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Abstract

Recent progress in contrastive learning has revolutionized
unsupervised representation learning. Concretely, multiple
views (augmentations) from the same image are encouraged
to map to the similar embeddings, while views from differ-
ent images are pulled apart. In this paper, through visualizing
and diagnosing classification errors, we observe that current
contrastive models are ineffective at localizing the foreground
object, limiting their ability to extract discriminative high-
level features. This is due to the fact that view generation
process considers pixels in an image uniformly. To address
this problem, we propose a data-driven approach for learn-
ing invariance to backgrounds. It first estimates foreground
saliency in images and then creates augmentations by copy-
and-pasting the foreground onto a variety of backgrounds.
The learning still follows the instance discrimination pretext
task, so that the representation is trained to disregard back-
ground content and focus on the foreground. We study a vari-
ety of saliency estimation methods, and find that most meth-
ods lead to improvements for contrastive learning. With this
approach (DiLo), significant performance is achieved for self-
supervised learning on ImageNet classification, and also for
object detection on PASCAL VOC and MSCOCO.

Introduction
Visual recognition has been revolutionized by deep learn-
ing in the fashion of assembling considerable amounts of la-
beled data (Deng et al. 2009) and training very deep neural
networks (Krizhevsky, Sutskever, and Hinton 2012). How-
ever, collection of supervisory signals, especially at a very
large scale, is constrained by budget and time. Due to this,
there has been a growing interest in self-supervised and un-
supervised learning which do not face this practical limita-
tion. For high-level visual recognition, previous approaches
in self-supervised learning define proxy tasks which do not
require human labeling but encode useful priors (Zhang,
Isola, and Efros 2016; Doersch, Gupta, and Efros 2015) for
object recognition. Recent advances in self-supervised con-
trastive learning rely on the proxy task of instance discrim-
ination (Dosovitskiy et al. 2015b; Wu et al. 2018), where
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Figure 1: Motivation: for natural images with objects, back-
grounds are usually shared across categories, while the dis-
tinctive region for determining the object is localized.

invariances are encoded and learned from low-level image
augmentations such as spatial cropping and color jittering.

In this paper, by visualizing and diagnosing errors made
by recent self-supervised contrastive models, we identify a
strong pattern which is overlooked by prior works. Specif-
ically, we find that current self-supervised models lack the
ability to localize foreground objects, and the learned repre-
sentation can be predominantly determined by background
pixels. This is actually unsurprising, as self-supervised
learning generally treats each spatial location as equally im-
portant, and it is well known that neural networks are prone
to “cheat” (Zhang, Isola, and Efros 2016) by taking advan-
tage of unintended information. As a result, a network can-
not be expected to discover objects unless it is driven to do
so (Arandjelović and Zisserman 2019).

In supervised visual recognition, localization has been
demonstrated to be a strong by-product of training on image-
level labels. Strong object localization performance has been
shown using the gradient of the class score in the pixel
space (Simonyan, Vedaldi, and Zisserman 2013). It has also
been found that adding precise localization information does
not bring significant gains for PASCAL object classification
when transferred from ImageNet (Oquab et al. 2015). More-
over, object segments have been estimated using only image-
level labels via a class activation mapping method (Zhou
et al. 2016). As suggested in Figure 1, we hypothesize that
the learning signal that drives localization comes from the
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category-wise supervisory labels, because background con-
tents (e.g., grass, sky, water) are usually shared among dif-
ferent categories while foreground objects are only salient
within the same category.

The gap in the localization ability between self-supervised
and supervised models motivates us to explore approaches
for distilling localization of self-supervised representations.
We study this problem by first estimating a foreground
saliency mask for each training image. The training image
and its corresponding saliency map are then used to create
augmentations by pasting the foreground object onto vari-
ous backgrounds. During representation learning, we follow
recent contrastive representation learning methods using the
augmentations for the same object on different backgrounds.
This encourages the representation to become invariant to
backgrounds, enabling localization of the foreground object.

