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Abstract

In this paper, we propose an adaptive kNN method for clas-
sification, in which different k are selected for different test
samples. Our selection rule is easy to implement since it is
completely adaptive and does not require any knowledge of
the underlying distribution. The convergence rate of the risk
of this classifier to the Bayes risk is shown to be minimax
optimal for various settings. Moreover, under some special
assumptions, the convergence rate is especially fast and does
not decay with the increase of dimensionality.

Introduction
k Nearest Neighbor (kNN) method is a simple and popular
approach to nonparametric classification. In this setup, we
haveN identical and independently distributed (i.i.d) training
samples (Xi, Yi), i = 1, . . . , N , which are all drawn from a
pair of random variables (X, Y ) with an unknown distribu-
tion. Given any new test sample x, the kNN classifier assigns
label Y that is determined by the majority vote of the k near-
est neighbors of this new sample among the training dataset
(Fix 1951). In the standard kNN method, k is fixed for all test
samples. It has been proved that if k grows with N and k/N
goes to zero, then as the sample size N increases, the risk of
kNN classifier converges to the Bayes risk, which is defined
as the minimum possible error probability among all classi-
fiers (Cover and Hart 1967; Biau and Devroye 2015; Stone
1977; Devroye et al. 1994; Devroye, Györfi, and Lugosi 2013;
Cérou and Guyader 2006). To maximize the convergence rate,
the growth rate of k needs to be properly selected to achieve
a desirable bias and variance tradeoff. It has been shown that,
if the support set of the distribution of the feature vector X is
bounded and the probability density function (pdf) of X is
bounded away from zero, then the risk of the standard kNN
classifier converges to the Bayes risk with the best rate among
all classifiers in the minimax sense, if the growth rate of k is
properly selected (Audibert 2004; Kohler and Krzyzak 2007;
Györfi 1981; Audibert and Tsybakov 2007; Chaudhuri and
Dasgupta 2014; Döring, Györfi, and Walk 2017; Mammen
and Tsybakov 1999). On the contrary, if the distribution of
X has tails, then the convergence rate of the standard kNN
classifier is no longer minimax optimal (Gadat, Klein, and
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Marteau 2016; Zhao and Lai 2019). This can be explained
by the fact that the bias and the variance of the prediction
vary among different locations, and hence the optimal k that
achieves the best bias and variance tradeoff also depends on
the feature vector. If we use the same k for all test samples,
then the selected k may not be universally optimal. Therefore,
to improve the performance of kNN classifier, it is necessary
to design a rule such that k is selected adaptively based on
the locations of test samples (Ougiaroglou et al. 2007; Sun
and Huang 2010; Balsubramani et al. 2019; Kpotufe 2011).

Several adaptive kNN classifiers have been designed and
analyzed in (Gadat, Klein, and Marteau 2016; Cannings,
Berrett, and Samworth 2017; Zhao and Lai 2019). In (Gadat,
Klein, and Marteau 2016), a ‘sliced nearest neighbor’ method
was proposed. This method divides the whole support into
several regions depending on the pdf of X, and uses differ-
ent k in different regions. Moreover, it is shown in (Gadat,
Klein, and Marteau 2016) that this adaptive kNN method is
minimax rate optimal for distributions with tails. However,
this classifier requires the precise knowledge of the pdf f(x),
which is usually unavailable. If we use an estimate of pdf f̂ ,
then the theoretical guarantee of this classifier has not been
established after we take the estimation error into consid-
eration. (Cannings, Berrett, and Samworth 2017) proposed
a method for semi-supervised learning, which means that,
apart from the labeled training samples, we also have a much
larger set of unlabeled samples. The pdf f(x) can be estimat-
ed using these unlabeled samples, and then the optimal k can
be selected based on the estimated pdf. A new adaptive kNN
method was proposed in (Zhao and Lai 2019), which relies
entirely on the training dataset, without requiring the precise
knowledge of the pdf f(x), or a large number of unlabeled
samples. In particular, for each test sample, the adaptive kNN
method in (Zhao and Lai 2019) selects k according to the
number of training samples that fall in a ball centered at the
test sample with a fixed radius, so that one can achieve a
desirable bias and variance tradeoff. Moreover, theoretical
analysis shows that this method is minimax rate optimal for a
broad range of distributions, under some tail, smoothness and
margin assumptions. However, there are some design param-
eters of this method that need to be carefully tuned, and the
optimal values of these parameters depend on the properties
of the underlying joint distributions of the feature X and the
label Y . Therefore, the implementation of this method still
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relies partly on the underlying distribution, which is unknown
in practice.

