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Abstract

Much research has been devoted to the problem of estimat-
ing treatment effects from observational data; however, most
methods assume that the observed variables only contain con-
founders, i.e., variables that affect both the treatment and the
outcome. Unfortunately, this assumption is frequently vio-
lated in real-world applications, since some variables only af-
fect the treatment but not the outcome, and vice versa. More-
over, in many cases only the proxy variables of the underlying
confounding factors can be observed. In this work, we first
show the importance of differentiating confounding factors
from instrumental and risk factors for both average and con-
ditional average treatment effect estimation, and then we pro-
pose a variational inference approach to simultaneously in-
fer latent factors from the observed variables, disentangle the
factors into three disjoint sets corresponding to the instrumen-
tal, confounding, and risk factors, and use the disentangled
factors for treatment effect estimation. Experimental results
demonstrate the effectiveness of the proposed method on a
wide range of synthetic, benchmark, and real-world datasets.

Introduction
Estimating the effect of a treatment on an outcome is a fun-
damental problem faced by many researchers and has a wide
range of applications across diverse disciplines. In social
economy, policy makers need to determine whether a job
training program will improve the employment perspective
of the workers (Athey and Imbens 2016). In online adver-
tisement, companies need to predict whether an advertise-
ment campaign could persuade a potential buyer into buying
the product (Rzepakowski and Jaroszewicz 2011).

To estimate treatment effect from observational data, the
treatment assignment mechanism needs to be independent
of the possible outcomes when conditioned on the observed
variables, i.e., the unconfoundedness assumption (Rosen-
baum and Rubin 1983) needs to be satisfied. With this as-
sumption, treatment effects can be estimated from observa-
tional data by adjusting on the confounding variables which
affects both the treatment assignment and the outcome. The
treatment effect estimation may be biased if not all the con-
founders are considered in the estimation (Pearl 2009).
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From a theoretical perspective, practitioners are tempted
to include as many variables as possible to ensure the sat-
isfaction of the unconfoundedness assumption. This is be-
cause confounders can be difficult to measure in the real-
world and practitioners need to include noisy proxy vari-
ables to ensure unconfoundedness. For example, the socio-
economic status of patients confounds treatment and prog-
nosis, but cannot be included in the electronic medical
records due to privacy concerns. It is often the case that such
unmeasured confounders can be inferred from noisy proxy
variables which are easier to measure. For instance, the zip
codes and job types of patients can be used as proxies to
infer their socio-economic statuses (Sauer et al. 2013).

From a practical perspective, the inflated number of vari-
ables included for confounding adjustment reduces the ef-
ficiency of treatment effect estimation. Moreover, it has
been previously shown that including unnecessary covari-
ates is suboptimal when the treatment effect is estimated
non-parametrically (Hahn 1998; Abadie and Imbens 2006;
Häggström 2017). In a high dimensional scenario, eventu-
ally many included variables will not be confounders and
should be excluded from the set of adjustment variables.

Most existing treatment estimation algorithms treat the
given variables “as is”, and leave the task of choosing con-
founding variables to the user. It is clear that the users are
left with a dilemma: on the one hand including more vari-
ables than necessary produces inefficient and inaccurate es-
timators; on the other hand restricting the number of ad-
justment variables may exclude confounders themselves or
proxy variables of the confounders and thus increases the
bias of the estimated treatment effects. With only a handful
of variables, the problem can be avoided by consulting do-
main experts. However, a data-driven approach is required
in the big data era to deal with the dilemma.

In this work, we propose a data-driven approach for si-
multaneously inferencing latent factors from proxy variables
and disentangling the latent factors into three disjoint sets as
illustrated in Figure 1: the instrumental factors zt which only
affect the treatment but not the outcome, the risk factors zy
which only affect the outcome but not the treatment, and the
confounding factors zc that affect both the treatment and the
outcome. Since our method builds upon the recent advance-
ment of the research on variational autoencoder (Kingma
and Welling 2014), we name our method Treatment Effect
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Figure 1: Model diagram for the proposed Treatment Effect
with Disentangled Autoencoder (TEDVAE). t is the treat-
ment, y is the outcome. x is the “as-is” observed variables
which may contain non-confounders and noisy proxy vari-
ables. zt are factors that affect only the treatment, zy are
factors that affect only the outcome, and zc are confounding
factors that affect both treatment and outcome.

by Disentangled Variational AutoEncoder (TEDVAE). Our
main contributions are:

• We address an important problem in treatment effect esti-
mation from observational data, where the observed vari-
able may contain confounders, proxies of confounders
and non-confounding variables.