For generating our augmentations, several saliency esti-
mation methods are examined, including traditional unsu-
pervised techniques (Zhu et al. 2014; Yan et al. 2013; Wei
et al. 2012), and a saliency network (Qin et al. 2019). Our
model (DiLo) shows consistent improvements of 2% − 6%
over the baselines. This clearly demonstrates that object
recognition benefits from better localization, and that our ap-
proach is effective for solving the localization problem. Due
to its better localization ability, we also achieve state-of-the-
art transfer learning results for object detection on PASCAL
VOC and MSCOCO.

In summary, this paper makes the following contributions:
1) A visualization-based study of recent self-supervised

contrastive learning models that shows a limited capacity to
localize objects.

2) A data-driven method that improves the localization
ability of contrastive representation learning, demonstrating
its effectiveness on both image classification and object de-
tection transfer tasks.

3) An investigation of different kinds of saliency esti-
mation methods for improving localization, including tra-
ditional saliency and network-predicted saliency.

Related Work
Unsupervised and Self-Supervised Learning. Unsuper-
vised learning aims to extract semantically meaningful
representations without human labels (de Sa 1994). Self-
supervised learning is a sub-branch of unsupervised learn-
ing which automatically generates learning signals from the
data itself. These learning signals have been derived from
proxy tasks that involve semantic image understanding but
do not require semantic labels for training. These tasks have
been based on prediction of color (Zhang, Isola, and Efros
2016), context (Doersch, Gupta, and Efros 2015; Pathak
et al. 2016), rotation (Gidaris, Singh, and Komodakis 2018),
and motion (Pathak et al. 2017). Auto-encoders (Vincent
et al. 2008) and GANs (Goodfellow et al. 2014; Donahue
and Simonyan 2019) have also shown promising results for
representation learning through reconstructing images.

Contrastive learning is another promising direction of
work for self-supervised learning. It achieves invariances
in a data-driven fashion by image augmentations. Exem-

plar CNN (Dosovitskiy et al. 2015b) and instance discrim-
ination (Wu et al. 2018) create augmentations of an im-
age through changes in color, spatial location and scale.
PIRL (Misra and Maaten 2020) and CPC (Oord, Li, and
Vinyals 2018) formulate contrastive learning in image
patches. CMC (Tian, Krishnan, and Isola 2019) considers
explicit modeling of different views. MoCo (He et al. 2019)
and SimCLR (Chen et al. 2020a) scale contrastive learning
by momentum encoders and large batch sizes. Our paper is
in line with these works, and we propose a non-trivial aug-
mentation for distilling localization information.

Saliency Estimation. Saliency estimation refers to the
task of estimating the locations of interesting objects
consistent with human perception. For learning saliency,
datasets (Bylinskii et al. 2015) have been collected by track-
ing eye fixations over an image. Later works usually con-
sider saliency as the full foreground object.

Previous non-learning based approaches (Zhu et al. 2014;
Yang et al. 2013) rely on handcrafted features and use pri-
ors to find salient object regions. Useful priors include back-
ground priors (Han et al. 2014), color contrast priors (Cheng
et al. 2014), and objectness (Jiang et al. 2013b). Deep su-
pervised methods (Qin et al. 2019) train a segmentation net-
work to regress the foreground mask, outperforming all non-
learning based methods. Recent research on saliency esti-
mation also explores unsupervised learning methods. It inte-
grates multiple non-learning based methods into a noise op-
timization framework (Zhang, Han, and Zhang 2017), show-
ing results that are on par with supervised methods.

