promising
performances are achieved. For instance, DCNN (Atwood
and Towsley 2016) models the graph by scanning a diffusion
process across each vertex, NgramCNN (Luo et al. 2017) in-
troduces the n-gram block to serialize each graph, based on
which graph representation learning and classification are
fulfilled.

Wasserstein Distance Learning
W-distance is a powerful tool to compute the distances be-
tween two complex distributions by leveraging the OT prin-
ciple. To take the advantage of the OT matrix, various al-
gorithms (Titouan et al. 2019; Simou, Thanou, and Frossard
2020; Flamary et al. 2018; Bécigneul et al. 2020) are pro-
posed to either learn representation from graphs or measure
the distances between two data sets. For instance, Simou et
al. (Simou, Thanou, and Frossard 2020) proposed a graph
representation framework with W-distances to simultane-
ously learn a low-dimensional space and coordinates for
nodes. Some other works (Schmitz et al. 2018; Rolet, Cu-
turi, and Peyré 2016) attempted to conduct dictionary learn-
ing in W-space, e.g. to use the W-distance as the fitting error
between each original point and its reconstruction.

In contrast to these existing methods above, our WGDL
has several different aspects:
- We introduce W-metric to measure the distance of graphs,

and further derive graph convolution network in W-metric
space. It is different from the traditional graph convolu-
tion methods defined in Euclidean space.

- We introduce dictionary learning on graphs into a deep ar-
chitecture, different from those graph kernels and dictio-
nary learning methods (Schmitz et al. 2018; Rolet, Cuturi,
and Peyré 2016) that only operate on the general feature
vector space (not involve topological structures).

- We introduce W-metric discriminant analysis on graphs
by maximizing the WD-Loss in W-metric space.
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Figure 1: The architecture of our WGDL. The WGDL consists of three main processes: graph encoding, graph dictionary
learning, Wasserstein graph transforming. Given an input graph, we use graph convolution network (aka graph encoder) to
extract more robust feature representation. More details could be found in the section of the proposed method. And, we introduce
a dictionary of graphs as the reference set. The input graph can be transformed into the space spanned by graph dictionary. In
graph transforming, we use W-metric to define the correlation between the input query and the keys of dictionary. We name
the transformation process as Wasserstein graph transforming. The W-metric discriminant loss is further imposed on graph
dictionary to learn better representation ability. Finally, graph dictionary is dynamically optimized together with graph encoder
and Wasserstein graph transformer. The entire learning of all modules is an end-to-end process. More details could be found in
the mainbody.

The Proposed Method
In this section, we will first give an overview of the proposed
WGDL model, then describe the learning processes in the
proposed framework in detail.

Overview
The whole architecture of our deep WGDL framework is
shown in Fig. 1. In general, it consists of three main lean-
ing processes, i.e. graph encoding, Wasserstein graph trans-
forming, and graph discriminant learning. Given a certain
graph as the input, the deep WGDL model aims to classify
it into a certain category by learning robust and discrimi-
native features. To this end, a dynamic graph dictionary is
constructed to encode those input graphs into vectors in a
much lower dimension through the Wasserstein graph trans-
forming (aka query process). For input graphs and dictio-
nary keys, two corresponding graph encoders with the same
architecture of stacked GCN layers are first employed for
graph encoding. Then, the feature of each input graph is
further encoded through Wasserstein graph transformer in
a dictionary lookup manner by calculating its W-distance
with respect to all the encoded dictionary keys. After this
step, the input graphs can be transformed to succinct query-
resulted vectors by characterizing semantic correspondence
between graph-structured data. Specifically, each key of dic-
tionary denotes an individual graph attached with a certain

class label, and it will be dynamically updated during the
training process. Based on the framework above, we expect
to learn discriminative features as well-separated dictionary
keys. To better learn representation ability of network, we
use the supervised label information with the cross-entropy
loss to guide the network optimization. At the same time,
the discriminant analysis on dictionary is done by intro-
ducing the principle of inter-class versus intra-class in W-
metric space, which would make dictionary keys more com-
pact with each class and dispersed between classes. Finally,
the whole architecture could be optimized in an end-to-end
training mode.