• We propose a data-driven algorithm, TEDVAE, to simul-
taneously infer latent factors from proxy variables and
disentangle confounding factors from the others for a
more efficient and accurate treatment effect estimation.

• We validate the effectiveness of the proposed TEDVAE
algorithm on a wide range of synthetic datasets, treatment
effect estimation benchmarks and real-world datasets.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss related works. The details of TEDVAE
is presented in Section 3. In Section 4, we discuss the eval-
uation metrics, datasets and experiment results. Finally, we
conclude the paper in Section 5.

Related Work
Treatment effect estimation has steadily drawn the attentions
of researchers from the statistics and machine learning com-
munities. During the past decade, several tree based meth-
ods (Su et al. 2009; Athey and Imbens 2016; Zhang et al.
2017, 2018) have been proposed to address the problem by
designing a treatment effect specific splitting criterion for
recursive partitioning. Ensemble algorithms and meta algo-
rithms (Künzel et al. 2019; Wager and Athey 2018) have
also been explored. For example, Causal Forest(Wager and
Athey 2018) builds ensembles using the Causal Tree (Athey
and Imbens 2016) as base learners. X-Learner (Künzel et al.
2019) is a meta algorithm that can utilize off-the-shelf ma-
chine learning algorithms for treatment effect estimation.

Deep learning based heterogeneous treatment effect es-
timation methods have attracted increasingly research in-
terest in recent years (Shalit, Johansson, and Sontag 2017;
Alaa and Schaar 2018; Louizos et al. 2017; Hassanpour and
Greiner 2018; Yao et al. 2018; Yoon, Jordan, and van der

Schaar 2018). Counterfactual Regression Net (Shalit, Jo-
hansson, and Sontag 2017) and several other methods (Yao
et al. 2018; Hassanpour and Greiner 2018) have been pro-
posed to reduce the discrepancy between the treated and un-
treated groups of samples by learning a representation such
that the two groups are as close to each other as possible.
However, their designs do not separate the covariates that
only contribute to the treatment assignment from those only
contribute to the outcomes. Furthermore, these methods are
not able to infer latent covariates from proxies.

Variable decomposition (Kun et al. 2017; Häggström
2017) has been previously investigated for average treatment
effect estimation. Our method has several major differences
from the above methods: (i) our method is capable of esti-
mating the individual level heterogeneous treatment effects,
where existing ones only focus on the population level av-
erage treatment effect; (ii) we are able to identify the non-
linear relationships between the latent factors and their prox-
ies, whereas their approach only models linear relationships.
Recently, a deep representation learning based method, DR-
CFR (Hassanpour and Greiner 2020) is proposed for treat-
ment effect estimation.

Another work closely related to ours is the Causal Effect
Variational Autoencoder (CEVAE) (Louizos et al. 2017),
which also utilizes variational autoencoder to learn con-
founders from observed variables. However, CEVAE does
not consider the existence of non-confounders, and is not
able to learn the separated sets of instrumental and risk fac-
tors. As demonstrated by the experiments, disentangling the
factors significantly improves the performance.

Method
Preliminaries
Let ti ∈ {0, 1} denote a binary treatment where ti = 0
indicates the i-th individual receives no treatment (control)
and ti = 1 indicates the individual receives the treatment
(treated). We use yi(1) to denote the potential outcome of i
if it were treated, and yi(0) to denote the potential outcome
if it were not treated. Noting that only one of the potential
outcomes can be realized, and the observed outcome is yi =
(1 − ti)yi(0) + tiyi(1). Additionally, let xi ∈ Rd denote
the “as is” set of covariates for the i-th individual. When the
context is clear, we omit the subscript i in the notations.

Throughout the paper, we assume that the following three
fundamental assumptions for treatment effect estimations
(Rosenbaum and Rubin 1983) are satisfied:
Assumption 1. (SUTVA) The Stable Unit Treatment Value
Assumption requires that the potential outcomes for one unit
(individual) is unaffected by the treatment of others.

Assumption 2. (Unconfoundedness) The distribution of
treatment is independent of the potential outcome when con-
ditioning on the observed variables: t ⊥⊥ (y(0), y(1))|x.

Assumption 3. (Overlap) Every unit has a non-zero prob-
ability to receive either treatment or control when given the
observed variables, i.e., 0 < P (t = 1|x) < 1.

