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Abstract

We study the sample complexity of teaching, termed as “teach-
ing dimension” (TDim) in the literature, for the teaching-
by-reinforcement paradigm, where the teacher guides the
student through rewards. This is distinct from the teaching-
by-demonstration paradigm motivated by robotics applica-
tions, where the teacher teaches by providing demonstrations
of state/action trajectories. The teaching-by-reinforcement
paradigm applies to a wider range of real-world settings where
a demonstration is inconvenient, but has not been studied sys-
tematically. In this paper, we focus on a specific family of
reinforcement learning algorithms, Q-learning, and character-
ize the TDim under different teachers with varying control
power over the environment, and present matching optimal
teaching algorithms. Our TDim results provide the minimum
number of samples needed for reinforcement learning, and we
discuss their connections to standard PAC-style RL sample
complexity and teaching-by-demonstration sample complexity
results. Our teaching algorithms have the potential to speed up
RL agent learning in applications where a helpful teacher is
available.

Introduction
In recent years, reinforcement learning (RL) has seen applica-
tions in a wide variety of domains, such as games (Silver et al.
2016; Mnih et al. 2015), robotics control (Kober, Bagnell, and
Peters 2013; Argall et al. 2009) and healthcare (Komorowski
et al. 2018; Shortreed et al. 2011). One of the fundamental
questions in RL is to understand the sample complexity of
learning, i.e. the amount of training needed for an agent to
learn to perform a task. In the most prevalent RL setting, an
agent learns through continuous interaction with the envi-
ronment and learns the optimal policy from natural reward
signals. For standard algorithms such as Q-learning, naive
interaction with MDP suffers exp complexity (Li 2012). In
contrast, many real-world RL scenarios involve a knowl-
edgable (or even omniscient) teacher who aims at guiding
the agent to learn the policy faster. For example, in the ed-
ucational domain, a human student can be modeled as an
RL agent, and a teacher will design a minimal curriculum to
convey knowledge (policy) to the student (agent) (Chuang
et al. 2020).

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In the context of reinforcement learning, teaching has
traditionally been studied extensively under the scheme of
teaching-by-demonstration (TbD), where the teacher pro-
vides demonstrations of state/action trajectories under a good
policy, and the agent aims to mimic the teacher as closely as
possible (Hussein et al. 2017). However, in many applications,
it is inconvenient for the teacher to demonstrate because the
action space of the teacher is distinct from the action space of
the learner. In contrast, it is usually easier for the teacher to
teach by reinforcements (TbR), i.e. with rewards and punish-
ments. For example, in dog training, the trainer can’t always
demonstrate the task to be learned, e.g. fetch the ball with
its mouth, but instead would let the dog know whether it
performs well by giving treats strategically (Chuang et al.
2020); In personalizing virtual assistants, it’s easier for the
user to tell the assistant whether it has done a good job than
to demonstrate how a task should be performed. Despite its
many applications, TbR has not been studied systematically.

In this paper, we close this gap by presenting to our knowl-
edge the first results on TbR. Specifically, we focus on a
family of RL algorithms called Q-learning. Our main contri-
butions are:
1. We formulate the optimal teaching problem in TbR.
2. We characterize the sample complexity of teaching,

termed as ”teaching dimension” (TDim), for Q-learning
under four different teachers, distinguid by their power
(or rather constraints) in constructing a teaching sequence.
See Table 1 for a summary of results.

3. For each teacher level, we design an efficient teaching
algorithm which matches the TDim.

4. We draw connections between our results and classic re-
sults on the sample complexity of RL and of TbD.

Related Work
Classic Machine Teaching Since computational teaching
was first proposed in (Shinohara and Miyano 1991; Goldman
and Kearns 1995), the teaching dimension has been studied in
various learning settings. The vast majority focused on batch
supervised learning. See (Zhu et al. 2018) for a recent survey.
Of particular interest to us though is teaching online learners
such as Online Gradient Descent (OGD) (Liu et al. 2017;
Lessard, Zhang, and Zhu 2018), active learners (Hanneke
2007; Peltola et al. 2019), and sequential teaching for learners
with internal learning state (Hunziker et al. 2019; Mansouri
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Teacher Level 1 Level 2 Level 3 Level 4
Constraints none respect agent’s at st+1 : P (st+1|st, at) > 0 st+1 ∼ P (·|st, at)