In a network, the salient region corresponds to pixels that
fire for the classification decision. Previous works study this
in both the input space via gradient visualization (Simonyan,
Vedaldi, and Zisserman 2013) and the output space via acti-
vation mapping (Zhou et al. 2016). A prior work (Zhou et al.
2014) also finds the salient region by optimizing a minimal
region that determines the classification response.
Copy-and-paste for Visual Recognition. Several works
create data in a copy-and-paste fashion for visual recog-
nition. A key insight of such an approach is that data be-
ing generated may not look realistic, but the trained model
generalizes surprisingly well to real data. For example, Fly-
ing Chairs (Dosovitskiy et al. 2015a) renders chairs onto
various backgrounds to generate data for optical flow esti-
mation. Cut-paste-learn (Dwibedi, Misra, and Hebert 2017)
randomly puts household object instances in an indoor en-
vironment for instance detection and segmentation. Insta-
boost (Fang et al. 2019) spatially shifts the foreground ob-
jects as a means of data augmentation for instance seg-
mentation. Copy-pasting GAN (Arandjelović and Zisserman
2019) uses the copy-and-paste idea to discover objects in an
unsupervised manner. However, their experiments are per-
formed on toy examples, such as discovering artificial boxes.
Moreover, they do not show how discovering objects may
help recognition. Our work follows this path, but in con-
trast to these previous works our method is targeted to self-
supervised representation learning. We note that our aug-
mented images are extremely unrealistic, but provide useful
information for learning a recognition model.
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Figure 2: Visualizing and analyzing the error patterns of self-supervised contrastive models. Given an input for each model,
we visualize its top-3 nearest neighbors in the embedding space, as well as the gradient on the pixel space with respect to the
classification signal. Compared with the supervised model, which is able to localize the salient objects, self-supervised models
(InstDisc, CMC, MoCo) look holistically over the image and are prone to distraction by backgrounds.

Image Augmentations. Data augmentation plays a key
role in visual recognition. Recent works devise handcrafted
augmentations (DeVries and Taylor 2017) or learning-based
methods (Cubuk et al. 2019; Ratner et al. 2017) to boost rep-
resentation learning especially in semi-supervised learning.
Our copy-paste augmentation is the first introduced for self-
supervised learning. From it, we seek to gain further under-
standing about the ineffective localization problem in self-
supervised learning.

Revisiting Contrastive Learning
Our work builds on recent contrastive learning methods for
unsupervised learning, where most work follow the pretext
task of instance discrimination. The algorithm first gener-
ates image augmentations in the spatial domain, scale space,
and color space and then it encourages augmentations of the
same image to have similar feature embeddings, and aug-
mentations of different images to have dissimilar embed-
dings.

Let x denote the image and v = f(x) be the feature em-
bedding, where f(·) is the embedding function implemented
as a convolutional neural network. Let x̃ = T (x) represent
an augmentation for image x, where T is a random augmen-
tation function. The probability of the augmentation x̃ to be
classified as the i-th identity is expressed as

P (i|x̃) =
exp

(
vTi ṽ/τ

)∑n
j=1 exp

(
vTj ṽ/τ

) , (1)

where τ is a temperature parameter and n is the total number
of images in the dataset. ṽ = f(x̃),vi = f(xi) are the
embeddings for image xi and x̃. The learning objective is to

minimize the negative log-likelihood over the dataset:

J(θ) = −
n∑
i=1

logP (i|fθ(T (xi))). (2)

Recent self-supervised learning methods such as Inst-
Disc (Wu et al. 2018), CMC (Tian, Krishnan, and Isola
2019), MoCo (He et al. 2019), SimCLR (Chen et al. 2020a)
all share a similar formulation. The effectiveness of such
an approach for unsupervised learning strongly relies on the
types of augmentations T (·), i.e., image transformation pri-
ors that do not change object identity. In Table 1, we summa-
rize the role of data-driven augmentations for both a typical
self-supervised MoCo ResNet50 model (He et al. 2019) and
the supervised model. We gradually add each type of trans-
formation to the set of augmentations. The performance is
measured on the ImageNet validation set of 1000 classes,
and evaluated by linear classifiers.

We find that the unsupervised representation gains much
more classification accuracy from the augmentations than
the supervised representation. This indicates that the priors
present in the augmentations strongly overlap with the mod-
eling cues from semantic labels. Adding intense color jitter-
ing improves the unsupervised representation but hurts the
supervised representation. This suggests that the color jitter
prior expands beyond the original data distributions. Never-
theless, adding a prior that only partially relates to semantics
improves self-supervised learning significantly.