The first goal of treatment effect estimation is estimat-
ing the average treatment effect (ATE) which is defined as:

10924



ATE = E[y(1)−y(0)] = E[y|do(t = 1)]−E[y|do(t = 0)],
where do(t = 1) denote an manipulation on t by removing
all its incoming edges and setting t = 1 (Pearl 2009).

The treatment effect for an individual i is defined as
τi = yi(1) − yi(0). Due to the counterfactual problem,
we never observe yi(1) and yi(0) simultaneously and thus
τi is not observed for any individual. Instead, we estimate
the conditional average treatment effect (τ(x)), defined as
τ(x) := E[τ |x] = E[y|x, do(t = 1)]− E[y|x, do(t = 0)].

Treatment Effect Estimation from Latent Factors
In this work, we propose the TEDVAE model (Figure 1)
for estimating the treatment effects, where the observed pre-
treatment variables x can be viewed as generated from three
disjoint sets of latent factors z = (zt, zc, zy). Here zt are in-
strumental factors that only affect the treatment but not the
outcome, zy are risk factors which only affect the outcome
but not the treatment, and zc are confounding factors that
affect both the treatment and the outcome.

On the one hand, the proposed TEDVAE model in Fig-
ure 1 provides two important benefits. The first one is that
by explicitly modelling for the instrumental factors and ad-
justment factors, it accounts for the fact that not all variables
in the observed variables set x are confounders. The second
benefit is that it allows for the possibility of learning unob-
served confounders that from their proxy variables.

On the other hand, our model diagram does not pose any
restriction other than the three standard assumptions dis-
cussed in Section 3.1. To see this, consider the case where
every variable in x itself is a confounder, i.e., x = xc, then
the generating mechanism in the TEDVAE model becomes
zc = x with zt = zy = ∅ and the model in Figure 1 be-
comes identical to the widely used diagram for treatment
effect estimation (Figure 2 in (Imbens 2019)).

With our model, the estimation of treatment effect is im-
mediate using the back-door criterion (Pearl 2009):

Theorem 1. The effect of t on y can be identified if we re-
cover the confounding factors zc from the data.

Proof. From Figure 1 we know that zt, zc are the parents of
the treatment t, following (3.13) in Pearl we have,

P (y|do(t)) =
∑
zt

∑
zc

P (y|t, zt, zc)P (zt)P (zc). (1)

Utilizing the fact that y ⊥⊥ zt|t, zc, we have

P (y|do(t)) =
∑
zt

P (zt)
∑
zc

P (y|t, zc)P (zc|t, zc, zt). (2)

Furthermore, since zc is not a descendant of t, by Markov
property we have t ⊥⊥ zc|zc, zt. Therefore

P (y|do(t)) =
∑
zt

P (zt)
∑
zc

P (y|t, zc)P (zc|zc, zt). (3)

Note that
∑
zt

P (zt)P (zc|zt, zc) = P (zc), which gives us

P (y|do(t)) =
∑
zc

P (y|t, zc)P (zc).

For the estimation of the conditional average treatment
effect, our result follows from Theorem 3.4.1 in (Pearl 2009)
as shown in the following theorem:

Theorem 2. The conditional average treatment effect of t
on y conditioned on x can be identified if we recover the
confounding factors zc and risk factors zy .

Proof. Let Gt denote the causal structure obtained by re-
moving all incoming edges of t in Figure 1, Gt denote the
structure by deleting all outgoing edges of t.
Noting that y ⊥⊥ zt|t, zy, zc in Gt, using the three rules
of do-calculus we can remove zt from the conditioning
set and obtain P (y|do(t),x) = P (y|do(t), zt, zc, zy) =
P (y|do(t), zy, zc). with Rule 1. Furthermore, using Rule
2 with (y ⊥⊥ t|zc, zy) in Gt yields P (y|do(t),x) =
P (y|do(t), zy, zc) = P (y|t, zy, zc).

An implication of Theorem 1 and 2 is that they are not
restricted to binary treatment. In other words, our proposed
method can be used for estimating treatment effect of a con-
tinuous treatment variable, while most of the existing esti-
mators are not able to do so. However, due to the lack of
datasets with continuous treatment variables for evaluating
this, we focus on the case of binary treatment variable and
leave the continuous treatment case for future work.

Theorems 1 and 2 suggest that disentangling the con-
founding factors allows us to exclude unnecessary factors
when estimating ATE and CATE. However, keen readers
may wonder since we already assumed unconfoundedness,
doesn’t straightforwardly adjusting for x suffice?