TDim S S(A− 1) O

(
SAH

(
1

1−ε

)D)
O

(
SAH

(
1

(1−ε)pmin

)D)
Table 1: Our Main Results on Teaching Dimension of Q-Learning

et al. 2019; Chen et al. 2018). In contrast to OGD where the
model update is fully determined given the teacher’s data, the
RL setting differs in that the teacher may not have full control
over the agent’s behavior (e.g. action selection) and the envi-
ronment’s evolution (e.g. state transition), making efficient
teaching more challenging. Several recent work also study
data poisoning attacks against sequential learners (Zhang,
Zhu, and Lessard 2019; Ma et al. 2019; Jun et al. 2018;
Zhang et al. 2020; Rakhsha et al. 2020; Ma et al. 2018; Wang
and Chaudhuri 2018). The goal of data poisoning is to force
the agent into learning some attacker-specified target policy,
which is mathematically similar to teaching.

Teaching by Demonstration Several recent works stud-
ied teaching by demonstrations, particularly focusing on in-
verse reinforcement learning agents (IRL) (Tschiatschek et al.
2019; Kamalaruban et al. 2019; Brown and Niekum 2019;
Haug, Tschiatschek, and Singla 2018; Cakmak and Lopes
2012; Walsh and Goschin 2012). IRL is a sub-field of RL
where the learners aim at recovering the reward function from
a set of teacher demonstrations to infer a near-optimal policy.
Teaching in IRL boils down to designing the most informa-
tive demonstrations to convey a target reward function to the
agent. Their main difference to our work lies in the teaching
paradigm. IRL belongs to TbD where the teacher can directly
demonstrate the desired action in each state. The problem of
exploration virtually disappears, because the optimal policy
will naturally visit all important states. On the other hand,
as we will see next, in the TbR paradigm, the teacher must
strategically design the reward signal to navigate the learner
to each state before it can be taught. In other words, the chal-
lenge of exploration remains in reinforcement-based teaching,
making it much more challenging than demonstration-based
teaching. It is worth mentioning that the NP-hardness in find-
ing the optimal teaching strategy, similar to what we establish
in this paper (see Appendix), has also been found under the
TbD paradigm (Walsh and Goschin 2012).

Empirical Study of Teaching-by-Reinforcement Empir-
ically, teaching in RL has been studied in various settings,
such as reward shaping (Ng, Harada, and Russell 1999),
where teacher speeds up learning by designing the reward
function, and action advising (Torrey and Taylor 2013; Amir
et al. 2016), where the teacher can suggest better actions
to the learner during interaction with the environment. Lit-
tle theoretical understanding is available in how much these
frameworks accelerate learning. As we will see later, our
teaching framework generalizes both approaches, by defining
various levels of teacher’s control power, and we provide
order-optimal teaching strategies for each setting.

Algorithm 1 Machine Teaching Protocol on Q-learning

Entities: MDP environment, learning agent with initial
Q-table Q0, teacher with target policy π†.

1: while πt 6= π† do
2: MDP draws s0 ∼ µ0 after each episode reset. But the

teacher may override s0.
3: for t = 0, . . . H − 1 do
4: The agent picks an action at = πt(st) with its

current behavior policy πt. But the teacher may
override at with a teacher-chosen action.

5: The MDP evolves from (st, at) to produce immedi-
ate reward rt and the next state st+1. But the teacher
may override rt or move the system to a different
next state st+1.

6: The agent updates Qt+1 = f(Qt, et) from experi-
ence et = (st, at, rt, st+1).

7: Once the agent learns π†, the teacher ends the teaching
phase, and the learned policy is fixed and deployed.

Problem Definitions
The machine teaching problem in RL is defined on a system
with three entities: the underlying MDP environment, the
RL agent (student), and the teacher. The teaching process is
defined in Alg. 1. Whenever the boldface word “may” ap-
pears in the protocol, it depends on the level of the teacher
and will be discussed later. In this paper, we assume that
there is a clear separation between a training phase and a test
phase, similar to the best policy identification (BPI) frame-
work (Fiechter 1994) in classic RL. In the training phase, the
agent interacts with the MDP for a finite number of episodes
and outputs a policy in the end. In the test phase, the output
policy is fixed and evaluated. In our teaching framework, the
teacher can decide when the training phase terminates, and so
teaching is regarded as completed as soon as the target policy
is learned. Specifically, in the case of Q-learning, we do not
require that the estimated Q function converges to the true
Q function w.r.t. the deployed policy, which is similarly not
required in the BPI or PAC-RL frameworks, but only require
that the deployed policy matches the target policy exactly.