Visualizing / Diagnosing Contrastive Learning
A variety of methods have been presented for visualizing the
behavior of supervised convolutional neural networks, based
on deconvolution (Zeiler and Fergus 2014), class-specific
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Figure 3: Examples of saliency estimations methods. We show 6 saliency estimations, including traditional methods (GS (Wei
et al. 2012), MC (Jiang et al. 2013a), RBD (Zhu et al. 2014)), a network predicted saliency BASNet (Qin et al. 2019), and class-
specific methods from pretrained networks (CAM (Zhou et al. 2016), Gradient (Simonyan, Vedaldi, and Zisserman 2013)).

Augmentations Self-Supervised Supervised
+ Flipping 6.4 70.9
+ Spatial Scale Crop 40.4 77.5
+ Color Jitter 56.9 77.4
+ Random Gray 60.6 77.7

Table 1: A comparison study of the role of data augmenta-
tions for learning self-supervised and supervised representa-
tions. Please refer to the main text for details.

gradients (Simonyan, Vedaldi, and Zisserman 2013), and
class activation mapping (Zhou et al. 2016; Selvaraju et al.
2017). However, there is little work on visualizing and an-
alyzing the error patterns of self-supervised models, partic-
ularly for understanding the relationship between the proxy
task and the semantic labels.

In the following, we visualize some representative con-
trastive learning models with a focus on understanding the
salient regions when self-supervised networks make wrong
predictions.
Visualization Methods. We adapt two visualization meth-
ods to our objective.
• Nearest Neighbors. A straightforward way to diagnose

what a feature has learned is to find the nearest neigh-
bors in the feature space. By identifying patterns on what
draws neighbors close to each other, we gain insights
about what the features represent.

• Class-specific gradients. The magnitude of class-score
gradients in the pixel space provides information about
how important the pixels are for classification. This ap-
proach has proven to be strong for weakly-supervised
object localization (Simonyan, Vedaldi, and Zisserman
2013). Since self-supervised models do not have classi-
fiers for objects, we train a linear classifier on top of the
extracted features. Then we do back-propagation through

the linear classifier and the rest of the self-supervised net-
work to calculate the gradients in the pixel space.

Investigated Models. We examine three self-supervised
models, including InstDist, CMC, and MoCo.
• InstDist (Wu et al. 2018) treats each individual instance

as a class and learns a representation by non-parametric
classification with a memory bank implementation.

• CMC (Tian, Krishnan, and Isola 2019) explicitly decou-
ples an image to two views, namely the lightness and
color channels. Learning follows to maximize the mutual
information between views.

• MoCo (He et al. 2019) follows InstDist and further pro-
poses a momentum encoder to fix the consistency be-
tween positives and a queue-based memory for scalability.

Error Patterns. Figure 2 illustrates our major findings. We
observe that for a considerable number of error cases, the
similarity between a query and its nearest neighbors exists
mainly in their backgrounds. Gradient-based saliency visu-
alization confirms such findings, as the salient regions for
self-supervised models are spread across the background in-
stead of the foreground. For comparison, we also show the
corresponding results for the supervised models, which in-
stead show similarities among the foregrounds.

Since these self-supervised methods rely heavily on aug-
mentations to learn invariances, and these augmentations
treat foreground and background pixels equally, thus they
do not enforce a loss that drives the model to discover ob-
jects. This lack of localization ability calls for salient region
modeling in self-supervised learning.

DiLo: Distilling Localization via
Background Invariance

Our goal is to learn a representation from which the fore-
ground object can be automatically localized, such that dis-
criminative regions can be focused on to improve recogni-
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tion. We propose to distill the ability for object localization
by learning invariance against the background. We first de-
scribe methods to extract foreground regions by saliency es-
timation, and then introduce our background augmentations
by copy-and-paste operations.

Saliency Estimation
In distilling localization ability for self-supervised methods,
our approach first estimates saliency masks. A saliency mask
should depict the regions most relevant for classifying the
object. Typically, it coincides with the foreground object re-
gion, as indicated by most saliency datasets (Wang et al.
2017).