Theoretically, it has been shown that both the bias (Abadie
and Imbens 2006) and the variance (Hahn 1998) of treat-
ment effect estimation will increase if variables unrelated to
the outcome is included during the estimation. Therefore, it
is crucial to differentiate the instrumental, confounding and
risk factors and only use the appropriate factors during treat-
ment effect estimation. In the next section, we propose our
data-driven approach to learn and disentangle the latent fac-
tors using a variational autoencoder.

Learning of the Disentangled Latent Factors
In the above discussion, we have seen that removing un-
necessary factors is crucial for efficient and accurate treat-
ment effect estimation. We have assumed that the mech-
anism which generates the observed variables x from the
latent factors z and the decomposition of latent factors
z = (zt, zc, zy) are available. However, in practice both the
mechanism and the decomposition are not known. There-
fore, the practical approach would be to utilize the complete
set of available variables during the modelling to ensure the
satisfaction of the unconfoundedness assumption, and uti-
lize a data-driven approach to simultaneously learn and dis-
entangle the latent factors into disjoint subsets.

To this end, our goal is to learn the posterior distribution
p(z|x) for the set of latent factors with z = (zt, zy, zc)
as illustrated in Figure 1, where zt, zc, zy are independent
of each other and correspond the instrumental factors, con-
founding factors, and risk factors, respectively. Because ex-
act inference would be intractable, we employ neural net-
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p(t|zt,zc)

p(zc) p(y|t=1,zc,zy)

p(y|t=0,zc,zy)

p(x|zt,zc,zy)

...

...

p(zy)

p(zt)

...

(a) Generative Model.

q(zy|x)

q(zt|x)

...

...

p(x)

...

q(zc|x)

q(t|zt,zc)

q(y|t, zy,zc)

(b) Inference Model.

Figure 2: Overall architecture of the model network and the inference network for the Treatment Effect Disentangling Varia-
tional AutoEncoder (TEDVAE). White nodes correspond to parametrized deterministic neural network transitions, gray nodes
correspond to drawing samples from the respective distribution and white circles correspond to switching paths according to
the treatment t. Dashed arrows in the inference model represent the two auxiliary classifiers qωt(t|zt, zc) and qωy (y|zy, zc).

work based variational inference to approximate the poste-
rior pθ(x|zt, zc, zy). Specifically, we utilize three separate
encoders qφt(zt|x), qφc(zc|x), and qφy (zy|x) that serve as
variational posteriors over the latent factors. These latent
factors are then used by a single decoder pθ(x|zt, zc, zy) for
the reconstruction of x. Following standard VAE design, the
prior distributions p(zt), p(zc), p(zy) are chosen as Gaus-
sian distributions (Kingma and Welling 2014).

Specifically, the factors and the generative models for x
and t are described as:

p(zt) =

Dzt∏
j=1

N (ztj |0, 1); p(zc) =

Dzc∏
j=1

N (zcj |0, 1);

p(zy) =

Dzy∏
j=1

N (zyj |0, 1); p(t|zt, zc) = Bern(σ(f1(zt, zc))

p(x|zt, zc, zy) =
d∏
j=1

p(xj |zt, zc, zy), (4)

with p(xj |zt, zc, zy) being the suitable distribution for the j-
th observed variable, f1 is a function parametrized by neural
network, and σ(·) being the logistic function, Dzt , Dzc , and
Dzy are the parameters that determine the dimensions of in-
strumental, confounding, and risk factors to infer from x.

For continuous outcome variable y, we parametrize it
as using a Gaussian distribution with its mean and vari-
ance given by a pair of disjoint neural networks that de-
fines p(y|t = 1, zc, zy) and p(y|t = 0, zc, zy). This pair
of disjoint networks allows for highly imbalanced treatment.
Specifically, for continuous y we parametrize it as:

p(y|t, zc, zy) = N (µ = µ̂, σ2 = σ̂2),

µ̂ = (tf2(zc, zy) + (1− t)f3(zc, zy)),
σ̂2 = (tf4(zc, zy) + (1− t)f5(zc, zy)), (5)

where f2, f3, f4, f5 are neural networks parametrized by
their own parameters. The distribution for the binary out-

come case can be similarly parametrized with a Bernoulli
distribution.