Environment M: We assume that the environment is an
episodic Markov Decision Process (MDP) parameterized by
M = (S,A, R, P, µ0, H) where S is the state space of size
S, A is the action space of size A, R : S × A → R is
the reward function, P : S × A × S → R is the transition
probability, µ0 : S → R is the initial state distribution, and
H is the episode length. Next, we define two quantities of
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interest of an MDP that we will use in our analysis.
Definition 1. Let the minimum transition prob-
ability pmin of an MDP be defined as pmin =
mins,s′∈S,a∈A,P (s′|s,a)>0 P (s′|s, a).

Definition 2. Let the diameter D of an MDP be defined
as the minimum path length to reach the hardest-to-get-to
state in the underlying directed transition graph of the MDP.
Specifically,

D = max
s∈S

min
T,(s0,a0,s1,a1,...,sT=s)

T (1)

s.t. µ0(s0) > 0, P (st+1|st, at) > 0, ∀t

RL agent L: We focus on a family of Q-learning agents
L ∈ L with the following properties:
1. Behavior policy: The agent behaves according to the ε-

greedy policy for some ε ∈ [0, 1], i.e.

πt(s) :=

{
a∗ := arg maxaQt(s, a) w.p. 1− ε
Unif(A\a∗), w.p. ε.

Note this definition is slightly different but equivalent
to standard ε-greedy exploration, where we merged the
probability of choosing arg maxaQt(s, a) in the second
branch into the first. This simplifies our notation later.

2. Learning Update: Given experience et =
(st, at, rt, st+1) at time step t, the learning update
Qt+1 = f(Qt, et) only modifies the (st, at) entry of
the Q-table. Furthermore, the Q-table is “controllable”:
for any st, at, st+1, there exists a reward r such that the
ranking of at within Qt+1(st, ·) can be made first, last or
unchanged, respectively.

This family includes common Q-learning algorithms such as
the standard ε-greedy Q-learning, as well as provably efficent
variants like UCB-H and UCB-B (Jin et al. 2018).

Teacher: In this paper, we study four levels of teachers
from the strongest to the weakest:
1. Level 1: The teacher can generate arbitrary transitions

(st, rt, st+1) ∈ S ×R×S , and override the agent chosen
action at. None of these needs to obey the MDP (specifi-
cally µ0, R, P ).

2. Level 2: The teacher can still generate arbitrary current
state st, reward rt and next state st+1, but cannot override
the agent’s action at. The agent has “free will” in choosing
its action.

3. Level 3: The teacher can still generate arbitrary reward
rt but can only generate MDP-supported initial state and
next state, i.e. µ0(s0) > 0, and P (st+1|st, at) > 0. How-
ever, it does not matter what the actual nonzero MDP
probabilities are.

4. Level 4: The teacher can still generate arbitrary reward rt
but the initial state and next state must be sampled from
the MDPs dynamics, i.e. s0 ∼ µ0 and st+1 ∼ P (·|st, at).

In all levels, the teacher observes the current Q-table Qt and
knows the learning algorithm Qt+1 = f(Qt, et).

In this work, we are interested in analyzing the teaching
dimension, a quantity of interest in the learning theory lit-
erature. We define an RL teaching problem instance by the

MDP environment M , the student L with initial Q-table Q0,
and the teacher’s target policy π†. We remark that the target
policy π† need not coincide with the optimal policy π∗ for
M . In any case, the teacher wants to control the experience
sequence so that the student arrives at π† quickly. Specifi-
cally,

Definition 3. Given an RL teaching problem in-
stance (M,L,Q0, π

†), the minimum expected
teaching length is METaL(M,L,Q0, π

†) =
minT,(st,at,rt,st+1)0:T−1

E [T ] , s.t. πT = π†, where the
expectation is taken over the randomness in the MDP
(transition dynamics) and the learner (stochastic behavior
policy).

