
Exploiting Unlabeled Data via Partial Label Assignment
for Multi-Class Semi-Supervised Learning

Zhen-Ru Zhang1,2,3, Qian-Wen Zhang3, Yunbo Cao3, Min-Ling Zhang1,2,4*

1 School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
2 Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, China

3 Tencent Cloud Xiaowei, Beijing, China
4 Collaborative Innovation Center of Wireless Communications Technology, China

zhangzr@seu.edu.cn, {cowenzhang, yunbocao}@tencent.com, zhangml@seu.edu.cn

Abstract
In semi-supervised learning, one key strategy in exploiting
unlabeled data is trying to estimate its pseudo-label based on
current predictive model, where the unlabeled data assigned
with pseudo-label is further utilized to enlarge labeled data set
for model update. Nonetheless, the supervision information
conveyed by pseudo-label is prone to error especially when
the performance of initial predictive model is mediocre due
to limited amount of labeled data. In this paper, an interme-
diate unlabeled data exploitation strategy is investigated via
partial label assignment, i.e. a set of candidate labels other
than a single pseudo-label are assigned to the unlabeled data.
We only assume that the ground-truth label of unlabeled data
resides in the assigned candidate label set, which is less error-
prone than trying to identify the single ground-truth label via
pseudo-labeling. Specifically, a multi-class classifier is in-
duced from the partial label examples with candidate labels
to facilitate model induction with labeled examples. An it-
erative procedure is designed to enable labeling information
communication between the classifiers induced from partial
label examples and labeled examples, whose classification
outputs are integrated to yield the final prediction. Compar-
ative studies against state-of-the-art approaches clearly show
the effectiveness of the proposed unlabeled data exploitation
strategy for multi-class semi-supervised learning.

Introduction
In semi-supervised learning, the learning system aims to
exploit unlabeled data to facilitate predictive model induc-
tion with limited labeled examples. Most semi-supervised
learning techniques work by trying to estimate the pseudo-
label of unlabeled data based on current predictive model,
which is assigned to the unlabeled data as the ground-truth
label and then employed to enrich the labeled data set for
model update, such as co-training (Blum and Mitchell 1998;
Zhang and Zhou 2011; Ma et al. 2020), label propagation
(Zhou et al. 2004; Chong et al. 2020), semi-supervised SVM
(Joachims 1999; Chapelle, Sindhwani, and Keerthi 2008; Li,
Kwok, and Zhou 2016), etc. However, one potential issue
lies in that the estimated pseudo-label is prone to error, espe-
cially when the predictive model has only mediocre general-
ization performance with few labeled examples available in
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initial training iterations (Zhu and Goldberg 2009; van En-
gelen and Hoos 2020).

Partial label learning is an emerging weakly supervised
learning framework dealing with inaccurate supervision
(Nguyen and Caruana 2008; Cour, Sapp, and Taskar 2011;
Zhang and Yu 2015; Ren et al. 2016; Zhou 2017; Wang, Li,
and Zhang 2019; Lv et al. 2020; Lyu et al. 2019), where
each training example is associated with a set of candidate
labels among which only one is valid. The task of partial la-
bel learning is to induce a multi-class classification model
from partial label training examples, where the ground-truth
label of each training example is assumed to reside in its
candidate label set but not directly accessible to the training
algorithm. In view of supervision spectrum, the weak super-
vision conveyed by partial label example lies between the
blind supervision of unlabeled example and the full supervi-
sion of labeled example. Therefore, it is natural to leverage
partial label example as an intermediate means to facilitate
the exploitation of unlabeled data for semi-supervised learn-
ing. Conceptually, other than trying to identify the strong su-
pervision information for unlabeled data with single ground-
truth label, it is relatively easier to estimate the weak super-
vision information for unlabeled data with a set of candidate
labels consisting of the ground-truth label.