In this paper, we propose a new adaptive kNN classifier
that does not need any prior knowledge of the underlying
distribution. We consider binary classification with Y taking
values in {−1, 1}, and define η(x) = E[Y |X = x] as the
conditional expectation of the label. The basic idea of our new
method is to let k grow step by step. In each step, we estimate
η(x) with the average of labels of k nearest neighbors of
x. If the estimated η(x) is sufficiently far away from zero
(will be made precise in the sequel), then we can believe
with high confidence that the sign of the estimated η(x) is
correct, and hence the prediction will be the same as that
of the Bayes classifier. In this case, our algorithm returns a
prediction using the sign of the current estimate of η(x). On
the contrary, if η(x) is not large enough, then the algorithm
lets k increase, until the random error bound is lower than
the estimated |η(x)|, or k reaches an upper bound kmax. The
key difference between our method and previous adaptive
kNN methods in (Gadat, Klein, and Marteau 2016; Cannings,
Berrett, and Samworth 2017; Zhao and Lai 2019) is that
previous methods select k based on the real or estimated pdf
f(x), while our method selects k based on the estimated η(x).
We then analyze the convergence property of this new method.
To begin with, we establish a general convergence bound,
which depends on the joint distribution of X and Y , and holds
universally without any assumptions. Based on such a general
bound, we then obtain convergence rates for some common
classes of distributions, as were discussed in (Chaudhuri and
Dasgupta 2014) and (Zhao and Lai 2019). Our results show
that, for both distributions with or without tails, the proposed
method is minimax rate optimal. Furthermore, we show that
under a special case where the Bayes boundary is linear and
some other assumptions hold, the convergence rate of the new
adaptive kNN classifier is fast and does not become worse as
the dimensionality increases.

Compared with the existing adpative kNN methods (Gadat,
Klein, and Marteau 2016; Cannings, Berrett, and Samworth
2017; Zhao and Lai 2019), our new method has the following
advantages. Firstly, the new method does not require any prior
knowledge of the underlying distribution, and the parameter
tuning is convenient. The only parameter of this new method
is kmax, the largest value of k that the algorithm will use.
Unlike previous methods, in which the parameters need to be
carefully tuned to achieve the optimal bias and variance trade-
off, in this new method, it is always safe to use a larger kmax,
although sometimes it is sufficient to use a smaller kmax to
reduce the computational complexity without significantly
deteriorating the performance. Moreover, the performance
of our new method is also competitive. Despite that previ-
ous methods in (Gadat, Klein, and Marteau 2016; Zhao and
Lai 2019) are already minimax rate optimal under some tail,
margin and smoothness assumptions, the convergence rate
can still be further improved, since the minimax lower bound
is only tight for the worst case among all distributions that
satisfy those assumptions. For many common distributions, it
is possible to achieve a faster convergence rate. We show that
the convergence rate of our new classifier is usually better
than the minimax bound for many common distributions.

Our method is a simplified form of the method proposed
in (Balsubramani et al. 2019). In (Balsubramani et al. 2019),
there are several parameters to be tuned. On the contrary, our
method has only one design parameter kmax, and the value
of this parameter is not crucial, hence our method is easier
to use. Moreover, we analyze the convergence rate of the
overall excess risk of the adaptive kNN method for a broad
class of different cases, while (Balsubramani et al. 2019) only
analyze its local convergence.

The remainder of this paper is organized as follows. In
Section 2, we describe the detailed design of our new pro-
posed method. We then derive a general convergence bound
of the proposed method without any assumptions in Section
3. In Section 4, we analyze the convergence rate under cer-
tain common assumptions. In Section 5, we show that for
a special case, the new method has a fast convergence rate,
and this rate does not become worse as the dimensionality
increases. Finally, numerical examples and the concluding
remarks are provided in Section 6 and 7, respectively.