METal depends on nuisance parameters of the RL teaching
problem instance. For example, ifQ0 is an initial Q-table that
already induces the target policy π†, then trivially METal=0.
Following the classic definition of teaching dimension for
supervised learning, we define TDim by the hardest problem
instance in an appropriate family of RL teaching problems:

Definition 4. The teaching dimension of an
RL learner L w.r.t. a family of MDPs M is
defined as the worst-case METal: TDim =
maxπ†∈{π:S→A},Q0∈RS×A,M∈MMETaL(M,L, π†).

Teaching Without MDP Constraints
We start our discussion with the strongest teachers. These
teachers have the power of producing arbitrary state transition
experiences that do not need to obey the transition dynamics
of the underlying MDP. While the assumption on the teach-
ing power may be unrealistic in some cases, the analysis that
we present here provides theoretical insights that will facili-
tate our analysis of the more realistic/less powerful teaching
settings in the next section.

Level 1 Teacher
The level 1 teacher is the most powerful teacher we consider.
In this setting, the teacher can generate arbitrary experience
et. The learner effectively becomes a “puppet” learner - one
who passively accepts any experiences handed down by the
teacher.

Theorem 1. For a Level 1 Teacher, any learner L ∈ L, and
an MDP familyM with |S| = S and a finite action space,
the teaching dimension is TDim = S.

It is useful to illustrate the theorem with the standard Q-
learning algorithm, which is a member of L. The worst case
happens when arg maxaQ0(s, a) 6= π†(s), ∀s. The teacher
can simply choose one un-taught s at each step, and construct
the experience (st = s, at = π†(s), rt, st+1 = s′) where
s′ is another un-taught state (the end case is handled in the
algorithm in appendix). Importantly, the teacher chooses rt ∈{

maxQt(st,·)+θ−(1−α)Qt(st,at)
α − γmaxQt(s

′, ·) : θ > 0
}

,
knowing that the standard Q-learning update rule
f is Qt+1(st, at) = (1 − α)Qt(st, at) + α(rt +
γmaxa∈AQt(s

′, a)). This ensures that Qt+1(s, π†(s)) =
maxa 6=π†(s)Q0(s, a) + θ > maxa 6=π†(s)Q0(s, a), and thus
the target policy is realized at state s. Subsequent teaching
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steps will not change the action ranking at state s. The same
teaching principle applies to other learners in L.

Level 2 Teacher
At level 2 the teacher can still generate arbitrary reward rt
and next state st+1, but now it cannot override the action
at chosen by the learner. This immediately implies that the
teacher can no longer teach the desired action π†(s) in a sin-
gle visit to s: for example, Q0 may be such that Q0(s, π†(s))
is ranked last among all actions. If the learner is always
greedy with ε = 0 in (1), the teacher will need to visit s
for (A − 1) times, each time generating a punishing rt to
convince the learner that the top non-target action is worse
than π†(s). However, for a learner who randomly explores
with ε > 0 it may perform π†(s) just by chance, and the
teacher can immediately generate an overwhelmingly large
reward to promote this target action to complete teaching at
s; it is also possible that the learner performs a non-target
action that has already been demoted and thus wasting the
step. Despite the randomness, interestingly our next lemma
shows that for any ε it still takes in expectation A− 1 visits
to a state s to teach a desired action in the worst case.

Lemma 2. For a Level 2 Teacher, any learner in L, and an
MDP family M with action space size A, it takes at most
A − 1 visits in expectation to a state s to teach the desired
action π†(s) on s.

Proof Sketch: Let us consider teaching the target action
π†(s) for a particular state s. Consider a general case where
there are A− c actions above π†(s) in the current ordering
Qt(s, ·). In the worst case c = 1. We define the function
T (x) as the expected number of visits to s to teach the target
action π†(s) to the learner when there are x higher-ranked
actions. For any learner in L, the teacher can always provide
a suitable reward to either move the action selected by the
learner to the top of the ordering or the bottom. Using dy-
namic programming we can recursively express T (A − c)
as

T (A− c) = 1 + (c− 1)
ε

A− 1
T (A− c)+

(1− ε+ (A− c− 1)
ε

A− 1
)T (A− c− 1).

Solving it gives T (A − c) = A−c
(1−(c−1) ε

A−1 )
, which implies

maxc T (A− c) = T (A− 1) = A− 1.

Lemma 2 suggests that the agent now needs to visit each
state at most (A−1) times to learn the target action, and thus
teaching the target action on all states needs at most S(A−1)
steps:

Theorem 3. For a Level 2 Teacher, any learner in L, and an
MDP familyM with state space size S and action space size
A, the teaching dimension is TDim = S(A− 1).