Graph Encoding
A graph encoder and a momentum graph encoder with the
same architecture are employed in the WGDL framework
for graph feature learning, and they are used to model in-
put graphs and dictionary keys, respectively. To obtain ro-
bust representation, the graph encoder stacks several layers
of graph convolutional networks (GCNs), which are pow-
erful in learning graph topology. For the i-th input graph
sample Gi = (Vi,Ai,Xi) and j-th dictionary key GDj =

(VDj ,AD
j ,X

D
j ), the corresponding encoding functions f(·)

and fD(·) perform aggregation to their nodes based on the
adjacency relationship, yielding the corresponding encoded
features Fi = f(Xi,Ai,Φ) and FDj = fD(XD

j ,A
D
j ,ΦD).
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Here, Xi ∈ RN1×d,Ai ∈ RN1×N1 ,XD
j ∈ RN2×d,AD

j ∈
RN2×N2 , in which N1, N2 denote the numbers of nodes and
d is the feature dimension, Φ,ΦD represent the parameter
sets of the two encoders. Formally, taking f(·) of two-layer
GCNs as an example, it can be written as:

Fi = f(Xi,Ai,Φ)

= σ(Âiσ(ÂiXiW
(0))W(1)). (1)

In this equation, W(0),W(1) ∈ Φ are two weighting ma-
trices for feature projection, and σ(·) is a non-linear activa-
tion function. Specifically, a little different from the standard
GCN, here Âi = Ai + IN1

while the Laplacian normaliza-
tion is not performed. According to (Sandryhaila and Moura
2013), from the view of spectral filtering, similar learning
effects can be achieved no matter whether Laplacian nor-
malization is performed because the adjacent matrix and its
Laplacian norm have the same eigenvectors.

As same as the architecture of f(·), fD(·) performs sim-
ilar transformation on those dictionary keys, but uses dif-
ferent parameters denoted as ΦD. In the optimization stage,
different updating strategies are taken for the parameter sets
Φ and ΦD. Specifically, Φ is updated through the gradient
back-propagation, while ΦD is optimized according to the
momentum update mechanism (He et al. 2020) to make it
evolve more smoothly to obtain better encoded results. For-
mally. the update of ΦD can be written as

ΦD = mΦD + (1−m)Φ, (2)

where m means a momentum coefficient.

Wasserstein Graph Transforming
The dynamic Wasserstein graph dictionary tar-
gets at projecting its query graphs to discrimina-
tive vectors in a low-dimension Euclidean space. Let
S = {FD1 ,FD2 , · · · ,FDNK}(FDj ∈ RN2×d1 , j ∈ [1, NK])
represents the encoded features of K dictionary keys in
each class with N classes, and Fi denotes the i-th query
feature (encoded input feature) attached with a class label
yi. Formally, the W-distance calculation can be written as:

zij = Wλ(Fi,F
D
j ) = 〈Tλ

ij ,Mij〉, (3)

s.t. , Tij1N2
= 1N1

/N1, (4)

TT
ij1N1

= 1N2
/N2, (5)

where Tij ∈ RN1×N2
+ . In Eqn. (3), zij is the j-th ele-

ment of the i-th query-resulted feature denoted as zi =
[zi1, · · · , ziNK ], and 〈A,B〉 = tr(ATB). Mij is the pair-
wise distance matrix in Euclidean space, and the element
Mij(r, l) in the r-th row and l-th column calculates the
squared Euclidean distance between the r-th node of Fi and
l-th node of FDj . Tλ

ij is the solution of an entropy-smoothed
optimal transport problem:

Tλ
ij = arg min

Tij

λ〈Tij ,MFi,FD
j
〉 − Ω(Tij). (6)

Here, Ω(Tij) = −
∑
rl Tij(r, l) log(Tij(r, l)) where

Tij(r, l) is the element in the r-th row and l-th column of

Tij , and Tij ∈ RN1×N2
+ . Ω(Tij) can be seen as a dis-

crete joint probability distribution calculating the entropy of
Tij . Specifically, the optimization problem in Eqn. (6) can
be efficiently solved through Sinkhorn’s fixed point itera-
tions (Cuturi 2013), and the solution can be written as:

Tij = diag(uij)Kijdiag(vij)

= uij1
T
N2
�Kij � 1N1v

T
ij , (7)

where � represents elementwise production, and Kij is
calculated based on the distance matrix Mij with Kij =
e−λMij . In Sinkhorn iterations, uij and vij are kept updat-
ing. Taking the k-th iteration as an example, the update takes
the following form:

vkij =
1N2/N2

KT
iju

k−1
ij

, (8)

ukij =
1N1

/N1

Kijvkij
. (9)

For the initialization of the update process above, u0
ij is as-

signed as an all-1 vector 1N1
.

Graph Discriminant Learning
To effectively promote the graph classification performance,
our WGDL model targets at possessing two expected prop-
erties, i.e. the discriminability of the learned features and
the separability of the encoded dictionary keys. For the dis-
criminability of features, a supervised learning objective is
adopted to guide the network optimization. And for the sep-
arability of the encoded dictionary, the distribution of en-
coded dictionary keys is made to be compact within each
class while dispersed between classes.

To fulfill the purposes above, the WD-Loss denoted asEI
is specifically proposed together with the cross-entropy Ec
for the optimization of the whole architecture, which can be
formally expressed as:

E = Ec − βEI , (10)
where β is a trade-off parameter betweenEc andEI . Specif-
ically, the cross-entropy Ec measures the divergence be-
tween the predicted probabilities and the actual labels, and
can be calculated after passing the query result through full-
connection layers followed with a softmax layer.

For the WD-Loss EI , given the encoded dictionary key
set S = {FD1 ,FD2 , · · · ,FDNK} (FDj ∈ RN2×d1 ) attached
with corresponding labels, it takes the following form:

EI =

∑
c, c′>c

∑
i∈Ic,j∈Ic′

Tλc,c′(i, j)Wλ(FDi ,F
D
j )∑

c

∑
i,j∈Ic T

λ
c,c(i, j)Wλ(FDi ,F

D
j )

,

(11)

s.t. Tλ
c,c′ = arg minλ〈Tc,c′ ,Mc,c′〉 − Ω(Tc,c′). (12)

In the above equations, Tλ
c,c′ is the transport matrix impos-

ing weights on distances between graph samples belonging
to classes c and c′, Mc,c′ is a W-distance matrix whose each
element measures the W-distance between two graph sam-
ples in the dictionary from classes c and c′, respectively. Ic
is a sample index set that the samples indexed by its elements
all belong to class c.
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Datasets
Graphs Average Average Node
Num Nodes Edges Labels

MUTAG 188 17.93 19.79 7
PTC 344 14.29 14.69 19
NCI1 4110 29.87 32.30 37

PROTEIN 1137 39.06 72.82 3

IMDB-BINARY 1000 19.77 96.53 -
IMDB-MULTI 1500 13.00 65.94 -

Table 1: Summary of Graph Datasets.

Experiments
In the following parts, we first introduce the used datasets,
then describe the experiment setup including the implemen-
tation details, parameter setting, and the employed protocol.
Next, we compare the proposed WGDL model with multi-
ple state-of-the-art methods. Finally, we analyze our model
by conducting additional ablation experiments.

Dataset
The employed datasets in the experiments can be divided
into two categories, i.e. the bioinformatics datasets and so-
cial networks datasets. The bioinformatics datasets include
MUTAG (Debnath et al. 1991), PTC (Toivonen et al. 2003),
PROTEINS (Borgwardt et al. 2005), and NCI1 (Wale, Wat-
son, and Karypis 2008), while the social networks datasets
contain IMDB-BINARY and IMDB-MULTI. Below, we
briefly introduce them, and please also refer to Table 1.

Bioinformatics Datasets. MUTAG is a nitro compounds
dataset containing 188 samples divided into 2 classes, and
for each node there are 7 discrete labels; PTC is about com-
pounds labeled according to carcinogenicity on rodents. The
graphs in this dataset are divided into two categories with
each node annotated with 19 labels. NCI1, collected by Na-
tional Cancer Institute (NCI), is a balanced dataset of chem-
ical compounds screened for activity against non-small cell
lung cancer and ovarian cancer cell, and they contain 4110
and 4127 chemical compounds, respectively. PROTEINS
contains 1113 protein structures of secondary structure el-
ements (SSEs) with 3 discrete node labels.