Note that recent research on unsupervised saliency esti-
mation has shown promising progress. However, these mod-
els (Zhang et al. 2018; Nguyen et al. 2019) heavily rely on
ImageNet and semantic segmentation pretraining, which vi-
olates our unsupervised experimental protocols. We avoided
these methods in this paper, and instead consider the follow-
ing techniques.
Traditional Methods. Traditional saliency estimation meth-
ods use handcrafted features, and rely on priors and heuris-
tics to find the dominant object in an image. Useful priors in-
clude the background prior (pixels on the image border are
more likely to be background) and the color contrast prior
(edges with high contrast tend to belong to the foreground).
We investigate several high-performing methods: RBD (Zhu
et al. 2014), MC (Jiang et al. 2013a), and GS (Wei et al.
2012).
Saliency Networks. Recent methods for saliency estima-
tion commonly employ deep learning on annotated saliency
datasets (Wang et al. 2017). These deep models outperform
traditional methods by a large margin. A state-of-the-art
saliency network BASNet (Qin et al. 2019) is included in
the investigation, and it is trained on a modest amount of
10K images from scratch.
Class-specific Saliency. The aforementioned methods esti-
mate saliency as foreground object regions. However, it is
not clear that this represents the discriminative part of an
image (e.g., only the face of a person may be important for
recognizing humans). To keep the problem open, we also
compare with CAM (Zhou et al. 2016) and a gradient-based
method (Simonyan, Vedaldi, and Zisserman 2013) through
class-specific visualizations. For (Simonyan, Vedaldi, and
Zisserman 2013), we convert the gradients to a mask using
a segmentation algorithm (Gulshan et al. 2010).
Summary. Figure 3 shows examples of the saliency visu-
alizations. Traditional methods are seen to be noisy, while
network-produced saliency is much cleaner. It can be no-
ticed that class-specific saliency from a pretrained network
tends to be more compact around discriminative regions.
This indicates that the use of full foreground saliency may
not be ideal.

Copy-and-paste for Background Augmentation
Based on the previous findings, we propose to copy the fore-
ground object estimated from the saliency methods in prior

Grayscale Texture ImageNetOriginal

Figure 4: Generated copy-paste augmentations using three
kinds of background images.

section , and paste that onto various backgrounds as a means
of data-driven augmentation for learning localization.
Background Datasets. For this augmentation, we ablate
three types of backgrounds.
• Homogeneous grayscale images with a random grayscale

level.
• Texture images from the MIT Vision Texture dataset (Me-

diaLab 1995).
• Image crops from ImageNet which have no saliency re-

sponse using RBD (Zhu et al. 2014).
Figure 4 shows copy-and-pasted examples using various
background images.
Blending. For pasting, we examine three techniques: di-
rectly copying the foreground object onto the background,
copying with Gaussian blending on the object borders, and
a mixture of the two approaches.
Accounting for Context. Context plays an important role in
recognizing objects (Torralba 2003). Though the surround-
ing context of an object may not be the most discrimina-
tive region for recognition, it may help to prune the set of
candidates. For example, a tree is unlikely to be completely
encompassed by sky. To account for this during augmenta-
tion, we set a probability of keeping the original full image
without copy-and-paste augmentation.
Integrating other Augmentations. Since copy-paste aug-
mentation is orthogonal to other previous augmentations, i.e.
random scaling, cropping, color jittering, the order of copy-
paste augmentation with respect to other augmentations does
not matter. In our implementation, we first run copy-paste
augmentation to replace the background, and then perform
other augmentations.

Experiments
We conduct a series of experiments on model designs for
self-supervised representation learning and their transfer
learning abilities.

Ablation Study
In this section, we first validate our data-driven approach
of distilling localization through a series of ablation experi-
ments for image classification on ImageNet.
Baseline Settings. Due to its state-of-the-art performance,
we largely follow MoCo (He et al. 2019) settings as our
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(a)
Saliency Fβ MAE Acc ∆
MoCo - - 60.6 -