We present a concrete level-2 teaching algorithm in the
appendix. For both Level 1 and Level 2 teachers, we can
calculate the exact teaching dimension due to a lack of con-
straints from the MDP. The next levels are more challenging,
and we will be content with big O notation.

Teaching Under MDP Constraints
In this section, we study the TDim of RL under the more real-
istic setting where the teacher must obey some notion of MDP
transitions. In practice, such constraints may be unavoidable.
For example, if the transition dynamics represent physical
rules in the real world, the teacher may be physically unable
to generate arbitrary st+1 given st, at (e.g. cannot teleport).

Level 3 Teacher
In Level 3, the teacher can only generate a state transition to
st+1 which is in the support of the appropriate MDP transi-
tion probability, i.e. st+1 ∈ {s : P (s | st, at) > 0}. How-
ever, the teacher can freely choose st+1 within this set regard-
less of how small P (st+1 | st, at) is, as long as it is nonzero.
Different from the previous result for Level 1 and Level 2
teacher, in this case, we are no longer able to compute the
exact TDim of RL. Instead, we provide matching lower and
upper-bounds on TDim.
Theorem 4. For Level 3 Teacher, any learner in L with ε
probability of choosing non-greedy actions at random, an
MDP familyM with episode length H and diameter D ≤ H ,
the teaching dimension is lower-bounded by

TDim ≥ Ω

(
(S −D)AH

(
1

1− ε

)D)
. (2)

proof. The proof uses a particularly hard RL teaching
problem instance called the “peacock MDP” in Figure 1 to
produce a tight lower bound. The MDP has S states where
the first D states form a linear chain (the “neck”), the next
S −D − 1 states form a star (the “tail”), and the last state
s(⊥) is a special absorbing state. The absorbing state can
only be escaped when the agent resets after episode length
H . The agent starts at s(0) after reset. It is easy to verify
that the peacock MDP has a diameter D. Each state has A
actions. For states along the neck, the a1 action (in black) has
probability p > 0 of moving right, and probability 1− p to
go to the absorbing state s(⊥); all other actions (in red) have
probability 1 of going to s(⊥). The a1 action of s(D−1) has
probability p to transit to each of the tail states. In the tail
states, however, all actions lead to the absorbing state with
probability 1. We consider a target policy π† where π†(s)
is a red action a2 for all the tail states s. It does not matter
what π† specifies on other states. We define Q0 such that a2
is arg minaQ0(s, a) for all the tail states.

The proof idea has three steps: (1) By Lemma 2 the agent
must visit each tail node s for A− 1 times to teach the target
action a2, which was initially at the bottom of Q0(s, ·). (2)
But the only way that the agent can visit a tail state s is
to traverse the neck every time. (3) The neck is difficult to
traverse as any ε-exploration sends the agent to s(⊥) where it
has to wait for the episode to end.

We show that the expected number of steps to traverse
the neck once is H( 1

1−ε )D even in the best case, where the
agent’s behavior policy (1) prefers a1 at all neck states. In
this best case, the agent will choose a1 with probability 1− ε
at each neck state s. If a1 is indeed chosen by the agent,
by construction the support of MDP transition P (· | s, a1)
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Figure 1: The “peacock” MDP

contains the state to the right of s or the desired tail state
(via the transition with probability p > 0). This enables the
level 3 teacher to generate such a transition regardless of
how small p is (which is irrelevant to a level 3 teacher). In
other words, in the best case, the agent can move to the right
once with probability 1− ε. A successful traversal requires
moving right D times consecutively, which has probability
(1 − ε)D. The expected number of trials (to traverse) until
success is ( 1

1−ε )D. A trial fails if any time during a traversal
the agent picked an exploration action a other than a1. Then
the support of P (· | s, a) only contains the absorbing state
s(⊥), so the teacher has no choice but to send the agent to
s(⊥). There the agent must wait for the episode to complete
until resetting back to s(0). Therefore, any failed trial incurs
exactly H steps of wasted teaching. Putting things together,
the expected number of teaching steps until a successful neck
traversal is done is at least H( 1

1−ε )D.
There are S −D − 1 tail states. Each needs an expected

A− 1 neck traversals to teach. This leads to the lower bound

(S−D−1)(A−1)H( 1
1−ε )D = Ω

(
(S −D)AH

(
1

1−ε

)D)
.