The Proposed Method
In this section, we describe the proposed adaptive kNN clas-
sifer. Let the feature vector X and target Y take values in
Rd and {−1, 1}, respectively. (X, Y ) is a pair of random
variables that follows an unknown distribution. The train-
ing dataset contains N samples (Xi, Yi), i = 1, . . . , N ,
which are i.i.d drawn from this joint distribution. Based
on these training samples, our goal is to learn a function
g : Rd → {−1, 1}, which can be used to make a prediction
Ŷ . In this paper, we use 0− 1 loss function to evaluate the
quality of classification, i.e.

L(Ŷ , Y ) =

{
0 if Ŷ = Y

1 if Ŷ 6= Y.
(1)

With this loss function, the risk of a classifier is defined as
R(g) = E[L(Ŷ , Y )] = P(g(X) 6= Y ). (2)

Moreover, define the regression function as
η(x) = E[Y |X = x]. (3)

From (1), it can be shown that
η(x) = P(Y = 1|X = x)− P(Y = −1|X = x). (4)

It can be shown (Chaudhuri and Dasgupta 2014; Döring,
Györfi, and Walk 2017) that the optimal classification rule
is g∗(x) = sign(η(x)), since if η(x) > 0, then Y is more
likely to be 1, thus predicting Y = 1 minimizes the error
probability, and vice versa. The corresponding risk, called
Bayes risk, is

R∗ = P(g∗(X) 6= Y )) = E
[

1− |η(X)|
2

]
. (5)

In practice, η is unknown, and hence g∗(x) is also
unknown. The kNN classification rule returns g(x) =
sign(η̂k(x)) instead, in which η̂k(x) is the estimated regres-
sion function, based on the average of the labels of k nearest
neighbors of x, i.e.

η̂k(x) =
1

k

k∑
i=1

Y (i), (6)
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Algorithm 1 Adaptive kNN classification algorithm

input Training samples (X1, Y1), . . . , (XN , YN ); test point
x; kmax

output Prediction Ŷ
Find the labels Y (i), i = 1, . . . , kmax of the nearest neigh-
bors of x
k ← dln2Ne
η̂ ← (1/k)

∑k
i=1 Y

(k)

while k ≤ kmax do
if |η̂| > k−1/2 lnN then

return sign(η̂)
else
η̂ ← η + 1

k+1 (Y (k+1) − η̂)
k ← k + 1

end if
end while
return a random value from {−1, 1}

with Y (i) being the label of the i-th nearest neighbor of x.
In the standard kNN classifer, the value of k remains the

same regardless of the value of x. In this paper, we design a
new adaptive kNN classifier in which the value of k is differ-
ent for different x. Our design is motivated by the following
intuitions. The prediction of a kNN classifier is the same as
the Bayes classifier if g(x) = g∗(x), thus the best value of
k maximizes the probability that η̂k(x) and η(x) have the
same signs. Such an optimal k changes with x. For example,
consider two test samples located at x1 and x2, respectively,
with f(x1) > f(x2) and |η(x1)| < |η(x2)|. In this case,
the optimal k of the first sample is larger than that of the
second one. For the first sample, since f(x1) is larger, the
kNN distances are smaller, thus we can use a larger k without
worrying too much about the bias. On the other hand, since
|η(x1)| is relatively small, it is necessary to use a large k to
reduce the estimation variance, so that the label of η(x) can
be more likely to be inferred correctly. On the contrary, for
the second sample, a smaller k is better. In the standard kNN
method, k is fixed for all samples, therefore it is inevitable
that k is suboptimal for some test points. As a result, in order
to improve the classification accuracy, we need to estimate
f(x) or η(x) to help us decide the best k to use.

Previous adaptive kNN methods in (Gadat, Klein, and
Marteau 2016; Cannings, Berrett, and Samworth 2017; Zhao
and Lai 2019) solve this problem by selecting k based on
the real or estimated pdf f(x), so that larger k is used where
f(x) is high, and vice versa. Our new method takes a different
approach. We select k based on estimated |η(x)| instead of
f(x). The detailed algorithm is shown as Algorithm 1.