In the inference model, the variational approximations of
the posteriors are defined as:

qφt(zt|x) =
Dzt∏
j=1

N (µ = µ̂t, σ
2 = σ̂2

t );

qφc(zc|x) =
Dzc∏
j=1

N (µ = µ̂c, σ
2 = σ̂2

c );

qφy (zy|x) =
Dzy∏
j=1

N (µ = µ̂y, σ
2 = σ̂2

y) (6)

where µ̂t, µ̂c, µ̂y and σ̂2
t , σ̂

2
c , σ̂

2
y are the means and variances

of the Gaussian distributions parametrized by neural net-
works similarly to the µ̂ and σ̂ in the generative model.

Given the training samples, the parameters can be opti-
mized by maximizing the evidence lower bound (ELBO):

LELBO(x, y, t) =Eqφcqφtqφy [log pθ(x|zt, zc, zy)]
−DKL(qφt(zt|x)||pθt(zt))
−DKL(qφc(zc|x)||pθc(zc))
−DKL(qφy (zy|x)||pθy (zy)). (7)

To encourage the disentanglement of the latent factors and
ensure that the treatment t can be predicted from zt and zc,
and the outcome y can be predicted from zy and zc, we add
two auxiliary classifiers to the variational lower bound. Fi-
nally, the objective of TEDVAE can be expressed as

LTEDVAE =LELBO(x, y, t)

+ αtEqφtqφc [log qωt(t|zt, zc)]
+ αyEqφy qφc [log qωy (y|t, zc, zy)], (8)

where αt and αy are the weights for the auxiliary objectives.
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For predicting the CATEs of new subjects given their
observed covariates x, we use the encoders q(zy|x) and
q(zc|x) to sample the posteriors of the confounding and risk
factors for l times, and average over the predicted outcome
y using the auxiliary classifier qωy (y|t, zc, zy).

An important difference between TEDVAE and CEVAE
lies in their inference models. During inference, CEVAE de-
pends on t, x and y for inferencing z; in other words, CE-
VAE needs to estimate p(t|x) and p(y|t,x), inference z as
p(z|t, y,x), and finally predict the CATE as τ̂(x) = E[y|t =
1, z]−E[t|y = 0, z]. The estimations of p(t|x) and p(y|t,x)
are unnecessary since we assume that t and y are generated
by the latent factors and inferencing the latents should only
depend on x as in TEDVAE. As we later show in the exper-
iments, this difference is crucial even when no instrumental
or risk factors are present in the data.

Experiments
We empirically compare TEDVAE with traditional and neu-
ral network based treatment effect estimators. For tradi-
tional methods, we compare with tailor designed methods
including Squared t-statistic Tree (t-stats) (Su et al. 2009)
and Causal Tree (CT) (Athey and Imbens 2016); ensem-
ble methods including Causal Random Forest (CRF) (Wa-
ger and Athey 2018), Bayesian Additive Regression Trees
(BART) (Hill 2011), and meta algorithm X-Learner (Künzel
et al. 2019) using Random Forest (Breiman et al. 1984)
as base learner (X-RF). For deep learning based methods,
we compare with representation learning based methods in-
cluding Counterfactual Regression Net (CFR) (Shalit, Jo-
hansson, and Sontag 2017), Similarity Preserved Individ-
ual Treatment Effect (SITE) (Yao et al. 2018), and with
a deep learning variable decomposition method for Coun-
terfactual Regression (DR-CFR) (Hassanpour and Greiner
2020). We also compare with generative methods including
Causal Effect Variational Autoencoder (CEVAE) (Louizos
et al. 2017) and GANITE (Yoon, Jordan, and van der Schaar
2018). Parameters for the compared methods are tuned
by cross-validated grid search on the value ranges recom-
mended in the code repository. The code is available at
https://github.com/WeijiaZhang24/TEDVAE.

Evaluation Criteria
For evaluating the performance of CATE estimation, we
use the Precision in Estimation of Heterogeneous Effect
(PEHE) (Hill 2011; Shalit, Johansson, and Sontag 2017;
Louizos et al. 2017; Dorie et al. 2019) which measures
the root mean squared distance between the estimated and
the true CATE when ground truth is available: εPEHE =√

1
N

∑N
i=1(τ̂(xi)− τ(xi))2 , where τ(x) is the ground

truth CATE for subjects with observed variables xi.
For evaluating the performance of the average treatment

effect (ATE) estimation, the ground truth ATE can be cal-
culated by averaging the differences of the outcomes in
the treated and control groups if randomized controlled tri-
als data is available. Then, when comparing the ground
truth ATE with the estimated ATE obtained from a non-
randomized sample (observational sample or created via bi-
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Figure 3: Comparison of CEVAE and TEDVAE under dif-
ferent settings using the synthetic datasets. Rows: the re-
sults for data generating procedure satisfies the assumption
of the TEDVAE model and the CEVAE model, respectively.
Columns: (Left) Varying the proportional of treated samples;
(Middle) Varying the size of the outcome; (Right) Varying
the size of the CATE. (Figures are best viewed in colour.)