GS 0.557 0.173 62.7 +2.1
MC 0.627 0.186 62.1 +1.5

RBD 0.630 0.144 62.8 +2.2
BASNet 0.805 0.056 65.0 +4.4

(b)
Aug Ratio Linear ∆

MoCo 60.6 -
30% 62.8 +2.2
50% 62.2 +1.6
70% 61.6 +1.0
100% 47.6 -13.0

(c)
Background Linear ∆

MoCo 60.6 -
Texture 60.6 +0.0

Imagenet 62.1 +1.5
Grayscale 62.8 +2.2

(d)
Blending Linear ∆

MoCo 60.6 -
No blend 62.4 +1.8
Gaussian 62.5 +1.9

Mix 62.8 +2.2

Table 2: Ablation studies for investigating copy-and-pasting augmentations: (a) on various saliency estimation methods (b) on
controlling the ratio of using copy-and-pasting augmentation (c) on various background images (d) on blending options.

baseline for ablation. Specifically, we use a temperature τ =
0.07 in Eqn. 1, and an embedding dimension of D = 128
for each image. A memory queue (He et al. 2019) of size
k = 65536 negatives is used to accelerate discrimination.
Training takes 200 epochs with an initial learning rate of
0.03 that is decayed 1/10 at epochs 120 and 160. All mod-
els are trained using the ResNet50 architecture and reported
on the ImageNet validation set. Performance is evaluated by
the linear readoff on the penultimate layer features. The op-
timization takes 100 epochs and starts with a learning rate of
30 that is decayed every 30 epochs.
A naive approach. First of all, to demonstrate the neces-
sity of a data-driven approach, we consider a naive approach
that pools the final layer features by masking according to
saliency. With this, the performance decreases sharply by
19%, possibly because the model loses too much context.
Moreover, by masking out the features, the model is still un-
able to localize the discriminative regions automatically.
Saliency Estimation. In Table 2 (a), we examine several
class-agnostic saliency estimation methods. All of them are
found to improve performance, even the noisy traditional ap-
proaches RBD (Zhu et al. 2014), MC (Jiang et al. 2013a) and
GS (Wei et al. 2012). RBD improves the performance by
2.2% and the saliency network BASNet by 4.2%. The su-
pervised BASNet (Qin et al. 2019) is trained on the DUTS
dataset (Wang et al. 2017) from scratch with 10,053 training
images, which is less than 1% of ImageNet. This indicates
potential room for developing better unsupervised saliency
approaches. In Table 2, we find a correlation between the
saliency performance on the saliency benchmark (by Fβ
and MAE on DUT-OMRON dataset (Yang et al. 2013)) and
the self-supervised representation learning. Better saliency
translates to better representations.
Background Images. We ablate the use of various back-
ground images in Table 2 (c). Texture backgrounds improve
the performance very marginally. This is possibly because
textured images in the dataset (Bylinskii et al. 2015) are out-
side of the ImageNet distribution. Homogeneous grayscale
backgrounds and ImageNet backgrounds perform similarly
well.
Amount of Augmentation. During dataloading, we only
randomly add copy-and-paste augmentations with a prob-
ability ratio. We ablate the ratio in Table 2 (b). With only
30% to 50% of images receiving copy-and-pastes, we sig-
nificantly improve the performance by 2% − 4%. Always
using the copy-and-paste augmentation hurts performance.
Blending Options. When copy-and-pasting an object to a
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Figure 5: Successful examples where our model outperforms
our baseline. The improvement is due to better localization
and background invariance.

background, blending has proven to be important for object
detection (Dwibedi, Misra, and Hebert 2017). In our study
in Table 2 (d), blending appears to improve the performance
minorly about 0.4%. This difference is possibly because de-
tection requires realistic boundaries, which prevents the net-
work from taking shortcuts, while for classification, bound-
ary cheating is not as significant.
Visualizations. In Figure 5 and Figure 6, we visualize ex-
amples where our model outperforms the baseline, as well as
some failure cases. For all the successful cases, our salient
region on the gradient and the nearest neighbors focus on
the discriminative object, while the baseline approach is dis-
tracted by the background. This validates the claim that our
data-driven augmentation drives the model to learn to auto-
matically localize the object. Such localization leads to bet-
ter recognition performance.
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Figure 6: Failures where our model underperforms the su-
pervised model. The model finds it difficult when multiple
objects appear in the image, or the object is of a fine-grained
category.