The main idea of this adaptive kNN algorithm is to let k
grow step by step. In each step, we calculate the estimated
regression function at the test point, i.e. η̂k(x), based on
the current k. Considering that the variance of η̂k(x) scales
with 1/k, if |η̂k(x)| is larger than k−1/2 lnN , then with high
probability the random error will not change the sign of
η̂k(x) . However, it is still possible that the sign of η̂k(x) is
not correct, due to the estimation bias, which increases with

the kNN distances. Therefore, in our algorithm, we use the
smallest k such that

|η̂k(x)| > k−1/2 lnN,

in order to control the bias. On the other hand, if |η̂k(x)| is not
large enough, then it is likely that the sign is not correct due
to the random error, therefore we continue to increase k, until
k reaches an upper bound kmax, which is the only design
parameter of our method. If |η̂k(x)| ≤ k−1/2 lnN for all
k ≤ kmax, then the determination of the sign of η(x) is hard,
since |η(x)| is too low. In this case, we give up the prediction
and return a random result. In Algorithm 1, k starts from
dln2Ne, since if k < ln2N , then k−1/2 lnN > 1, which
will always lead to the increase of k, thus it is not necessary to
try with these small k values. Similar idea has been proposed
in (Balsubramani et al. 2019). Compared with (Balsubramani
et al. 2019), our proposed method is simpler, since we are
using less parameters. Moreover, we derive bounds of the
overall excess risk for a broad class of different f and η
functions, while (Balsubramani et al. 2019) only shows the
local convergence rate.

In previous adaptive kNN methods (Zhao and Lai 2019;
Gadat, Klein, and Marteau 2016), there are parameters that
need to be tuned carefully to achieve the minimax optimal
rate, and the optimal parameter depends on the property of the
distribution, such as tail, margin and smoothness parameters.
However, these properties are usually unknown, therefore it
is hard to find the optimal parameters. Our new method can
solve this problem, since this method has only one design
parameter kmax, and we do not need to tune it very carefully.
In fact, in Sections 3 and 4, we show that using a large kmax
can always achieve good accuracy, although sometimes we
can use a smaller kmax to accelerate the computation.

Note that compared with the standard kNN method, our
new method does not increase the time complexity of com-
putation. In Algorithm 1, the computation cost includes n-
earest neighbor search and the update of η. The updating
requires O(kmax) time for each test sample, while the near-
est neighbor search requires more time (Bentley, Stanat, and
Williams Jr 1977; Leibe, Mikolajczyk, and Schiele 2006). As
a result, the overall time complexity of our new method with
parameter kmax is the same as that of standard kNN method
with k = kmax.

General Bound
In this section, we show a general convergence bound of this
new adaptive kNN classifier without any restricting assump-
tions. For any set S ∈ Rd, define

η(S) := E[Y |X ∈ S], (7)

which is the weighted average of the regression function
within S. Based on the regression function, the excess risk of
a classifier g(x) is

R−R∗ = E[|η(X)|1(g(X) 6= sign(η(X)))]. (8)

Denote B(x, r) = {x′ ∈ Rd| ‖x′ − x‖ < r} as the ball
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centering at x with radius r. Define

∆(x, r) :=


sup
r′<r

(η(x)− η(B(x, r′))) if η(x) ≥ 0

sup
r′<r

(η(B(x, r′))− η(x)) if η(x) < 0,
(9)

ρ(x) := sup

{
r|∆(x, r) ≤ 1

2
|η(x)|

}
, (10)

p(x) := P(B(x, ρ(x))). (11)
Then the convergence rate of the adaptive kNN classifica-

tion algorithm is shown in the following theorem.
Theorem 1 Define

SN = {x ||η(x)|

≤ max

{√
32

Np(x)
lnN, 4 lnNk

− 1
2

max

}}
, (12)

then the excess risk is bounded by

R−R∗ ≤
∫
SN

f(x)|η(x)|dx + 2(N + 20)e−2 ln2N . (13)

Intuitively, SN in (12) is the region in which the classification
is hard, which means that for any k, we can not ensure that the
inference of the sign of η(x) is correct with high probability,
since |η(x)| is too small, and thus the estimation error can
make η̂(x) has different sign with η(x). On the contrary, for
all x /∈ SN , there exists a k such that the prediction is the
same as that of the Bayes classifier with a high probability.
Such a k value can be found using Algorithm 1. From (12),
we observe that SN shrinks with N if kmax/ ln2N → ∞,
and its limit is {x|η(x) = 0}. Therefore, the first term in
the right hand side of (13) converges to zero. The second
term in (13) converges faster than any polynomial of N . If
η(x) crosses zero in its support, then the first term usually
dominates, since the size of SN shrinks polynomially with
N .