ased sampling) of the dataset, the performances can then be
evaluated using the mean absolute error in ATE (Hill 2011;
Shalit, Johansson, and Sontag 2017; Louizos et al. 2017;

Yao et al. 2018) for evaluation: εATE = |τ̂ − 1
N

N∑
i=1

[tiyi −

(1− ti)yi]|, where τ̂ is the estimated ATE, ti and yi are the
treatments and outcomes from the randomized data. For both
εATE and εPEHE, we use superscripts tr and te to denote their
values on the training and test sets, respectively.

Synthetic Datasets
We first conduct experiments using synthetic datasets to in-
vestigate TEDVAE’s capability of inferring the latent factors
and estimating the treatment effects. Due to the page limit,
we only provide an outline of the synthetic dataset and pro-
vide the detailed settings in the supplementary materials.

The first setting of synthetic datasets studies the benefit of
disentangling the confounding factors from instrumental and
risk factors, and are generated using the structure depicted in
Figure 1. We illustrate the results in the first row of Figure 3.
It can be seen that when the instrumental and risk factors ex-
ist in the data, the benefit of disentanglement is signficance
as demonstrated by the PEHE curves between TEDVAE
and CEVAE. When the proportions of the treated samples
varies, the performances of CEVAE fluctuates severely and
the error remains high even when the dataset is balanced;
however, the PEHEs of TEDVAE are stable even when the
dataset is highly imbalanced, and are always stays signifi-
cantly lower than CEVAE. When the scales of outcome and
CATE change, TEDVAE also performs consistently and sig-
nificantly better than CEVAE.

The second setting for the synthetic datasets are designed
to study how TEDVAE performs when the instrumental and
risk factors are absent, and follow the same data generating
procedure as in the CEVAE (Louizos et al. 2017). We illus-
trate the results of this synthetic dataset in the second row of
Figure 3. Therefore, it is reasonable to expect that CEVAE
would perform better than TEDVAE since the instrumental
factors zt and risk factors zy do not exist. However, from the
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Figure 4: Radar charts for TEDVAE’s capability in identify-
ing the latent factors. Each vertex on the polygons is iden-
tified with the latent factors’ dimension sequence of the as-
sociated synthetic dataset. For example, 5-5-5 indicates that
the dataset is generated using 5 dimensions each for the in-
strumental, confounding, and risk factors.

second row of Figure 3 we can see that TEDVAE either per-
forms better than CEVAE, or performs as well as CEVAE
using a wide range of parameters under this setting. This
is possibly due to the differences in predicting for previous
unseen samples between TEDVAE and CEVAE, where CE-
VAE needs to follow a complicated procedure of inferencing
p(t|x) and p(y|t,x) first and then inferencing the latents as
p(z|t, y,x), whereas in TEDVAE this is not needed. These
results suggests that the TEDVAE model is able to effec-
tively learn the latent factors and estimate the CATE even
when the instrumental and risk factors are absent. It also in-
dicates that the TEDVAE algorithm is robust to the selection
of the latent dimensionality parameters.

Next, we investigate whether TEDVAE is capable of re-
covering the latent factors of zt, zc, and zy that are used
to generate the observed covariates x. To do so, we com-
pare the performances of TEDVAE when setting the Dzt ,
Dzc and Dzy parameters to 10 against itself when setting
one of the latent dimensionality parameter of TEDVAE to
0, i.e., setting Dzt = 0 and forcing TEDVAE to ignore the
existence of zt. If TEDVAE is indeed capable of recovering
the latent factors, then its performances with non-zero la-
tent dimensionality parameters should be better than its per-
formance when ignoring the existence of any of the latent
factors. Figure 4 illustrates the capability of TEDVAE for
identifying the latent factors using radar chart. Taking the
Figure 4(a) as example, the zt and ¬zt polygons correspond
to the performances of TEDVAE when setting the dimension
parameter Dzt = 5 (identify zt) and Dzt = 0 (ignore zt).
From the figures we can clearly see that the performances of
TEDVAE are significantly better when the latent dimension-
ality parameters are set to non-zero, than setting any of the
latent dimensionality to 0.

Benchmarks and Real-world Datasets
In this section, we use two benchmark datasets for treatment
effect estimation to compare TEDVAE with the baselines.

