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Abstract

In this paper, we technically propose an enriched prior guided
framework, called Dual-constrained Deep Semi-Supervised
Coupled Factorization Network (DS2CF-Net), for discover-
ing hierarchical coupled data representation. To extract hid-
den deep features, DS2CF-Net is formulated as a partial-label
and geometrical structure-constrained framework. Specifi-
cally, DS2CF-Net designs a deep factorization architecture
using multilayers of linear transformations, which can cou-
pled update both the basis vectors and new representations in
each layer. To enable learned deep representations and coef-
ficients to be discriminative, we also consider enriching the
supervised prior by joint deep coefficients-based label pre-
diction and then incorporate the enriched prior information
as additional label and structure constraints. The label con-
straint can enable the intra-class samples to have same co-
ordinate in feature space, and the structure constraint forces
the coefficients in each layer to be block-diagonal so that the
enriched prior using the self-expressive label propagation are
more accurate. Our network also integrates the adaptive dual-
graph learning to retain the local structures of both data and
feature manifolds in each layer. Extensive experiments on im-
age datasets demonstrate the effectiveness of DS2CF-Net for
representation learning and clustering.

Introduction
Learning compact representation of high-dimensional data
is one of core topics in artificial intelligence research. To
learn effective representations, Matrix Factorization (MF) is
one of widely-used methods (Zhang et al. 2019b; Zhang
et al. 2019c; Ma et al. 2019; Lin et al. 2020). Classical
MF methods include Singular Value Decomposition (SVD)
(Golub et al. 1970), Vector Quantization (VQ) (Gray 1984),
Nonnegative Matrix Factorization (NMF) (Lee 1999) and
Concept Factorization (CF) (Wei et al. 2004), etc. NMF and
CF use the nonnegative constraints on factorization matrices
to learn parts-based representations that are distinguishing
for subsequent high-level tasks. Specifically, they decom-
pose the data matrix into two/three factors, where one factor
is basis vectors capturing high-level features so each sample
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can be reconstructed by a linear combination over them, and
the other one corresponds to the new representation.

Note that CF offers an obvious advantage over NMF, i.e.,
it can be kernelized easily, but they both cannot encode the
local geometry of features and also fail to use any label in-
formation even if available. To retain the local information,
some graph regularized methods have been proposed, e.g.,
Graph-Regularized CF with Local Coordinate (LGCF) (Li
et al. 2017a), Graph Regularized NMF (GNMF) (Cai et al.
2011a), Graph-Regularized LCF (GRLCF) (Ye et al. 2017),
Locally Consistent CF (LCCF) (Cai et al. 2011b), Dual
Regularization NMF (DNMF) (Shang et al. 2012) and Dual-
graph regularized CF (GCF) (Ye et al. 2014). Note that these
methods usually use the graph Laplacian to smooth the rep-
resentation and encode the geometrical information of data
space. Different from GNMF and LCCF, both DNMF and
GCF can not only preserve the geometrical structures of data
manifold but also the feature manifold using the dual-graph
regularization (Shang et al. 2012; Ye et al. 2014). Although
these algorithms have obtained en-couraging clustering abil-
ities, they still suffer from certain shortcomings: 1) High
sensitivity and tricky optimal determination of the number
k of nearest neighbors (Roweis et al. 2000); 2) Separating
the graph construction from the factorization process by two
independent steps cannot ensure the pre-encoded weights
to be optimal for subsequent data representation; 3) They
cannot use the label information to improve the representa-
tion and clustering tasks due to unsupervised nature, sim-
ilarly as NMF and CF. For the discriminative MF to use
label information, some semi-supervised algorithms were
proposed, e.g., Constrained Nonnegative Matrix Factoriza-
tion (CNMF) (Liu et al. 2012), Semi-supervised GNMF
(SemiGNMF) (Cai et al. 2011a) and Constrained Concept
Factorization (CCF) (Liu et al. 2014). Although CNMF,
SemiGNMF and CCF can use label information clearly, they
fail to fully utilize unlabeled data, as they do not consider
learning an explicit label indicator matrix and predicting
the labels of unlabeled data, and mapping them into respec-
tive subspaces in feature space as well. In addition, CNMF,
SemiGNMF and CCF also cannot self-express data in a re-
covered clean space. Although preserving local information
or incorporating supervised prior can enhance NMF and CF,
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Figure 1: The flowchart and learning principle of our proposed DS2CF-Net framework.

however, all above mentioned algorithms are single-layer
models that can only discover shallow features from input
data, but cannot obtain deep hidden features and hierarchi-
cal information.