Convergence Rate with Assumptions
In this section, we derive the convergence rate of the new
kNN classifier under some common assumptions that have
been analyzed in (Chaudhuri and Dasgupta 2014; Zhao and
Lai 2019). To begin with, we analyze the convergence rate un-
der certain margin and probabilistic continuous assumptions.
These assumptions are proposed in (Chaudhuri and Dasgupta
2014), and are usually satisfied if the feature distribution has
bounded support and the pdf is bounded away from zero. We
then analyze the convergence rate of the proposed method
for distributions with tails under some margin, smoothness
and tail assumptions. These assumptions were used in (Zhao
and Lai 2019) to analyze distributions with tails. For both
cases, we show that the new kNN classifier is minimax rate
optimal up to a log polynomial factor, as long as kmax grows
sufficiently fast with N .

Convergence Rate under Margin and Probabilistic
Continuous Assumptions
We first analyze the convergence rate of the new adaptive
kNN classifier under certain margin and probabilistic con-
tinuous assumptions. These assumptions have been used in

(Chaudhuri and Dasgupta 2014) for deriving the bound of the
standard kNN classification.
Theorem 2 Assume f(x) and η(x) satisfy the following as-
sumptions:

(a) There exist two constants Ca, α such that

P(0 < |η(X)| < t) ≤ Catα (14)

for all t > 0;
(b) There exist two constants L, γ such that

|η(B(x, r))− η(x)| ≤ LPγ(B(x, r)) (15)

for all r > 0, in which P(B(x, r)) is the probability mass of
B(x, r).

The convergence rate of the excess risk of the adaptive
kNN classifier is bounded by:

R−R∗ = O
(
N−

γ(1+α)
2γ+1 (lnN)

2γ(1+α)
2γ+1

+k
− 1

2 (1+α)
max (lnN)1+α

)
. (16)

If kmax & N
2γ

2γ+1 , then from (16),

R−R∗ = O
(
N−

γ(1+α)
2γ+1 (lnN)

2γ(1+α)
2γ+1

)
. (17)

The convergence rate in (16) matches the previous result-
s in (Chaudhuri and Dasgupta 2014; Kohler and Krzyzak
2007), as well as the minimax lower bound in (Audibert and
Tsybakov 2007), up to a log-polynomial factor. Assumption
(a) is common in many previous works (Kohler and Krzyzak
2007; Döring, Györfi, and Walk 2017; Chaudhuri and Das-
gupta 2014; Gadat, Klein, and Marteau 2016), which restricts
the noise level. The convergence rate is faster with a larger
α, since misclassification is easier to occur where η(x) is
close to zero. Assumption (b) requires η to be continuous.
Although assumption (b) does not strictly require that the pdf
is bounded away from zero, it can be observed that if the dis-
tribution has tails, then at the region with low pdf, P(B(x, r))
is small, and thus |η(B(x, r))−η(x)| need to be very close to
zero, which can be too restrictive. Therefore, this assumption
usually holds for the cases such that the feature distribution
has bounded support and the pdf f(x) is bounded away from
zero.

Convergence Rate for Distributions with Tails
We now analyze the proposed adaptive kNN classifier for
pdfs that can be arbitrarily close to zero. In particular, we
analyze the convergence rate under the same assumptions as
in (Zhao and Lai 2019).

Theorem 3 Assume that there exist constants Ca, Cb, Cc,
Cd, α, β and D, such that

(a) For any t > 0,

P(0 < |η(X)| < t) ≤ Catα;

(b) For any t > 0,

P(f(X) < t) ≤ Cbtβ ;

(c) For any r > 0,

|η(B(x, r))− η(x)| ≤ Ccr2;
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(d) For any r ∈ (0, D],

P(B(x, r)) ≥ Cdf(x)rd,

then

R−R∗ = O
(
N−min{β, 2β(1+α)

βd+2(α+2β)} lncN

+k
− 1

2 (1+α)
max (lnN)1+α

)
, (18)

for some constant c.