Social Networks Datasets. IMDB-BINARY and IMDB-
MULTI are both movie collaboration datasets derived from
IMDB with two and three classes respectively. Each graph
represents a movie and every node represents an ac-
tor/actress. If they appear in the same movie, there will be
an edge between them. IMDB-BINARY is derived from the
Action and Romance genres.

Experiment Setup
Implementation Details. For each input graph, each node is
initialized based on the node label by using a one-hot vector.
Both the graph encoder and the momentum graph encoder
stack 3 layers of GCNs, where the output dimensions are
512, 256, and 32 respectively. For the setting of the Wasser-
stein graph dictionary, generally, larger dataset with more

classes may require more keys for higher representative abil-
ity. To avoid excessive parameters tuning, the key number
for each class is set the same (10 for each class here) for
all datasets. Accordingly, the graph dictionary is initialized
by randomly selecting a fixed number of samples from each
class in the training set. We set 2 fully connected layers to
further learn the query-resulted vectors, and their output di-
mensions equal 64 and the class number, respectively. For
the momentum graph encoder, similar with (He et al. 2020),
we update it according to the graph encoder by following
Eqn. 2 with the momentum coefficient m of 0.999, rather
than applying the gradient descent. In contrast, during train-
ing, the feature and adjacent matrix of each dictionary key
are both optimized. Specifically, the parameter λ for calcu-
lating the OT matrix in Eqn. 3 and Eqn. 11 , together with
the trade-off parameter β in Eqn. 10, are set to 1. We train
our model with Adam optimizer for 300 epochs, where the
weight decay is 10−4 and the learning rate is 0.001.

Protocol. By strictly following the employed protocol in
previous literatures, we evaluate the performance by 10-fold
cross-validation on all employed datasets. Each dataset is di-
vided into 10 sessions, of which nine sessions are used for
training and the remaining one session for testing. The ex-
periments are repeated 10 times in which process the session
used for testing is enumerated. After this process, we use the
average accuracy of the ten runs as the final performance.

Experimental Results
We compare the WGDL framework with several state-of-
the-arts, including graph kernel based methods (GK (Sher-
vashidze et al. 2009), DGK (Yanardag and Vishwanathan
2015), WL (Shervashidze et al. 2011), DWL (Morris, Ker-
sting, and Mutzel 2017), P-WL-UC (Rieck, Bock, and
Borgwardt 2019)), graph CNN methods (PSCN (Niepert,
Ahmed, and Kutzkov 2016), NgramCNN (Luo et al. 2017),
PPGN-1 (Maron et al. 2019), EigenGCN-3 (Ma et al.
2019), GNTK (Du et al. 2019)), feature based algorithms
(DyF (Gómez, Chiêm, and Delvenne 2017), FB (Barnett
et al. 2016)), and the neural network method (SAEN (Orsini,
Baracchi, and Frasconi 2018)). The results are shown in Ta-
ble 2. From the results, we have the following observations.

(1) In general, the graph kernel-based methods achieve lower
performance than the other algorithms, which may at-
tribute to the rough (hand-crafted) input features and
shallow learning architecture of these kinds of methods.
Among the graph kernel-based methods, WL achieves the
best performance on most datasets, and even approaches
or outperforms GNNs on the NCI1 dataset.

(2) GNNs and feature-based algorithms outperform those
graph kernel-based methods, which may benefit from
deep architectures. Specifically, graph CNNs are superior
to other compared methods due to the node aggregation
operation, which helps characterize the local topology.