In this paper, we propose a novel deep semi-supervised
self-expressive coupled MF strategy that can represent data
more appropriately by using partial labeled data and a deep
structure. The main contributions are summarized as:

(1) Technically, a new supervised prior enrichment guided
Dual-constrained Deep Semi-Supervised Coupled Factor-
ization Network (DS2CF-Net) is proposed. To discover and
encode hidden deep features accurately, DS2CF-Net designs
a novel updating strategy for the deep concept factorization,
i.e., it coupled optimizes the basis vectors and representation
matrix in each layer, learning with partial labeled data. Fig.1
illustrates the flowchart of our DS2CF-Net clearly.

(2) For discriminant representations, the innovations of
our DS2CF-Net are twofold: 1) enriching the supervised
prior clearly by joint label prediction; 2) incorporating the
enriched supervised prior as additional label and structure
constraints. To enrich the prior, DS2CF-Net fully utilizes
unlabeled data by propagating and predicting their labels us-
ing a robust label predictor learned from labeled data. Dual-
constraints are also included to improve and enhance the dis-
criminating ability of the learned representation.

(3) To achieve locality-preserving higher-level represen-
tation, DS2CF-Net uses a self-weighted dual-graph learning
strategy in each layer, i.e., optimizing the weights jointly
with MF. Specifically, in each layer, DS2CF-Net performs
the adaptive weighting based on both the deep basis vector
graph and deep feature graph at the same time. Note that the
self-weighted dual-graph learning can avoid the tricky issue
of determining nearest neighbors, which is suffered in most
existing locality preserving models. Such an operation can
also obtain the adaptive neighborhood preserving deep basis
vectors and deep features to enhance the performance.

Related Work
Concept Factorization
Given a data matrix X = [x1, x2, . . . , xN ] ∈ RD×N , where
xi is a sample vector, N is the number of samples and D is
the original dimensionality. Let U ∈ RD×r and V ∈ RN×r

be two nonnegative matrices whose product UV T ∈ RD×N

is the approximation to X , where r is rank. By representing
each basis by a linear combination of xi, i.e.,

∑N
i=1 wijxi,

where wij ≥ 0, CF solves:

O =
∥∥X −XWV T

∥∥2
F
, s.t. W,V ≥ 0, (1)

where W = [wij ] ∈ RN×r, XW denotes the bases, V T is
the learned representation of X , and T is matrix transpose.

Constrained Concept Factorization
CCF extends CF to semi-supervised scenario by using label
information as an additional constraint. If X contains a la-
beled set XL ∈ RD×l and an unlabeled set XU ∈ RD×u,
i.e., l + u = N , where l and u are the numbers of labeled
and unlabeled data respectively, then CCF defines a label
constraint matrix A. Let AL ∈ Rl×c be the class indica-
tor matrix over XL, where c is class number. The element
(AL)ij is defined as 1 if xi is labeled as the j-th class, and
0 otherwise. Note that CCF did not define a class indicator
for XU and simply used an identity matrix Iu×u for XU . As
such, the overall label constraint matrix A is defined as

A =

[
(AL)l×c 0

0 Iu×u

]
∈ R(l+u)×(c+u). (2)

To ensure the samples of the same label to be mapped into
the same vi, CCF imposes a label constraint by an auxiliary
matrixZ, i.e., V = AZ. Finally, CCF computesW ∈ RN×r

and Z ∈ R(c+u)×r from the following objective function:

O =
∥∥X −XWZTAT

∥∥2
F
, s.t. W,Z ≥ 0. (3)

Next, we briefly review several related deep MF models.
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Figure 2: Architecture comparison of existing multilayer MF frameworks, including traditional multilayer CF model (e.g.,
MNMF, MCF and GMCF) (left), optimized multilayer CF model (e.g., DSCF-Net) (middle), and our DS2CF-Net (right).