Assumption (a) is the same as that in Theorem 2, which
restricts the noise level. Assumption (b) is about the strength
of the tail. A lower β indicates a heavier tail. For example,
for one dimensional Gaussian or exponential distribution,
β = 1, while for Cauchy distribution, β = 1/2. Assumption
(c) assumes that η is smooth. Assumption (d) is the minimal
mass assumption, which has been used in (Gadat, Klein, and
Marteau 2016).

From (18), it can be observed that if

kmax & Nmin{ 2β
1+α ,

4β
βd+2(α+2β)},

then the first term dominates and hence (18) matches the
minimax lower bound derived in (Zhao and Lai 2019) up
to a log polynomial factor. Moreover, using the same steps
as the proof of Theorem 3, we can also show that our new
method is nearly minimax optimal for a slightly different
case discussed in (Gadat, Klein, and Marteau 2016), which
assumes (a), (b) and (d) in Theorem 3, while (c) is changed
to the assumption that η is Lipschitz.

The results in Theorems 2 and 3 and the corresponding
discussions show that our new adaptive method is nearly min-
imax rate optimal under a large variety of settings. From (16)
and (18), we also find that it is not always necessary to use
large kmax. Letting kmax grows sublinearly with N instead
of linearly with N can help us to reduce the computation
cost, without having a significant impact on the classification
accuracy. However, considering that the minimum necessary
kmax depends on the parameters of distributions such as α,
β and γ, if these parameters are unknown, it would be better
to use a larger kmax.

Fast Convergence Rate for a Special Class of
Distributions

Curse of dimensionality is a common problem for nonpara-
metric learning methods. Minimax analysis in (Audibert and
Tsybakov 2007; Gadat, Klein, and Marteau 2016; Zhao and
Lai 2019) shows that this problem can not be solved in gen-
eral. However, we show that for a particular class of distribu-
tions, the convergence rate of the new adaptive kNN method
does not decay with the increase of dimensionality.

Theorem 4 Suppose that f and η satisfy the follow-
ing assumptions: There exist some positive constants
A, cf , Cf , cη, Cη,M1,M2, δ,D, such that

(a) For all x such that |x1| < A, in which xj is the j-th
component of x, j = 1, . . . , d, we have

η(−x1, x2, . . . , xd) = −η(x1, . . . , xd),

and
f(−x1, x2, . . . , xd) = f(x1, . . . , xd);

(b) If |x1| < A, then

cf ≤ f(x1|x2, . . . , xd) ≤ Cf ;

(c) If |x1| < A, then

cη ≤ ∂η(x)/∂x1 ≤ Cη;

(d) If |x1| < A, then

‖∇f‖ ≤M1;

(e) If |x1| < A, then∥∥∇2η
∥∥ ≤M2;

(f) If |x1| ≥ A/2, then

|η(x)| ≥ δ.

Let kmax grows linearly with N , then
(1) If

P (B(x, r)) ≥ fLrd

for some constant fL and all x and r ≤ D, then

R−R∗ = O
(
N−1 ln2N

)
; (19)

(2) If
P (B(x, r)) ≥ Cdrdf(x)

for some constant Cd and all x and r ≤ D,

P(f(X) ≤ t) ≤ Cbtβ ,

then

R−R∗ = O
(
N−

2β
2β+1 ln2N +N−β ln2β N

)
. (20)

Remark 1 Assumptions (a)-(f) hold for the case in which
the underlying distribution is a random mixture of two distri-
butions with opposite label, and these two distributions are
the same except that the means are different, i.e.

f(x|Y = i) = φ(x− ic), i = −1, 1, (21)

in which c is a fixed vector, and

P(Y = 1) = P(Y = −1) = 1/2. (22)

Remark 2 In Theorem 4, we assume that η is antisymmetric
and f is symmetric around x1 = 0. In fact, the axis x1 = 0
can be generalized to arbitrary linear (d− 1) dimensional
subspace. In this case, we just need to conduct a simple
transformation from (x1, . . . , xd) to (x′1, . . . , x