In light of the above observations, a novel strategy for un-
labeled data exploitation is investigated in this paper. Ac-
cordingly, a simple yet effective multi-class semi-supervised
learning approach named EUPAL, i.e. Exploiting Unlabeled
data via PArtial Label assignment, is proposed. Briefly, EU-
PAL initializes partial label assignment over unlabeled data
by resorting to weighted kNN aggregation. Then, classifi-
cation models induced from partial label examples and la-
beled examples are iteratively updated by conducting label-
ing information communication with random sampling. Ex-
perimental results show that the proposed approach serves
as an effective way towards unlabeled data exploitation, es-
pecially for the case of lower fraction of labeled examples in
training set.

The rest of this paper is organized as follows. Firstly, tech-
nical details of the proposed EUPAL approach are presented.
Secondly, experimental results of comparative studies are re-
ported. Thirdly, related works on semi-supervised and par-
tial label learning are briefly discussed. Finally, we conclude
this paper.
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Inputs:
Dl: the labeled data set {(xi, yi) | 1 ≤ i ≤ L} (xi ∈ X , yi ∈ Y , X = Rd, Y = {l1, l2, . . . , lq})
Du: the unlabeled data set {xj | 1 ≤ j ≤ U}
k: the number of nearest neighbors used for kNN aggregation
α: the balancing parameter with α ∈ [0, 1]
T : the maximum number of iterations
L, P: the supervised training algorithm L and the partial label training algorithm P
x∗: the unseen instance
Outputs:
y∗: the predicted label for x∗

Process:
1: Identify the k nearest neighbors of xj in Dl whose index set is stored in N (xj) (1 ≤ j ≤ U);
2: Set the weight matrix W = [wij ]L×U whose elements are set according to Eq.(1);
3: Generate partial label example (xj , Sj) (1 ≤ j ≤ U) by specifying the candidate label set Sj via kNN aggregation

according to Eqs.(2)-(3) ;
4: Set Dp = {(xj , Sj) | 1 ≤ j ≤ U};
5: Set t = 1;
6: repeat
7: Induce f (t)l by invoking supervised training algorithm L over Dl, i.e. f (t)l ←[ L(Dl);
8: Induce f (t)p by invoking partial label training algorithm P over Dp, i.e. f (t)p ←[ P(Dp);
9: Randomly sample a subset of examples ∆

(t)
1 ⊆ Du from Du;

10: For any x ∈ ∆
(t)
1 and the corresponding partial label example (x, S) ∈ Dp, update its candidate label set S to S′

according to Eq.(4);
11: Randomly sample a subset of examples ∆

(t)
2 ⊆ Du from Du;

12: For any x ∈ ∆
(t)
2 , enrich the labeled data set by adding (x, y′) to Dl with y′ being predicted according to Eq.(5);

13: t = t+ 1.
14: until convergence
15: Let f∗l and f∗p be the classification models returned by the iterative updating procedure;
16: Return y∗ according to Eq.(6).

Table 1: The pseudo-code of EUPAL.

The Proposed Approach
Let X = Rd be the d-dimensional feature space and Y =
{l1, l2, . . . , lq} be the label space consisting of q class labels.
Furthermore, let Dl = {(xi, yi) | 1 ≤ i ≤ L} denote the
set of labeled examples with yi ∈ Y being the ground-truth
label of xi ∈ X , and Du = {xj | 1 ≤ j ≤ U} denote the
set of unlabeled examples. In semi-supervised learning, it is
generally assumed that L � U and the task of the learning
system is to induce a classification model from Dl

⋃
Du.

To enable unlabeled data exploitation, EUPAL chooses
to make use of partial label assignment which offers weak
supervision information to the learning system to facilitate
model induction. For each unlabeled example xj ∈ Du, let
N (xj) be the index set of xj’s k nearest neighbors identi-
fied in Dl. Furthermore, let W = [wij ]L×U be the weight
matrix whose elements are set as follows:

∀ 1 ≤ i ≤ L, 1 ≤ j ≤ U : (1)

wij =

{
exp

(
−‖xi−xj‖22

2σ2

)
, if i ∈ N (xj)

0 , otherwise

Here, σ corresponds to the width parameter of the kernel

distance function, which is fixed to be 1 in this paper. Then,
a labeling confidence vector r̂j = [r̂j1, r̂j2, . . . , r̂jq]