Traditional Multilayer MF
The methods of this category usually directly use the out-
put of previous layer (i.e., intermediate representation V )
as the input of subsequent layer, without considering opti-
mizing the representation or basis vectors in each layer. As
such, as they cannot ensure the intermediate representation
to be good for subsequent layers, the performance may be
degraded. Examples of traditional multilayer methods in-
clude MNMF (Cichocki et al. 2006), MCF (Li et al. 2015)
and GMCF (Li et al. 2017b), etc. We show the deep structure
of this category in Fig.2 (left).

Optimized Deep MF Models
Optimized models aim to learn deep features by multilayer
of linear transformations and updating the basis vectors or
representation in each layer, e.g., Weakly-supervised Deep
MF (WDMF) (Li et al. 2017c), Deep Semi-NMF (DSNMF)
(Trigeorgis et al. 2015) and Deep Self-representative CF
Network (DSCF-Net) (Zhang et al. 2019a). We show
the structure of DSCF-Net in Fig.2(middle) and ours in
Fig.2(right). We see that ours coupled optimizes the basis
vectors and representation in each layer.

Proposed Formulation
Given X = [XL, XU ], to enhance the representation ability,
we design a hierarchical and coupled factorization network
of M layers. DS2CF-Net is modeled as the one of learning
updated pairs of representation matrices and basis vectors
XW1 . . .WM , and M updated label constraint matrices A.
That is,A is optimized and moreover enriched in our model.

Factorization Model
We firstly describe the initial problem of DS2CF-Net as

O =
∥∥∥X −XW0 . . .WM (Z0 . . . ZM )

T
AT
∥∥∥2
F

+ αJ2 + βJ3 + γJ1
s.t.∀i∈{1,2...,M}Wi ≥ 0, Zi ≥ 0

, (4)

where XW0 . . .WM is deep basis vector, (Z0 . . . ZM )
T
AT

denotes the deep representation, the first term is the deep
reconstruction error, J1, J2 and J3 will be described shortly.
W0 and Z0 are added to facilitate the descriptions, and both

are fixed to be an identity matrix. Different from CCF, we
define the label constraint matrix A as follows:

A =

[
AL 0
0 AU

]
∈ R(l×u)×(c+c),

AL ∈ Rl×c, AU ∈ Ru×c
(5)

where AL is the class indicator for XL. Note that we also
learn an explicit class indicator AU for XU to enrich the su-
pervised prior rather than fixing it to be an identity matrix
as CCF, which can better group the representation of both
labeled and unlabeled data using dual constraints. Accord-
ing to the self-expressive property on coefficients (Ma et al.
2018), the reconstruction error can be rewritten as

‖X −XRM‖2F ,

whereRM = W0 . . .WM (Z0 . . . ZM )
T
AT ,

(6)

whereRM is a meaningful coefficient matrix self-expressing
X . Then, the factorization model can be presented as

X ← UMV
T
M

UM = UM−1WM VM = VM−1ZM

...
...

U2 = U1W2 V2 = V1Z2

U1 = XW1 V1 = AZ1

(7)

where Um is the set of basis vectors of the m-th layer, V T
m

is the new representation, Wm is the intermediate matrix for
updating the basis vectors and Zm is the intermediate auxil-
iary matrix for updating the representations.

Enriched Prior Based Dual-constraints
DS2CF-Net learns a robust label predictor P ∈ RD×c

over the labeled data by minimizing a label fitness error∥∥AL −XT
LP
∥∥2
F

, which can map each xi into a label space
in terms of PTxi. In addition, DS2CF-Net also considers
preserving the neighborhood information of the predicted
soft labels PTX by self-expressing it using RM . To be spe-
cific, the problem for learning the label predictor P is de-
fined as follows:
J1 =

∥∥AL −XT
LP
∥∥2
F

+
∥∥PTX − PTXRM

∥∥2
F

+ ‖P‖2,1

=
∥∥AL −XT

LP
∥∥2
F

+ ‖P‖2,1

+
∥∥∥PTX − PTX

(
W0 . . .WM (Z0 . . . ZM )

T
AT
)∥∥∥2

F

,

(8)
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where the L2,1-norm can further enable the learned label
predictor to be robust against noise.