Our next result shows that this lower bound is nearly tight,
by constructing a level-3 teaching algorithm that can teach
any MDP with almost the same sample complexity as above.

Theorem 5. Under the same conditions of Theorem 4, the
level-3 teaching dimension is upper-bounded by

TDim ≤ O

(
SAH

(
1

1− ε

)D)
. (3)

proof. We analyze a level-3 teaching algorithm NavTeach
(Navigation-then-Teach) which, like any teaching algorithm,
provides an upper bound on TDim. The complete NavTeach
algorithm is given in the appendix; we walk through the main
steps on an example MDP in Figure 2(a). For the clarity of
illustration the example MDP has only two actions a1, a2 and
deterministic transitions (black and red for the two actions re-
spectively), though NavTeach can handle fully general MDPs.
The initial state is s(0).

Let us say NavTeach needs to teach the “always take action
a1” target policy: ∀s, π†(s) = a1. In our example, these
black transition edges happen to form a tour over all states,
but the path length is 3 while one can verify the diameter of
the MDP is only D = 2. In general, though, a target policy
π† will not be a tour. It can be impossible or inefficient for
the teacher to directly teach π†. Instead, NavTeach splits the
teaching of π† into subtasks for one “target state” s at a time
over the state space in a carefully chosen order. Importantly,
before teaching each π†(s) NavTeach will teach a different
navigation policy πnav for that s. The navigation policy πnav

is a partial policy that creates a directed path from s(0) to s,
which is similar to the neck in the earlier peacock example.
The goal of πnav is to quickly bring the agent to s often
enough so that the target policy π†(s) = a1 can be taught
at s. That completes the subtask at s. Critically, NavTeach
can maintain this target policy at s forever, while moving on
to teach the next target state s′. This is nontrivial because
NavTeach may need to establish a different navigation policy
for s′: the old navigation policy may be partially reused,
or demolished. Furthermore, all these need to be done in
a small number of steps. We now go through NavTeach on
Figure 2(a). The first thing NavTeach does is to carefully plan
the subtasks. The key is to make sure that (i) each navigation
path is at most D long; (ii) once a target state s has been
taught: π†(s) = a1, it does not interfere with later navigation.
To do so, NavTeach first constructs a directed graph where
the vertices are the MDP states, and the edges are non-zero
probability transitions of all actions. This is the directed graph
of Figure 2(a), disregarding color. NavTeach then constructs a
breadth-first-tree over the graph, rooted at s(0). This is shown
in Figure 2(b). Breadth-first search ensures that all states are
at most depth D away from the root. Note that this tree may
uses edges that correspond to non-target actions, for example
the red a2 edge from s(0) to s(1). The ancestral paths from
the root in the tree will form the navigation policy πnav for
each corresponding node s. Next, NavTeach orders the states
to form subtasks. This is done with a depth-first traversal on
the tree: a depth-first search is performed, and the nodes are
ranked by the last time they are visited. This produces the
order in Figure 2(c). The order ensures that later navigation
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(a) MDP (b) Breadth-First Tree (c) Depth-First Traversal (d) Navigation Policy

Figure 2: NavTeach algorithm demo

is “above” any nodes on which we already taught the target
policy, thus avoiding interference.

Now NavTeach starts the first subtask of teaching
π†(s(3)) = a1, i.e. the black self-loop at s(3). As mentioned
before, NavTech begins by teaching the navigation policy
πnav for this subtask, which is the ancestral path of s(3)
shown in Figure 2(d). How many teaching steps does it take
to establish this πnav? Let us look at the nodes along the an-
cestral path. By Lemma 2 the agent needs to be at the root s(0)
A− 1 times in expectation in order for the teacher to teach
πnav(s(0)) = a2; this is under the worst case scenario where
the initial agent state Q0 places a2 at the bottom in state s(0).
We will assume that after a visit to s(0), the remaining episode
is simply wasted. 1 Therefore it takes at mostH(A−1) teach-
ing steps to establish πnav(s(0)) = a2. After that, it takes at
most H(A− 1)( 1