> can
be derived for each unlabeled example xj (1 ≤ j ≤ U) via
kNN aggregation:

∀ 1 ≤ k ≤ q : r̂jk =
∑

i∈N (xj)
wij · [[yi = lk]] (2)

Here, [[π]] returns 1 if predicate π holds and 0 otherwise. By
normalizing r̂j into rj , EUPAL determines the set of candi-
date labels Sj ⊆ Y assigned to xj as follows:

∀ 1 ≤ j ≤ U : Sj = {lk | rjk ≥ 1/q, 1 ≤ k ≤ q} (3)

where rjk =
r̂jk∑q
k=1 r̂jk

Accordingly, the unlabeled data set Du is transformed into
the partial label data set Dp = {(xj , Sj) | 1 ≤ j ≤ U}
which is further utilized for inducing the multi-class classi-
fication model in an iterative manner.

At the t-th iteration, let f (t)l : X × Y 7→ [0, 1] be
the classification model induced from labeled data set Dl
by invoking pre-specified supervised training algorithm L,
i.e. f (t)l ←[ L(Dl). Without loss of generality, we assume
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that f (t)l yields probabilistic predictions for instance x with∑q
k=1 f

(t)
l (x, lk) = 1. Correspondingly, let f (t)p : X ×Y 7→

[0, 1] be the classification model induced from partial label
data set Dp by invoking pre-specified partial label training
algorithm P , i.e. f (t)p ←[ P(Dp). Similarly, f (t)p also yields
probabilistic predictions with

∑q
k=1 f

(t)
p (x, lk) = 1.

Then, the labeling information between f (t)l and f (t)p is
communicated for model update based on random sampling.
Let ∆

(t)
1 ⊆ Du be a subset of unlabeled examples randomly

sampled from Du, then the labeling information conveyed
by the predictive output of f (t)l over ∆

(t)
1 is utilized to update

the partial label data set Dp. Specifically, for any example
x ∈ ∆

(t)
1 , let (x, S) ∈ Dp be the corresponding partial label

example inDp. EUPAL chooses to update the candidate label
set S into S′ with the following rule:

S′ = {lk | tk ≥ 1/q, 1 ≤ k ≤ q} where (4)

tk = α · f (t)l (x, lk) + (1− α) · f (t)p (x, lk)

Here, α ∈ [0, 1] is the trade-off parameter which controls the
relative amount of labeling information inherited from f

(t)
l

and f (t)p respectively.
On the other hand, let ∆

(t)
2 ⊆ Du be another subset of

unlabeled examples randomly sampled from Du. Then, the
labeling information conveyed by the predictive output of
f
(t)
p over ∆

(t)
2 is utilized to update the labeled data set Dl.

Specifically, for any example x ∈ ∆
(t)
2 , its class label y′

predicted by f (t)p corresponds to:

y′ = arg maxlk∈Y f (t)p (x, lk) (5)

Then, EUPAL enriches Dl by adding (x, y′) to the labeled
data set.1 Accordingly, f (t)l and f (t)p are re-trained based on
the updated labeled data set Dl and partial label data set Dp
respectively. The iterative updating procedure terminates un-
til both classification models do not change or the maximum
number of iterations is reached.2

Let f∗l and f∗p be the final classification models returned
by the iterative updating procedure, the prediction over un-
seen instance x∗ is determined by combining the predictive
outputs of both classifiers:

y∗ = arg maxlk∈Y µl · f∗l (x∗, lk) + µp · f∗p (x∗, lk) (6)

Here, µl and µp corresponds to the empirical predictive ac-
curacy of f∗l and f∗p over the original labeled data set (i.e.
{(xi, yi) | 1 ≤ i ≤ L}) respectively.

Table 1 summarizes the complete procedure of EUPAL.
Firstly, the partial label assignment over unlabeled data
is initialized by employing kNN aggregation (Steps 1-4).
Then, an iterative updating procedure is utilized to update

1In case x has been in Dl, its class label is updated to y′.
2In this paper, both ∆

(t)
1 and ∆

(t)
2 are generated by sampling

with replacement. Furthermore, the size of the random samples is
set to be max(U/T, 3) where T is the maximum number of itera-
tions.