Enriched prior based label constraint A. After P is ob-
tained, we can predict the soft label of each unlabeled sam-
ple xi ∈ XU as xTi P . Then, we can obtainAU for unlabeled
data by using the normalized soft labels as follows:

(AU )ij = (XT
UP )ij/

∑c

j=1
(XT

UP )ij . (9)

Clearly, the normalized soft labels meet the definition of
probability, i.e., column-sum-to-one.

Enriched prior based structure constraint Q. We add
Q to constrain the coefficients by minimizing the approxi-
mation error between Q and W0 . . .WM (Z0 . . . ZM )TAT :

J2 =
∥∥Q−W0 . . .WM (Z0 . . . ZM )TAT

∥∥2
F

+
∥∥W0 . . .WM (Z0 . . . ZM )TAT

∥∥2
F
,

(10)

where the structure constraint matrix Q is defined As

Q =

[
QL 0
0 QU

]
, QL =

 Q1 0 0 0
0 Q2 0 0
0 0 . . . 0
0 0 0 Qc


(11)

whereQL andQU are the sub-matrices overXL andXU . As
XL is labeled,QL is strict block-diagonal, where each block
Qi, i = 1, 2, . . . c is an li × li matrix of all ones, defined
according to the labels, and li is the number of samples in
class i in XL. We initiate QU by the cosine similarities over
XU and update QU in m-th (m > 1) layer using the cosine
similarities defined on the new representation of XU .

Self-weighted Dual-graph Learning
We also incorporate the self-weighted dual-graph learn-
ing to retain the neighborhood information of both
deep basis vectors XW0 . . .WM and deep representation
(Z0 . . . ZM )TAT in an adaptive manner. Specifically, we
obtain the data weight matrix SV ∈ RN×N and the feature
weight matrix SU ∈ RD×D by minimizing:

J3 =
∥∥∥(XW0 . . .WM )

T − (XW0 . . .WM )
T
SU
∥∥∥2
F

+
∥∥∥((Z0 . . . ZM )

T
AT
)
−
(

(Z0 . . . ZM )
T
AT
)
SV
∥∥∥2
F

s.t. SU ≥ 0, SV ≥ 0
(12)

By substituting J1, J2 and J3 back into Eq.(4), the final ob-
jective function of DS2CF-Net can be defined as

O = min
W1...WM,SV ,

Z1...ZM,SU ,P

∥∥X −XW0 . . .WM (Z0 . . . ZM )TAT
∥∥2
F

+ α
[
‖Q−RM‖2F + ‖RM‖2F

]
+ β

[∥∥UT
M − UT

MS
U
∥∥2
F

+
∥∥V T

M − V T
MS

V
∥∥2
F

]
+ γ

[∥∥AL −XT
LP
∥∥2
F

+
∥∥PTX − PTXRM

∥∥2
F

+ ‖P‖2,1
]

s.t. ∀m∈{1,2,...,M}Wm ≥ 0, Zm ≥ 0, SU ≥ 0, SV ≥ 0
(13)

where UM = XW0 . . . XM , VM = A(Z0 . . . ZM ) and
RM = W0 . . .WMV

T
M .