Benchmark I: 2016 Atlantic Causal Inference Challenge
The 2016 Atlantic Causal Inference Challenge (ACIC2016)
(Dorie et al. 2019) contains 77 different settings of bench-
mark datasets that are designed to test causal inference algo-
rithms under a diverse range of real-world scenarios. The

Methods εtrPEHE εtePEHE
CT 4.81±0.18 4.96±0.21
t-stats 5.18±0.18 5.44±0.20
CF 2.16±0.17 2.18±0.19
BART 2.13±0.18 2.17±0.15
X-RF 1.86±0.15 1.89±0.16
CFR 2.05±0.18 2.18±0.20
SITE 2.32±0.19 2.41±0.23
DR-CFR 2.44±0.20 2.56±0.21
GANITE 2.78±0.56 2.84± 0.61
CEVAE 3.12±0.28 3.28±0.35
TEDVAE 1.75±0.14 1.77±0.17

Table 1: Means and standard deviations of the PEHE met-
rics (smaller is better) for training and test sets on the 77
benchmark datasets from ACIC2016. The bolded values in-
dicate the best performers (Wilcoxon signed rank tests at
p = 0.05).

dataset contains 4802 observations and 58 variables. The
outcome and treatment variables are generated using dif-
ferent data generating procedures for the 77 settings, pro-
viding benchmarks for a wide range of treatment effect es-
timation scenarios. This dataset can be accessed at https:
//github.com/vdorie/aciccomp/tree/master/2016.

We report the average PEHE metrics across 77 settings
where each setting is repeated for 10 replications. For TED-
VAE, the parameters are selected using the average of the
first five settings, instead of tuning separately for the 77 set-
tings. This approach has two benefits: firstly and most im-
portantly, if an algorithm performs well using the same pa-
rameters across all 77 settings, it indicates that the algorithm
is not sensitive to the choice of parameters and thus would
be easier for practitioners to use in real-world scenarios; the
second benefit is to save computation costs, as conducting
parameter tuning across a large amount of datasets can be
computationally overwhelming for practitioners. As a result,
we set the latent dimensionality parameters as Dzy = 5,
Dzt = 15, Dzc = 15 and set the weight for auxiliary
losses as αt = αy = 100. For all the parametrized neural
networks, we use 5 hidden layers and 100 hidden neurons
in each layer, with ELU activation. with a 60%/30%/10%
train/validation/test splitting proportions.

The results on the ACIC2016 datasets are reported in Ta-
ble 1. We can see that TEDVAE performs significantly better
than the compared methods. These results show that, without
tuning parameters individually for each setting, TEDVAE
achieves state-of-the-art performances across diverse range
of data generating procedures, which empirically demon-
strates that TEDVAE is effective for treatment effect esti-
mation across different settings.

Benchmark II: Infant Health Development Program
The Infant Health and Development Program (IHDP) is a
randomized controlled study designed to evaluate the ef-
fect of home visit from specialist doctors on the cognitive
test scores of premature infants. The datasets is first used
for benchmarking treatment effect estimation algorithms in
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Setting A Setting B
Methods εtrPEHE εtePEHE εtrPEHE εtePEHE
CT 1.48±0.12 1.56±0.13 5.46±0.08 5.73±0.09
t-stats 1.78±0.09 1.91±0.12 5.40±0.08 5.71±0.09
CF 1.01±0.08 1.09±0.16 3.86±0.05 3.91±0.07
BART 0.87±0.07 0.88±0.07 2.78±0.03 2.91±0.04
X-RF 0.98±0.08 1.09±0.15 3.50±0.04 3.59±0.06
CFR 0.67±0.02 0.73±0.04 2.60±0.04 2.76±0.04
SITE 0.65±0.07 0.67±0.06 2.65±0.04 2.87±0.05
DR-CFR 0.62±0.15 0.65±0.18 2.73±0.04 2.93±0.05
GANITE 1.84±0.34 1.90±0.40 3.68±0.38 3.84±0.52
CEVAE 0.95±0.12 1.04±0.14 2.90±0.10 3.24±0.12
TEDVAE 0.59±0.11 0.60±0.14 2.10±0.09 2.22±0.08

Table 2: Means and standard deviations of the PEHE metric
(smaller is better) on IHDP. The bolded values indicate the
best performers (Wilcoxon signed rank tests (p = 0.05).