Data Set #Examples #Features #Labels
Ecoli 307 7 4
Deter 338 23 5
BHP 1,060 21 4
Yeast 1,299 8 4

Wireless 2,000 7 4
Segment 2,310 18 7
Character 3,140 100 8
Location 3,505 100 8

Work 5,628 100 11
Usps 9,298 256 10
Pen 10,992 16 10

Letter 20,000 16 26
Sensorless 58,509 48 11

Table 2: Characteristics of experimental data sets.

the classification models induced from labeled examples and
partial label examples via labeling information communica-
tion (Steps 5-14). Finally, the prediction on unseen instance
is determined by combining the modeling outputs of both
classifiers (Steps 15-16).

Experiments
Experimental Setup
Data Sets In this paper, a total of 13 benchmark multi-
class data sets (Dua and Graff 2017) have been employed for
experimental studies whose characteristics are summarized
in Table 2.

For each data set, 25% examples are randomly sampled
to form the test set and the remaining examples are used
to form the training set. Among the training set, the la-
beled data set Dl consists of p fraction of examples and
the other examples are treated as unlabeled examples in Du.
To account for the factor that in semi-supervised learning
the number of labeled examples is much smaller that that
of unlabeled examples, we consider three configurations of
p in this paper, i.e. p ∈ {0.5%, 1%, 5%}. Given the frac-
tion of labeled examples, the training set is randomly di-
vided into Dl and Du for ten times and the average predic-
tive performance on test set (mean accuracy±std. deviation)
is recorded for each comparing approach.

Comparing Approaches The performance of EUPAL
is compared against four state-of-the-art semi-supervised
learning approaches, each configured with parameters sug-
gested in the literature:

• PLANETOID (Yang, Cohen, and Salakhutdinov 2016): A
graph-based semi-supervised learning approach where an
embedding for each instance is trained to jointly predict
the class label and the neighborhood context in the graph.
[suggested configuration: q = 10, d = 3]

• SSODM (Zhang and Zhou 2018): A margin-based semi-
supervised learning approach which works by assigning
labels to unlabeled instances to achieve optimal margin
distribution. [suggested configuration: ν = 0.8, θ = 0.95]
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Data Set Comparing Approach
EUPAL PLANETOID SSODM S4VM COTRADE IPAL LIBSVM

Ecoli 0.726±0.119 0.634±0.099 0.626±0.179 0.495±0.126• 0.086±0.048• 0.652±0.199 0.048±0.053•
Deter 0.799±0.090 0.700±0.097• 0.621±0.116• 0.655±0.067• 0.051±0.061• 0.719±0.094 0.017±0.045•
BHP 0.508±0.060 0.463±0.064• 0.438±0.067• 0.389±0.081• 0.317±0.061• 0.477±0.030 0.185±0.137•
Yeast 0.467±0.067 0.466±0.062 0.443±0.074 0.357±0.074• 0.313±0.056• 0.396±0.105• 0.141±0.086•

Wireless 0.940±0.027 0.830±0.055• 0.809±0.040• 0.714±0.029• 0.919±0.080 0.808±0.048• 0.803±0.149•
Segment 0.715±0.034 0.703±0.048 0.623±0.058• 0.617±0.092• 0.562±0.092• 0.372±0.058• 0.216±0.094•
Character 0.529±0.108 0.555±0.062 0.567±0.019 0.428±0.072• 0.565±0.066 0.369±0.081• 0.221±0.184•
Location 0.523±0.049 0.496±0.048 0.530±0.051 0.421±0.049• 0.507±0.047 0.375±0.064• 0.312±0.133•

Work 0.386±0.039 0.360±0.020 0.392±0.048 0.259±0.019• 0.383±0.053 0.263±0.040• 0.054±0.029•
Usps 0.784±0.042 0.694±0.038• 0.464±0.040• 0.085±0.049• 0.739±0.042• 0.877±0.036◦ 0.567±0.073•
Pen 0.875±0.029 0.801±0.022• 0.708±0.035• 0.106±0.039• 0.807±0.028• 0.876±0.044 0.824±0.046•