Optimization
(1) Fix others, update the factors Wm and Zm: By defin-
ing Πm−1 = W0 . . .Wm−1 and Λm−1 = Z0 . . . Zm−1,Wm

and Zm can be obtained from the reduced problem. After
simple computations, the updating rules of Wm and Zm are
obtained as follows

(Wm)ik ← (Wm)ik ·(
2ΠT

m−1KXVM + 2αΠT
m−1QVM + ΩW

)
ik(

2ΠT
m−1KXΠm−1WmV T

MVM + ΦW

)
ik

,

(14)
(Zm)ik ← (Zm)ik ·(

2ΛT
m−1A

TKXΠm + 2αΛT
m−1A

TQT Πm + ΩZ

)
ik(

2ΛT
m−1KAΛm−1ZmUT

MUM + ΦZ

)
ik

(15)
where
Hu =

(
I − SU

) (
I − SU

)T
, Hv =

(
I − SV

) (
I − SV

)T
,

Πm−1 = W0 . . .Wm−1, and Λm−1 = Z0 . . . Zm−1,
I is an identity matrix, KX = XTX , KA = ATA,
KP = XTPPTX . Πm = Πm−1Wm and Πm is known
when updating Zm. ΦW = 4αQT Πm−1WmV

T
MVM +

βΠT
m−1X

T (Hu+HT
u )XΠm−1W+2γΠT

m−1KP Πm−1Wm

V T
MVM , ΦZ = 4αΛT

m−1KAΛm−1ZmW
T
mQ

T Πm +βΛT
m−1

(Hv +HT
v )Λm−1ZmK

T
A +2γΛT

m−1KAΛm−1ZmU
T
MPP

T

UM , ΩW = 2γΠT
m−1KPVM and ΩZ = 2γΛT

m−1A
TKP

Πm are auxiliary matrices to simplify descriptions.
(2) Fix others, update SU and SV : Let UM =

XΠm−1Wm and VM = AΛm−1Zm, we can obtain the up-
dating rules for SU and SV as follows:(

SU
)
ik
←
(
SU
)
ik
·(

(XΠm−1Wm) (XΠm−1Wm)
T
)
ik(

(XΠm−1Wm) (XΠm−1Wm)
T
SU
)
ik

, (16)

(
SV
)
ik
←
(
SV
)
ik
·(

(AΛm−1Zm) (AΛm−1Zm)
T
)
ik(

(AΛm−1Zm) (AΛm−1Zm)
T
SV
)
ik

. (17)

(3) Fix others, update P : By the properties of L2,1-norm
(Yang et al. 2011), we have ‖P‖2,1 = 2 tr

(
PTBP

)
, where

B is a diagonal matrix with entries bii = 1/
(
2
∥∥pi∥∥

2

)
,

where pi is the i-th row of P . Finally, we can infer P in
each layer as follows

P =
(
XLX

T
L +XLHMX

T
L +B

)−1
XLAL, (18)

where HM = (I −RM ) (I −RM )
T . After P is obtained,

we can use it to update B and predict the labels of unla-
beled data. After that, we can use the normalized soft labels
to optimize the label constraint matrix A for representation.
For complete presentation, we summarize the procedures in
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Algorithm 1. Optimization procedures of DS2CF-Net
Inputs: Partially labeled data matrix X = [XL, XU ],
the constant r and tunable parameters α, β and γ.
Initialization:
t = 0;
Initialize W and Z to be random matrices;
Initialize P and A by labeled data;
Initialize QU by the cosine similarities over XU ;
Initialize SU by the cosine similarities over X;
Initialize SV using semi-supervised weights, that is,
supervised ones for XL and cosine similarities for XU .
For each fixed number m of layers:
While not converged do
1. Update W t+1

m and Zt+1
m by Eqs.(14-15), and then we

can obtain V t+1
m = AZ0 . . . Z

t+1
m ;

2. Update (SU )t+1 and (SV )t+1 by Eqs.(16-17);
3. Update P t+1 by Eq.(18), update the estimated soft
labels of XU as XT

UP
t+1, and then update AU by Eq.(9);

4. Update the label constraint matrix A by Eq.(5);
5. Update QU using cosine similarities based on (V t+1

m )i
i ∈ {l + 1, . . . , N}, and update matrix Q;
6. Check the convergence conditions:
if
∥∥W t+1

m −W t
m

∥∥2
F
≤ E and

∥∥V t+1
m − V t

m

∥∥2
F
≤ E , stop;

else t = t+ 1.
End While
End for
Outputs: Deep low-dimensional representation V ∗m.