(Hill 2011), where selection bias is induced by removing a
non-random subset of the treated subjects to create an ob-
servational dataset, and the outcomes are simulated using
the original covariates and treatments. It contains 747 sub-
jects and 25 variables that describe both the characteristics
of the infants and the characteristics of their mothers. We
use the same procedure as described in (Hill 2011) which
includes two settings of this benchmark: ‘Setting A” and
“Setting B”, where the outcomes follow linear relationship
with the variables in “Setting A” and exponential relation-
ship in “Setting B”. The datasets can be accessed at https:
//github.com/vdorie/npci. The reported performances are av-
eraged over 100 replications with a training/validation/test
splits proportions of 60%/30%/10%.

Since evaluating treatment effect estimation is difficult in
real-world scenarios (Alaa and van der Schaar 2019), a good
treatment effect estimation algorithm should perform well
across different datasets with minimum requirement for pa-
rameter tuning. Therefore, for TEDVAE we use the same
parameters in the ACIC dataset and do not perform parame-
ter tuning on the IHDP dataset. For the compared traditional
methods, we also use the same parameters as selected on the
ACIC benchmark. For the compared deep learning methods,
we conduct grid search using the recommended parameter
ranges from the relevant papers.

From Table 2 we can see that TEDVAE achieves the low-
est PEHE errors among the compared methods on both Set-
ting A and Setting B of the IHDP benchmark. Wilcoxon
signed rank tests (p = 0.05) indicate that TEDVAE is signif-
icantly better than the compared methods. Since TEDVAE
uses the same parameters on the IHDP datasets as in the pre-
vious ACIC benchmarks, these results demonstrate that the
TEDVAE model is suitable for diverse real-world scenarios
and is robust to the choice of parameters.

Real-world Dataset: Twins In this section, we use a real-
world randomized dataset to compare the methods capability
of estimating the average treatment effects.

The Twins dataset has been previously used for evaluat-
ing causal inference in (Louizos et al. 2017; Yao et al. 2018).

Twins
Methods εtrATE εteATE
CT 0.034±0.002 0.038±0.007
t-stats 0.032±0.003 0.033±0.005
CF 0.025±0.001 0.025±0.001
BART 0.050±0.002 0.051±0.002
X-RF 0.075±0.003 0.074±0.004
CFR 0.029±0.002 0.030±0.002
SITE 0.031±0.003 0.033±0.003
DR-CFR 0.032±0.002 0.034±0.003
GANITE 0.016±0.004 0.018±0.005
CEVAE 0.046±0.020 0.047±0.021
TEDVAE 0.006±0.002 0.006±0.002

Table 3: Means and standard deviations of εATE on the Twins
datasets. The bolded values indicate the best performers
(Wilcoxon signed rank tests (p = 0.05).

It consists of samples from twin births in the U.S. between
the year of 1989 and 1991 provided in (Almond, Chay, and
Lee 2005). Each subject is described by 40 variables related
to the parents, the pregnancy and the birth statistics of the
twins. The treatment is considered as t = 1 if a sample is
the heavier one of the twins, and considered as t = 0 if the
sample is lighter. The outcome is a binary variable indicating
the children’s mortality after a one year follow-up period.
Following the procedure in (Yao et al. 2018), we remove
the subjects that are born with weight heavier than 2,000g
and those with missing values, and introduced selection bias
by removing a non-random subset of the subjects. The fi-
nal dataset contains 4,813 samples. The data splitting is the
same as previous experiments, and the reported results are
averaged over 100 replications. The ATE estimation perfor-
mances are illustrated in Table ??. On this dataset, we can
see that TEDVAE achieves the best performance with the
smallest εATE among all the compared algorithms.

Overall, the experiments results show that the perfor-
mances of TEDVAE are significantly better than the com-
pared methods on a wide range of synthetic, benchmark,
and real-world datasets. In addition, the results also indicate
that TEDVAE is less sensitive to the choice of parameters
than the other deep learning based methods, which makes
our method attractive for real-world application scenarios.

Conclusion
We propose the TEDVAE algorithm, a state-of-the-art treat-
ment effect estimator which infer and disentangle three
disjoints sets of instrumental, confounding and risk fac-
tors from the observed variables. Experiments on a wide
range of synthetic, benchmark, and real-world datasets have
shown that TEDVAE significantly outperforms compared
baselines. For future work, a path worth exploring is extend-
ing TEDVAE for treatment effects with non-binary treat-
ment variables. While most of the existing methods are re-
stricted to binary treatments, the generative model of TED-
VAE makes it a promising candidate for extension to treat-
ment effect estimation with continuous treatments.
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