Letter 0.441±0.015 0.199±0.026• 0.401±0.029• 0.036±0.010• 0.436±0.032 0.357±0.020• 0.214±0.031•
Sensorless 0.480±0.019 0.517±0.016◦ 0.469±0.018 - 0.614±0.017◦ 0.423±0.021• 0.536±0.025◦

Table 3: Classification accuracy (mean±std) of each comparing algorithm on the benchmark data sets (p = 0.5%), where
the best performance on each data set is shown in boldface. In addition, •/◦ indicates whether EUPAL achieves significantly
superior/inferior to the comparing approach on each data set (pairwise t-test at 0.05 significance level).

Data Set Comparing Approach
EUPAL PLANETOID SSODM S4VM COTRADE IPAL LIBSVM

Ecoli 0.751±0.129 0.703±0.085 0.716±0.127 0.522±0.121• 0.069±0.050• 0.644±0.130• 0.078±0.103•
Deter 0.794±0.063 0.726±0.079 0.596±0.091• 0.654±0.075• 0.014±0.035• 0.751±0.184 0.015±0.041•
BHP 0.531±0.078 0.518±0.039 0.429±0.039• 0.392±0.047• 0.395±0.115• 0.342±0.174• 0.412±0.098•
Yeast 0.480±0.069 0.465±0.048 0.449±0.037 0.345±0.058• 0.379±0.067• 0.410±0.070• 0.353±0.055•

Wireless 0.934±0.029 0.841±0.040• 0.796±0.040• 0.732±0.021• 0.933±0.065 0.875±0.043• 0.907±0.022•
Segment 0.732±0.039 0.752±0.036 0.645±0.089• 0.631±0.044• 0.699±0.054 0.456±0.070• 0.481±0.040•
Character 0.596±0.040 0.610±0.025 0.577±0.034 0.495±0.027• 0.633±0.023◦ 0.452±0.055• 0.605±0.013
Location 0.554±0.046 0.554±0.038 0.555±0.034 0.454±0.047• 0.576±0.037◦ 0.430±0.071• 0.502±0.082•

Work 0.454±0.032 0.462±0.026 0.464±0.028 0.322±0.022• 0.495±0.024◦ 0.353±0.045• 0.346±0.068•
Usps 0.862±0.016 0.757±0.017• 0.574±0.054• 0.138±0.036• 0.803±0.015• 0.902±0.018◦ 0.811±0.025•
Pen 0.919±0.012 0.856±0.017• 0.793±0.016• 0.082±0.026• 0.857±0.017• 0.935±0.019◦ 0.897±0.016•

Letter 0.535±0.018 0.125±0.019• 0.463±0.019• 0.041±0.010• 0.547±0.022 0.482±0.030• 0.499±0.031•
Sensorless 0.550±0.015 0.533±0.009• 0.506±0.008• - 0.691±0.013◦ 0.505±0.013• 0.650±0.014◦

Table 4: Classification accuracy (mean±std) of each comparing algorithm on the benchmark data sets (p = 1%), where the
best performance on each data set is shown in boldface. In addition, •/◦ indicates whether EUPAL achieves significantly supe-
rior/inferior to the comparing approach on each data set (pairwise t-test at 0.05 significance level).

• S4VM (Li and Zhou 2015): An SVM-based semi-
supervised learning approach which works by exploiting
an ensemble of low-density separators simultaneously to
help induce robust semi-supervised SVM classifier. [sug-
gested configuration: T = 100, λ = 3]

• COTRADE (Zhang and Zhou 2011): A co-training style
semi-supervised learning approach which works by em-
ploying data editing techniques to enable reliable label-
ing information communication between two classifiers.
[suggested configuration: base learner with LIBSVM]
For SSODM, S4VM and COTRADE, one-vs-rest strategy is

employed to enable multi-class classification. In addition to
the four semi-supervised learning approaches, the other two
approaches are further employed for comparative studies:
• IPAL (Zhang and Yu 2015): A partial label learning ap-

proach which learns from examples with candidate la-
bel sets by performing label propagation procedure over
kNN graph constructed over training examples. Specif-
ically, IPAL is adapted to learn from Dl