(3) Our WGDL model achieves the best performance in most
cases comparing to all the other methods. Compared to
graph kernel methods, our proposed method improves the
performance with about 10% higher accuracy on the MU-
TAG, PTC, and IMDB-BINARY datasets. Even for those
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Datasets MUTAG PTC NCI1 PROTEINS IMDB-BINARY IMDB-MULTI

GK 81.66±2.11 57.26±1.41 62.28±0.29 71.67±0.55 65.87±0.98 43.89±0.38
DGK 82.66±1.45 57.32±1.13 62.48±0.25 71.68±0.50 66.96±0.56 44.55±0.52

EigenGCN-3 79.50 - 77.00 76.60 - -
WL 80.72±3.00 56.97±2.01 83.10±0.20 73.70±0.50 72.86±0.76 50.55±0.55

DWL 82.94±2.68 59.17±1.56 - - - -
P-WL-UC 85.17±0.29 - 85.62 ±0.27 75.86±0.78 - -

FB 84.66±2.01 55.58±2.30 62.90±0.96 69.97±1.34 72.02±4.71 47.34±3.56
PSCN 92.63±4.21 60.00±4.82 78.59±1.89 75.89±2.76 71.00±2.29 45.23±2.84
SAEN 84.99±1.82 57.04±1.30 77.80±0.42 75.31±0.70 71.26±0.74 49.11±0.64
DyF 88.00±2.37 57.15±1.47 68.27±0.34 75.04±0.65 72.87±4.05 48.12±3.56

GNTK 90.00±8.50 67.90±6.90 84.20±1.50 75.60±4.20 76.90±3.60 52.80±4.60
PPGN-1 90.55±8.70 66.17±6.54 83.19±1.11 77.20±4.73 72.60±4.90 50.00±3.15

NGRAMCNN 94.99±5.63 68.57±1.72 - 75.95±2.98 71.66±2.71 50.66±4.10

WGDL 94.68±2.63 70.89±5.15 80.30±2.45 77.29±2.91 79.70±3.59 53.45±4.96

Table 2: Comparsion with state-of-the-art-methods.

powerful graph CNN models, our proposed method still
outperforms them with about 2% higher accuracy. The
performance gain verifies the effectiveness of the WGDL
model to learn between-graph correspondence.

Ablation Study
As our WGDL framework has achieved promising perfor-
mance compared to existing state-of-the-art methods, it is
meaningful and interesting to make clear how the modules
or parameters setting, e.g. the graph dictionary and the num-
ber of keys, influence the performance of graph classifica-
tion. For this purpose, we conduct several additional exper-
iments to dissect our framework based on PROTEINS and
IMDB-BINARY datasets as follows:

(1) The effectiveness of the dynamic Wasserstein dictionary.
To evaluate the benefit of our designed dynamic Wasser-
stein dictionary, based on which graph correspondence is
modeled, we simply remove the dictionary module from
the WGDL framework, which results in a 3-layer GCN.
Then, we compare the performance between these.

(2) The effectiveness of the OT principle in W-distance. To
make clear the effectiveness of the OT principle, we just
remove the OT projection (WGDL No OT in Table 3) in
Eqn. 3, so that the W-distance is calculated only based on
the point-wise Euclidean distance between two graphs.

(3) The effectiveness of the WD-Loss. To evaluate the
WD-Loss, we remove it from the WGDL framework
(WGDL No WD in Table 3) and compare them.

(4) The influence of the ratio between the dictionary key node
number and input graph node number. To quantify its in-
fluence, we vary the ratio in {0.2, 0.6, 1.0, 1.4, 1.8}.

(5) The influence of the dictionary key number K of each
class. The key number of each class in set in the range of
{2, 6, 10, 14, 18} to see how the accuracy changes.

PROTEINS IMDB-BINARY

3-layer GCN 75.85±2.97 77.30±3.20
WGDL No WD 76.39±2.68 78.70±3.65
WGDL No OT 73.51±3.84 77.40±2.99

WGDL 77.29±2.91 79.70±3.59

Table 3: The results of the ablation study.

(6) The influence of the parameters λ and β. Both the ranges
of the parameters λ and β are set in {0, 0.1, 0.5, 1, 5,
10, 50, 100}. When evaluating one parameter (e.g. λ) by
varying its value, the other’s value (e.g. β) is fixed to 1.
The results are shown in Table 3 and Fig. 2, and we have

the following observations:

(1) Our designed dynamic dictionary effectively improves
the graph classification performance. On the datasets,
the WGDL framework outperforms a 3-layer GCN with
about 2 percent higher accuracy. The performance gain
comes from the specifically designed dynamic dictio-
nary which additionally measures the topology correspon-
dence between graphs compared to GCN.