Algorithm 1, where the diagonal matrix B is initialized as
an identity matrix. We initialize the linear label predictor as
P =

(
XLX

T
L + I

)−1
XLAL (Zhang et al. 2020) and pre-

dict the soft labels of XU as XT
UP , and normalize the soft

labels by Eq.(9). Based on the normalized soft labels of un-
labeled data, we can initialize the label constraint matrix A.

Simulation Results and Analysis
The experimental results of DS2CF-Net are compared with
5 deep MF models (i.e., MNMF, MCF, GMCF, DSNMF and
DSCF-Net), 3 single-layer MF models (i.e., DNMF, GCF
and SRMCF (Ma et al. 2018)), and 4 semi-supervised MF
models (i.e., SemiGNMF, CNMF, CCF and RS2ACF). In
this study, 4 public databases are involved, i.e., AR (Bergstra
et al. 2013), ETH80 (Leibe et al. 2003), USPS (Hull 1994)
and Fashion MNIST (Xiao et al. 2017). Detailed informa-
tion of the used databases is described in Table 1. We nor-
malize each column of input data matrix to have unit norm.

Visual Image Analysis by Visualization
Since the representation VM = A(Z0 . . . ZM ) is the final
output of model, we evaluate its representation ability by vi-
sualizing the adaptive weights SV on VM . AR database is
used, and for clear observation we only choose two cate-
gories to construct , with 10 labeled images per class. The
matrix SV is visualized in Fig.3, where we show the adap-
tive weights obtained in the first 4 layers. We see that the

#Name #sample #class #dim
AR face database 2600 100 1024

USPS digits database 9298 10 256
ETH80 object database 3280 80 1024

Fashion MNIST database 70000 10 784

Table 1: List of evaluated databases.

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Figure 3: Visualization of the data weight matrix SV ob-
tained by DS2CF-Net. (Top-left) 1-st layer, (Top-right) 2-nd
layer, (Bottom-left) 3-rd layer, (Bottom-right) 4-th layer.

weights have approximate block-diagonal structures in each
layer. Specifically, the structures of weights get clearer with
less noise and inter-class connections as the number of lay-
ers increases, which means the new representation VM has
a strong representation ability and moreover our deep model
can potentially improve the similarity measure.

Convergence Analysis

We show the convergence results of our DS2CF-Net in the
third layer on AR database, with 40% labeled per class, in
Fig.4. We can see that our DS2CF-Net converges rapidly and
usually converges within 5 times iterations in the 3rd layer.
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Figure 4: Convergence analysis of DS2CF-Net on AR.
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Figure 5: Clustering performance over varied K values. (Left) USPS, (Right) Fashion MNIST.

Methods AC F-measure
USPS digits Fashion MNIST USPS digits Fashion MNIST

MNMF 0.6406±0.0592 0.5701±0.0348 0.6070±0.0735 0.5592±0.0433
MCF 0.5682±0.0525 0.5727±0.0302 0.5400±0.0712 0.5765±0.0517

GMCF 0.6524±0.0729 0.6590±0.0428 0.5683±0.0665 0.6180±0.0311
DSNMF 0.6786±0.0379 0.7601±0.0314 0.5799±0.0506 0.6817±0.0236

DSCF-Net 0.6853±0.0792 0.7307±0.0609 0.6700±0.0654 0.6696±0.0463
DNMF 0.7410±0.0830 0.7426±0.0472 0.6695±0.0908 0.6569±0.0476
GCF 0.6949±0.0540 0.6484±0.0986 0.6503±0.0972 0.6531±0.0914

SRMCF 0.6811±0.0746 0.7841±0.0460 0.6040±0.0785 0.7551±0.0470
SemiGNMF 0.7520±0.1010 0.7779±0.0847 0.7050±0.0805 0.7117±0.0741

CNMF 0.7293±0.0503 0.7605±0.0551 0.6814±0.0636 0.7308±0.0575
CCF 0.7621±0.0642 0.7782±0.0492 0.7461±0.0553 0.7607±0.0539

RS2ACF 0.7697±0.0690 0.7775±0.0545 0.7412±0.0637 0.7373±0.0590
Our method 0.8219±0.0757 0.8236±0.0676 0.7722±0.0708 0.7991±0.0600

Table 2: Averaged clustering accuracies (AC) and F-scores (Mean±std) based on the evaluated real image databases.