⋃
Du by treat-

ing examples in Dl and Du with singleton and full-sized
candidate label set respectively. [suggested configuration:
α = 0.95, k = 5]

• LIBSVM (Chang and Lin 2011): The popular LIBSVM is
utilized as the baseline approach which induces the multi-
class classification model by learning from examples in
Dl. [suggested configuration: RBF kernel]

As shown in Table 1, the values of k (number of near-
est neighbors), α (balancing parameter), and T (maximum
number of iterations) for EUPAL are set to be 5, 0.4 and 50
respectively. Furthermore, the supervised training algorithm
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Data Set Comparing Approach
EUPAL PLANETOID SSODM S4VM COTRADE IPAL LIBSVM

Ecoli 0.839±0.053 0.804±0.063 0.801±0.050 0.730±0.040• 0.755±0.058• 0.761±0.074• 0.762±0.141
Deter 0.869±0.063 0.826±0.051• 0.848±0.033 0.783±0.058• 0.817±0.048• 0.854±0.067 0.562±0.094•
BHP 0.615±0.050 0.596±0.059 0.591±0.036 0.480±0.045• 0.682±0.039◦ 0.331±0.101• 0.648±0.049◦
Yeast 0.541±0.044 0.526±0.041 0.544±0.035 0.432±0.038• 0.506±0.043• 0.498±0.033• 0.485±0.047

Wireless 0.972±0.007 0.946±0.017• 0.876±0.010• 0.795±0.032• 0.964±0.010• 0.937±0.011• 0.967±0.010•
Segment 0.852±0.031 0.862±0.027 0.813±0.010• 0.778±0.036• 0.832±0.035 0.741±0.031• 0.857±0.019
Character 0.694±0.027 0.671±0.018• 0.577±0.031• 0.530±0.023• 0.724±0.020◦ 0.632±0.031• 0.712±0.018◦
Location 0.682±0.022 0.621±0.023• 0.565±0.022• 0.507±0.020• 0.709±0.018◦ 0.605±0.032• 0.707±0.017◦

Work 0.552±0.023 0.530±0.017• 0.488±0.023• 0.336±0.019• 0.607±0.013◦ 0.469±0.035• 0.598±0.010◦
Usps 0.938±0.007 0.860±0.008• 0.726±0.017• 0.194±0.064• 0.889±0.008• 0.941±0.006◦ 0.921±0.008•
Pen 0.974±0.006 0.899±0.008• 0.840±0.009• 0.149±0.083• 0.922±0.009• 0.980±0.003◦ 0.970±0.003•

Letter 0.743±0.017 0.179±0.011• 0.467±0.018• 0.041±0.017• 0.717±0.009• 0.742±0.009 0.773±0.006◦
Sensorless 0.696±0.009 0.489±0.004• 0.530±0.012• - 0.826±0.009◦ 0.626±0.004• 0.844±0.006◦

Table 5: Classification accuracy (mean±std) of each comparing algorithm on the benchmark data sets (p = 5%), where the
best performance on each data set is shown in boldface. In addition, •/◦ indicates whether EUPAL achieves significantly supe-
rior/inferior to the comparing approach on each data set (pairwise t-test at 0.05 significance level).

Fraction of labeled examples EUPAL against
PLANETOID SSODM S4VM COTRADE IPAL LIBSVM

p = 0.5% 6/6/1 7/6/0 12/0/0 7/5/1 8/4/1 12/0/1
p = 1% 5/8/0 8/5/0 12/0/0 6/3/4 10/1/2 11/1/1
p = 5% 9/4/0 9/4/0 12/0/0 7/1/5 9/2/2 4/3/6
In Total 20/18/1 24/15/0 36/0/0 20/9/10 27/7/5 27/4/8

Table 6: Win/tie/loss counts (pairwise t-test at 0.05 significance level) of EUPAL against each comparing approach under
different configurations of the fraction of labeled examples.