Methods Original DiLo-RBD DiLo-BasNet
InstDist 56.5 59.3 62.9
CMC 63.4 65.0 66.9

MoCo-v1 60.6 62.8 65.0
MoCo-v2 67.5 67.9 69.2

Table 3: Distilling localization on various contrastive repre-
sentation learning models for ImageNet classification.

For the failure cases, we compare our model with the su-
pervised model. We find that there are two error patterns.
First, multiple objects appear in a single image, and our
model makes wrong decisions on where to focus. Second,
the testing image is of a fine-grained class, too difficult to
recognize without labels.

Transfer Learning Results
We evaluate the transfer learning ability of our model on ob-
ject recognition, and object detection benchmarks, and com-
pare with the state-of-the-art methods.
ImageNet Classification. We conduct a plug-and-play of
DiLo into existing contrastive learning frameworks. Meth-
ods being investigated include InstDist (Wu et al. 2018),
CMC (Tian, Krishnan, and Isola 2019), MoCo (He et al.
2019) and MoCo-v2 (Chen et al. 2020b). In Table 3, DiLo
consistently improves image classification on all baselines.

Method AP AP50 AP75

Supervised 53.5 - 81.3 - 58.8 -
MoCo 55.9 (+2.4) 81.5 (+0.2) 62.6 (+3.8)
DiLo-RBD 56.5 (+3.0) 81.9 (+0.6) 63.3 (+4.5)
DiLo-BasNet 56.9 (+3.4) 82.1 (+0.8) 64.1 (+5.3)

Table 4: Transfer learning for object detection on VOC 0712.
We present the gap to ImageNet supervised pre-training in
the brackets for reference. All numbers are the averages of
three independent runs.

Method AP bb AP bb50 AP bb75 APmk APmk50 APmk75

Supervised 39.7 59.5 43.3 35.9 56.6 38.6
MoCo 39.4 59.1 42.9 35.6 56.2 38.0
DiLo-RBD 39.8 59.5 43.3 36.0 56.7 38.6
DiLo-BasNet 40.1 60.0 44.0 36.3 56.8 39.0

Table 5: Transfer learning for object detection and instance
segmentation on COCO. Model is finetuned with Mask-
RCNN ResNet50-FPN pipeline and 1x schedule.

Foreground masks estimated from BasNet are more benefi-
cial than RBD. The results demonstrate that DiLo is orthog-
onal to prior contrastive learning works.
Object Detection on PASCAL VOC. We transfer our
pretrained model to object detection by finetuning it on
PASCAL VOC 2007+2012 trainval and evaluating on the
VOC 2007 test set. Following the state-of-the-art method
MoCo (He et al. 2019), we use the exact same training proto-
col to finetune the Faster R-CNN with a Res50-C4 backbone
as with the supervised counterpart. A critical BN layer is
added after the conv5 stage in the box prediction head. Dur-
ing training, we finetune all layers with synchronized BN.
The finetuning takes 9k iterations. Results are summarized
in Table 5. DiLo-RBD and DiLo-BasNet consistently out-
perform supervised baseline and MoCo on all metrics, espe-
cially on AP75 which heavily reflects localization ability.
Object Detection and Instance Segmentation on COCO.
We transfer the pretrained DiLo model for object detection
and instance segmentation on MSCOCO by finetuning it
with the Mask-RCNN Res50-FPN pipeline using the De-
tectron2 codebase. Finetuning takes the default 1x sched-
ule. DiLo-RBD and DiLo-BasNet consistently outperform
the MoCo baseline with good margins on both detection and
segmentation.

Conclusion
In this work, we identified a strong error pattern among self-
supervised models in their failure to localize foreground ob-
jects. We then propose a simple data-driven approach to dis-
till localization via learning invariance against backgrounds.
We achieve strong results on ImageNet classification and
its transfer performance for object detection. The improve-
ments achieved suggest that the localization problem for
self-supervised representation learning is prevalent. How-
ever, our method may not be the ideal way to solve this local-
ization problem. We are interested in finding a clever “proxy
task” which can help distill such localization abilities.
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