Quantitative Clustering Evaluations
(1) Clustering evaluation process. For quantitative evalu-
ations, we perform the K-means algorithm with cosine dis-
tance on the learned representation by each model. Follow-
ing the procedures in (Liu et al. 2014; Sugiyama 2007), for
each number K of clusters, we choose K categories from
each database randomly to form the data matrix X . The
value of K is tuned from 2 to 6. The rank of the representa-
tion is set to K+1 for clustering as (Liu et al. 2014; Zhang et
al.2019a). The final results are averaged over 10 random se-
lections of K categories. For fair comparison, we randomly
choose 40% labeled samples per class for semi-supervised
models and set the number of layers to 3 for deep models.

(2) Evaluation metric. We use the Accuracy (AC) and F-
measure (Cai et al. 2005) as evaluation metrics in this work.

(3) Evaluation results. The clustering curves on USPS
and Fashion MNIST databases are shown in Fig.5, and the
according averaged AC and F-scores are described in Table
2. We see that: (1) the AC and F-measure of each method
go down as the number of categories is increased, which is
easy to understand, since clustering data of less categories is
easier than clustering more; (2) DS2CF-Net delivers better
results than other related methods in most cases.

Ablation Study
(1) Clustering with different labeled proportions. First,
we evaluate each semi-supervised MF models by using
different numbers of labeled data in each class. For each

database, the labeled proportion varies from 10% to 90%
and we randomly choose 3 categories. The averaged cluster-
ing results are reported in Fig.6. We can see that: 1) the in-
creasing number of labeled samples can greatly improve the
clustering performance of each method; It can also be found
that the improvement by our DS2CF-Net over other com-
pared methods is more obvious, especially when the propor-
tion of labeled data is relatively small; 2) our DS2CF-Net
delivers better results across different labeled proportions.

(2) Clustering with different numbers of layers. In this
study, we vary the number of layers from 1 to 10 with step
1. For each database, we choose three categories for evalua-
tion. The averaged ACs are shown in Fig.7. We see that: 1)
DS2CF-Net delivers higher accuracies than other methods in
most cases; 2) the increase of the number of layers can gen-
erally improve the performance, implying that discovering
hidden deep features can improve the representations.

(3) Parameter sensitivity analysis. Finally, we explore
the effects of parameters in the objective function on the rep-
resentation ability. Following common procedures, we use
the grid search and linear strategy (Zhang et al. 2016; Ren
et al. 2020; Zhang et al. 2020) in our experiments. Specifi-
cally, we first fix γ = 1 to tune α and β from {10-5, 10-4,...,
105}. Then, we use selected α and β to tune γ. We choose
three categories to train our model and the number of lay-
ers is set to 3. The selection results on ETH80 are shown in
Fig.8 as an example, where the results are averaged based on
5 random initializations of the cluster centers of K-means.
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Figure 6: ACs vs. varied proportions of labeled samples over (L1) AR, (L2) ETH80, (R2) USPS, (R1) Fashion MNIST.
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Figure 7: ACs vs. varied number of layers over (L1) AR, (L2) ETH80, (R2) USPS, (R1) Fashion MNIST.

Figure 8: Clustering accuracies vs. varied model parameters
of our DS2CF-Net on the ETH80 database.

Conclusion
We proposed an enriched prior based dual-constrained deep
semi-supervised coupled factorization network to discover
deep hierarchical features. DS2CF-Net designs a coupled hi-
erarchical deep and geometry structures-constrained factor-
ization model using multiple layers of linear transformations
of basis vectors and representation. To improve the discrim-
inating deep representations, DS2CF-Net clearly considers

enriching the supervised prior by the joint deep coefficients-
regularized label prediction, and incorporates the enriched
prior information as additional dual constraints. Extensive
visual and quantitative clustering evaluations demonstrated
the effectiveness of DS2CF-Net. In future, more effective
coupled factorization strategy will be investigated.
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