L and the partial label training algorithm P are instantiated
with LIBSVM and IPAL accordingly.

Experimental Results
Tables 3 to 5 report the detailed experimental results for
p = 0.5%, 1% and 5% respectively, where the best per-
formance on each data set is shown in boldface.3 Based on
pairwise t-test at 0.05 significance level, we use •/◦ to indi-
cate whether the performance of EUPAL is superior/inferior
to the comparing approach on each data set. For illustra-
tive purpose, Figure 1 also shows how the performance of
EUPAL changes as p increases from 0.5% to 5% on three
benchmark data sets. Furthermore, Table 6 summarizes the
win/tie/loss counts of EUPAL against each comparing ap-
proach under different configurations of the fraction of la-
beled examples.

Overall, the following observations can be made based on
reported experimental results:

• Out of all the statistical tests (13 data sets × 3 config-
urations of p), EUPAL achieves significantly better or at
least comparable performance to PLANETOID, SSODM,

3Due to its high computational complexity, the performance of
S4VM on the Sensorless data set does not return within rea-
sonable amount of time.

S4VM, COTRADE, IPAL and LIBSVM in 97.4%, 100%,
100%, 74.3%, 87.1% and 79.4% cases.

• It is worthy noting that the performance advantage of EU-
PAL is more pronounced when the fraction of labeled ex-
amples is low (p = 0.5%). This is rather desirable as in
semi-supervised learning, it is generally expected that few
labeled training examples are available for model induc-
tion. Specifically, on the two data sets Ecoli and Deter
with least number of examples, EUPAL achieves best pre-
dictive performance under each configuration of p.

• It is also worth noting that when the fraction of la-
beled examples is relatively high (p = 5%), the per-
formance of IPAL and LIBSVM would outperform other
semi-supervised learning approaches including EUPAL on
larger data sets Usps, Pen, Letter and Sensorless.
These results indicate that the exploitation of unlabeled
data may not always be beneficial in case sufficient
amount of labeled data has been available for model in-
duction.

Further Analysis
Parameter Sensitivity As shown in Table 1, the EUPAL
approach needs to be instantiated with three parameters
k, α and T . Figure 2 illustrates how the performance of
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Figure 1: Classification accuracy of each comparing algorithm changes as p (fraction of labeled examples) increases from 0.5%
to 5%. (a) Ecoli; (b) Yeast; (c) Wireless.

(a) p = 0.5% (b) p = 1% (c) p = 5%

Figure 2: Classification accuracy of EUPAL on the Segment data set changes as k (number of nearest neighbors) increases
from 1 to 19 with step-size 2 and α (balancing parameter) increases from 0 to 1 with step-size 0.1. (a) p = 0.5%; (b) p = 1%;
(c) p = 5%.

EUPAL changes under varying configurations of k and α
(T = 50) on the Segment data set. It is obvious that the
performance of EUPAL is stable across a broad range of
parameter settings. Similar observations can be made on
other data sets as well.
Furthermore, we investigate the convergence property of
EUPAL as the number of training iterations T increases.
Let F(t) be the labeling confidence matrix predicted by
EUPAL on the unlabeled data (or test data), Figure 3 il-
lustrates how the difference of labeling confidence matrix
within two adjacent iterations (i.e. ‖Ft−Ft−1‖2) changes
on unlabeled data (or test data). It is obvious that EUPAL
would converge to stable performance as the number of
iterations T is greater than 10. Based on the above obser-
vations, we adopt the parameter configurations of k = 5,
α = 0.4 and T = 50 for EUPAL in this paper.