(2) The OT principle also plays a crucial role in capturing
graph topology correlation. According to Table 3, com-
paring WGDL No OT with WDGL, the performance ob-
viously degrades without OT matrix in calculating the W-
distance. The performance gap shows the importance of
the OT matrix for well measuring the cross-graph topol-
ogy correlation based on the Sinkhorn algorithm.

(3) The WD-Loss further promotes the performance of our
WGDL framework. About 1% accuracy gain is achieved
on both datasets by imposing the WD-Loss. This verifies
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(a) (b) (c) (d)

Figure 2: The influence of the ratio between the dictionary key node number (N2) and input graph node number (N1) (a), the
influence of the dictionary key number of each class (b), the influence of the λ (c) and β (d).

that the intra-class compactness and inter-class dispersion
can effectively facilitate the graph discriminant learning.

(4) Both the numbers of the key nodes and graph keys in the
dictionary should be set appropriately in a certain range.
According to Fig. 2, for the number of key nodes, the best
performance is achieved when the input graph and the
key have almost equal numbers, while the performance
degrades if further increasing the key node number. This
may attribute to the reason that too many nodes in the
key may introduce redundancy in the graph correspon-
dence measurement. Similar to the node number, exces-
sive keys may increase the correlation between subspaces
while they tend to reduce the discriminability of represen-
tation. As shown in the experiment, performance degrada-
tion is observed when setting excessive keys.

(5) Overall, the proposed model is robust to the variations of
the two parameters λ and β: even though two parame-
ters are varied in a pretty large range of values, the per-
formance of the model stays above 60%. Specifically, λ
controls local information between the nodes across two
graphs. For too large values of λ, the OT matrix would be-
come little sensitive to the local correlation between two
graphs and therefore would degrade the graph representa-
tion ability. And for the parameter β, it balances the influ-
ence of the cross-entropy loss and WD-Loss. In the case
of large values of β, the large bias would be introduced
into the training that reduces the discriminability of the
graph representation (please see Eqn. (10)) and therefore
degrades the performance.

Moreover, we additionally visualize the cross-key W-
distances of the dictionary before and after training with 40
epochs in Fig. 3. According to Fig. 3, intuitively, our pro-
posed WD-Loss is effective to endow intra-class compact-
ness and inter-class dispersion, as the values of the diagonal
patches of the matrices in the right column are near zero.

Conclusion
In this paper, a deep WGDL framework was proposed for
the graph classification task. Considering the difficulty of
calculating W-metric class centers in discriminant analysis,
a graph dictionary was constructed as the reference set to
avoid calculating statistics on the mean and covariance of

Figure 3: The visualization of cross-key W-distances of the
dictionary. The first row is drawn based on a two-class
dataset while the second is based on a three-class one. The
left column shows the cross-key W-distances of the dictio-
naries before optimization, and the dictionaries related to the
right column are optimized for 40 epochs.

graphs. Based on the constructed dictionary, the input graph
can be transformed through the proposed WGT, in which
process graph correlation is measured through the regular-
ized W-distance in an OT principle. To learn more discrim-
inative features, the graph dictionary was made to be dy-
namically updated in the training process. Accordingly, the
WD-Loss was introduced, based on which the dictionary
keys are optimized to have better intra-class compactness
and inter-class dispersion. We evaluated the proposed model
on multiple Bioinformatics and social network datasets, and
dissected the framework with ablation analysis. The experi-
mental results verify the effectiveness of our model.
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learning with a smoothed Wasserstein loss. In Artificial In-
telligence and Statistics, 630–638.

Sandryhaila, A.; and Moura, J. M. 2013. Discrete signal pro-
cessing on graphs. IEEE transactions on signal processing
61(7): 1644–1656.

Schmitz, M. A.; Heitz, M.; Bonneel, N.; Ngole, F.; Coeur-
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