1−ε ) expected number of teaching steps to
teach πnav(s(1)) = a1. This is the same argument we used
in Theorem 4: the teacher needs to make the agent traverse
the partially-constructed ancestral path (“neck”) to arrive
at s(1). The worst case is if the agent performs a random
exploration action anywhere along the neck; it falls off the
neck and wastes the full episode. In general to establish a
nagivation policy πnav with path length d, NavTeach needs
to teach each navigation edge at depth i = 1 . . . d with at
most H(A− 1)( 1

1−ε )i−1 teaching steps, respectively. After
establishing this πnav for s(3), NavTeach needs to go down
the neck frequently to ensure that it visits s(3) (A− 1) times
and actually teach the target policy π†(s(3)) = a1. This takes
an additional at most H(A− 1)( 1

1−ε )d teaching steps.
When the s(3) subtask is done, according to our ordering

in Figure 2(c) NavTeach will tackle the subtask of teaching
π† at s(1). Our example is lucky because this new subtask
is already done as part of the previous navigation policy.

1It is important to note that the teacher always has a choice of
rt so that the teaching experience does not change the agent’s Qt

state. For example, if the agent’s learning algorithm f is a standard
Q-update, then there is an rt that keeps the Q-table unchanged.
So while in wasted steps the agent may be traversing the MDP
randomly, the teacher can make these steps “no-op” to ensure that
they do not damage any already taught subtasks or the current
navigation policy.

The third subtask is for s(2), where NavTeach will have to
establish a new navigation policy, namely πnav(s(0)) = a1.
And so on. How many total teaching steps are needed? A key
insight is NavTeach only needs to teach any navigation
edge in the breadth-first tree exactly once. This is a direct
consequence of the depth-first ordering: there can be a lot of
sharing among navigation policies; a new navigation policy
can often re-use most of the ancestral path from the previous
navigation policy. Because there are exactly S − 1 edges in
the breadth-first tree of S nodes, the total teaching steps spent
on building navigation policies is the sum of S − 1 terms of
the form H(A − 1)( 1

1−ε )i−1 where i is the depth of those
navigation edges. We can upperbound the sum simply as
(S−1)H(A−1)( 1

1−ε )D. On the other hand, the total teaching
steps spent on building the target policy π† at all target states
is the sum of S terms of the form H(A− 1)( 1

1−ε )d where d
is the depth of the target state. We can upperbound the sum
similarly as SH(A− 1)( 1

1−ε )D. Putting navigation teaching
and target policy teaching together, we need at most (2S −

1)H(A− 1)( 1
1−ε )D = O

(
SAH

(
1

1−ε

)D)
teaching steps.

We remark that more careful analysis can
in fact provide matching lower and upper
bounds up to a constant factor, in the form of
Θ
(
(S −D)AH(1− ε)−D +H 1−ε

ε [(1− ε)−D − 1]
)
.

We omit this analysis for the sake of a cleaner presentation.
However, the matching bounds imply that a deterministic
learner, with ε = 0 in the ε-greedy behavior policy, has
the smallest teaching dimension. This observation aligns
with the common knowledge in the standard RL setting that
algorithms exploring with stochastic behavior policies are
provably sample-inefficient (Li 2012).

Corollary 6. For Level 3 Teacher, any learner in L with
ε = 0, and any MDP M within the MDP family M with
|S| = S, |A| = A, episode length H and diameter D ≤ H ,
we have TDim = Θ (SAH) .

Level 4 Teacher
In Level 4, the teacher no longer has control over state transi-
tions. The next state will be sampled according to the transi-
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tion dynamics of the underlying MDP, i.e. st+1 ∼ P (·|st, at).
As a result, the only control power left for the teacher is
the control of reward, coinciding with the reward shaping
framework. Therefore, our results below can be viewed as
a sample complexity analysis of RL under optimal reward
shaping. Similar to Level 3, we provide near-matching lower
and upper-bounds on TDim.

Theorem 7. For Level 4 Teacher, and any learner in L, and
an MDP family M with |S| = S, |A| = A ≥ 2, episode
length H , diameter D ≤ H and minimum transition prob-
ability pmin, the teaching dimension is lower-bounded by

TDim ≥ Ω

(
(S −D)AH

(
1

pmin(1−ε)

)D)
.

Theorem 8. For Level 4 Teacher, any learner in L, and any
MDP M within the MDP familyM with |S| = S, |A| = A,
episode length H , diameter D ≤ H and minimum transition
probability pmin, the Nav-Teach algorithm in the appendix
can teach any target policy π† in a expected number of steps

at most TDim ≤ O
(
SAH

(
1

pmin(1−ε)

)D)
.