Quality of Partial Label Assignment Partial label as-
signment serves as the key strategy of EUPAL for exploit-
ing unlabeled data, where it is assumed that the ground-
truth label would reside in the candidate label set as-
signed to the unlabeled data. Let Dp = {(xj , Sj) |
1 ≤ j ≤ U} be the partial label set generated in the
t-th iteration, we can measure the transductive accuracy

1∑U
j=1 |Sj |

∑U
j=1 [[yj ∈ Sj ]] to show the quality of par-

tial label assignment. Here, yj corresponds to the ground-
truth label of xj .
Figure 4 illustrates how the transductive accuracy of EU-

PAL changes as the number of iterations increases on
Ecoli, Wireless and Pen. It is obvious that EUPAL
is capable of assigning candidate label set to unlabeled
data which consists of the ground-truth label with high
probability. The quality of partial label assignment also
improves as the iterative procedure proceeds.

Related Works
Co-training (Blum and Mitchell 1998; Zhang and Zhou
2011; Ma et al. 2020) is one of the most representative strate-
gies for semi-supervised learning, where two classifiers are
trained on two different views and the most confident la-
bels predicted by one classifier on unlabeled data is itera-
tively communicated to the other classifier for model up-
date. The proposed EUPAL approach shares similar strat-
egy with co-training by communicating labeling informa-
tion between two classifiers, while EUPAL doesn’t assume
two views for instance representation and one classifier
is induced based on the partial label assignment over un-
labeled examples. Semi-supervised SVM (Joachims 1999;
Chapelle, Sindhwani, and Keerthi 2008) serves as another
popular strategy to learn from labeled and unlabeled exam-
ples, where the maximum margin classifier and pseudo-label
assignment on unlabeled examples are optimized alterna-
tively. Due to the error-prone nature of estimated pseudo-
label, there have been attempts in developing safe semi-
supervised SVM techniques to ensure beneficial exploita-
tion of unlabeled data (Li and Zhou 2015; Li, Kwok, and
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Figure 3: Difference of labeling confidence matrix within two adjacent iterations changes on unlabeled data and test data (w.r.t.
Segment data set). (a) p = 0.5%; (b) p = 1%; (c) p = 5%.
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Figure 4: Transductive accuracy of EUPAL on unlabeled examples (i.e. the probability of ground-truth label residing in the
candidate label set) changes as the number of iterations increases. (a) p = 0.5%; (b) p = 1%; (c) p = 5%.

Zhou 2016; Ke et al. 2020). Graph-based techniques such
as label propagation (Zhou et al. 2004; Chong et al. 2020)
estimate pseudo-labels on unlabeled examples by utiliz-
ing graph structure over labeled and unlabeled examples.
Different to the transductive nature of graph-based semi-
supervised learning techniques, EUPAL is capable of making
predictions on unseen examples other than unlabeled ones.

Partial label learning deals with inaccurate supervision
where the training example is assigned with a set of candi-
date labels among which only one is valid. The major strat-
egy to learn from partial label examples is trying to disam-
biguate the candidate label set, which can be instantiated via
identification-based disambiguation or averaging-based dis-
ambiguation. For identification-based disambiguation, the
ground-truth label is treated as latent variable whose value is
identified based on iterative estimation procedure (Nguyen
and Caruana 2008; Liu and Dietterich 2012; Wang, Li, and
Zhang 2019; Lv et al. 2020). For averaging-based disam-
biguation, candidate labels are treated in an equal manner
whose modeling outputs are averaged to yield the final pre-
diction (Cour, Sapp, and Taskar 2011; Zhang and Yu 2015;
Gong et al. 2018). In addition to the disambiguation strategy,
there have been some recent attempts in learning from par-
tial label examples by transforming the partial label learn-
ing problem into other well-established learning problems
(Chen et al. 2014; Wu and Zhang 2018; Lyu et al. 2019).

Conclusion
In this paper, we investigate an alternative strategy for un-
labeled data exploitation via partial label assignment where
a set of candidate labels rather than a single pseudo-label is
assigned to the unlabeled example. Accordingly, one clas-
sifier is trained on partial label examples with candidate la-
bel sets, which iteratively communicates labeling informa-
tion with the other classifier induced from label examples
for model update. Extensive experiments on a number of
benchmark data sets show that the proposed approach serves
as a promising strategy for unlabeled data exploitation, es-
pecially when the fraction of labeled examples is low in the
training set.
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