The proofs for Theorem 7 and 8 are similar to those for
Theorem 4 and 5, with the only difference that under a level
4 teacher the expected time to traverse a length D path is at
most H(1/pmin(1− ε))D in the worst case. The pmin factor
accounts for sampling from P (· | st, at). Similar to Level
3 teaching, we observe that a deterministic learner incurs
the smallest TDim, but due to the stochastic transition, an
exponential dependency on D is unavoidable in the worst
case.

Corollary 9. For Level 4 Teacher, any learner in A with
ε = 0, and any MDP M within the MDP family M with
|S| = S, |A| = A, episode length H , diameter D ≤ H
and minimum transition probability pmin, we have TDim ≤

O

(
SAH

(
1

pmin

)D)
.

Sample Efficiencies of Standard RL, TbD and
TbR

In the standard RL setting, some learners in the learner family
L, such as UCB-B, are provably efficient and can learn a δ-
optimal policy in O(H3SA/δ2) iterations (Jin et al. 2018),
where δ-optimal means that the cumulative rewards achieved
by the output policy is only δ-worse than the optimal policy,
i.e. V ∗(µ0) − V π(µ0) ≤ δ. One direct implication of such
a measure is that the remote states that are unreachable also
hardly affect the policy’s performance, so quantities like the
diameter of the MDP does not appear in the bound.

In contrast, in our TbR work, we aim at learning the exact
optimal policy, and will thus suffer exponentially if some
states are nearly unreachable. However, if we assume that all
states have reasonable visiting probabilities, then even the
weakest teacher (Level 3 and 4) can teach the optimal policy
in O(HSA) iterations, which is of H2 factor better than the
best achievable rate without a teacher. More interestingly,
even the learners with a not as good learning algorithm, e.g.
standard greedy Q-learning, which can never learn the op-

timal policy on their own, can now learn just as efficiently
under the guidance of an optimal teacher.

Teaching-by-demonstration is the most sample efficient
paradigm among the three, because the teacher can directly
demonstrate the optimal behavior π†(s) on any state s, and
effectively eliminate the need for exploration and navigation.
If the teacher can generate arbitrary (s, a) pairs, then he
can teach any target policy with only S iterations, similar
to our Level 1 teacher. If he is also constrained to obey the
MDP, then it has been shown that he can teach a δ-optimal
policy in O(SH2/δ) iterations (Sun et al. 2017; Rajaraman
et al. 2020), which completely drops the dependency on the
action space sizeA compared to both RL and TbR paradigms.
Intuitively, this is due to the teacher being able to directly
demonstrate the optimal action, whereas, in both RL and TbR
paradigms, the learner must try all actions before knowing
which one is better.

In summary, in terms of sample complexity, we have

RL > TbR > TbD. (4)

Conclusion and Discussions
We studied the problem of teaching Q-learning agents un-
der various levels of teaching power in the Teaching-by-
Reinforcement paradigm. At each level, we provided near-
matching upper and lower bounds on the teaching dimension
and designed efficient teaching algorithms whose sample
complexity matches the teaching dimension in the worst case.
Our analysis provided some insights and possible directions
for future work:
1. Agents are hard to teach if they randomly explore:

Even under an optimal teacher, learners with stochastic
behavior policies (ε > 0) necessarily suffer from exponen-
tial sample complexity, coinciding with the observation
made in the standard RL setting (Li 2012).

2. Finding METaL is NP-hard: While we can quantify the
worst-case TDim, for a particular RL teaching problem
instance we show that computing its METaL is NP-hard
in Appendix.

3. The controllability issue: What if the teacher cannot
fully control action ranking in agent’sQt via reward r (see
agent “Learning Update” in section )? This may be the
case when e.g. the teacher can only give rewards in [0, 1].
The TDim is much more involved because the teacher can-
not always change the learner’s policy in one step. Such
analysis is left for future work.

4. Teaching RL agents that are not Q-learners: In the
appendix, we show that our results also generalize to
other forms of Temporal Difference (TD) learners, such
as SARSA. Nevertheless, it remains an open question
of whether even broader forms of RL agents (e.g. policy
gradient and actor-critic methods) enjoy similar teaching
dimension results.
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