′
d), such that

the axis becomes x′1 = 0.
Moreover, assumption (c) can also be changed to

cη < −∂η(x)/∂x1 ≤ Cη,

then (19) and (20) still hold.
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From (19) and (20), we can observe that, if the pdf is
bounded away from zero, then from Theorem 4, the conver-
gence rate is always Õ(N−1), while for distributions with
tails, the convergence rate depends on the tail parameter β.
For both cases, it can be observed that the convergence rate
of this new adaptive kNN method is faster than those de-
rived in Sections 3 and 4, and does not decrease with the
increase of the dimensionality, as long as Assumptions (a)-(f)
are satisfied. The complexity of the classification problem
under these assumptions is lower than those in Theorem 2
or Theorem 3, since the Bayes decision boundary is linear.
As a result, with an adaptive selection of k, the convergence
rate can become much faster than the minimax lower bounds
derived in (Audibert and Tsybakov 2007; Gadat, Klein, and
Marteau 2016; Zhao and Lai 2019).

Numerical Examples
In this section, we use numerical experiments to validate our
theoretical analysis. In particular, we calculate the conver-
gence rates of the adaptive kNN classifier for some common
distributions, and create a log-log plot of the estimated excess
risk of the new adaptive kNN classifier versus the sample
size. Each point in the curves is averaged over 5,000 trials.
The results are shown in Figures 1 and 2.

In Figure 1, we show some examples that satisfy the as-
sumptions in Theorem 2 or 3. In subfigures (a), (b), (c)
and (d), the feature distribution is Uniform distribution in
[−5, 5]d, standard Gaussian distribution, standard Laplace
distribution, and triangular distribution in [−5, 5] with mode
at 0, respectively. From subfigures (a) to (d), the regression
functions are all sinusoidal, i.e. η(x) = sin(x1). Subfigure
(a) is an example that satisfies assumptions in Theorem 2,
while subfigures (b), (c) and (d) are examples that satisfy
Theorem 3.

In Figure 2, we show some examples that satisfy assump-
tions in Theorem 4. In particular, in subfigure (a),

η(x) =

 2x1 if |x1| ≤ 1
2

1 if x1 >
1
2

−1 if x1 < − 1
2 ,

(23)

in which x1 is the first component of x. In subfigures (b),
(c) and (d), we analyze the case that the feature distributions
for Y = 1 and Y = −1 are the same except that they have
different means:

f(x|Y = 1) = φ(x− e1), (24)
f(x|Y = −1) = φ(x + e1), (25)

in which e1 = (1, 0, . . . , 0) is the unit vector in the first
dimension, φ can be the pdf of some common distribution-
s, such as Gaussian distribution. This type of distributions
satisfy the assumptions in Theorem 4. In subfigures (b), (c)
and (d), φ is the pdf of the standard Gaussian distribution,
standard Laplace distribution and triangular distribution in
[−2, 2] with mode at 0, respectively.

Based on Figures 1 and 2, we calculate the empirical con-
vergence rates of the new adaptive kNN method, which are
the negative slopes of the curves in the figures. The empirical
rates are then compared with the theoretical rates. The results
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(a) Uniform distributions with sinusoidal regres-
sion function.
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(b) Gaussian distributions with sinusoidal regres-
sion function.
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(c) Laplace distributions with sinusoidal regression
function.
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(d) Triangular distributions with sinusoidal regres-
sion function.

Figure 1: The excess risk vs log(N) for some examples satis-
fying assumptions in Theorem 2 or 3.

are shown in Table 1. For the convenience of expression, we
use value θ to indicate that the theoretical convergence rate is
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(a) Uniform distribution.
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(b) Gaussian distributions with different means.
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(c) Laplace distributions with different means.
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(d) Triangular distributions with different means.

Figure 2: The excess risk vs log(N) for some examples satis-
fying assumptions in Theorem 4.

Case Empirical Theoretical
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

1(a) 0.98 1.03 0.74 0.80 0.67 0.57
1(b) 0.80 0.81 0.83 0.57 0.50 0.44
1(c) 0.60 0.54 0.50 0.57 0.50 0.44
1(d) 0.96 0.60 0.49 0.67 0.57 0.50
2(a) 0.99 0.99 1.00 1.00 1.00 1.00
2(b) 0.99 0.99 0.99 0.67 0.67 0.67
2(c) 1.05 1.04 1.03 0.67 0.67 0.67
2(d) 0.97 0.97 0.98 0.80 0.80 0.80

Table 1: The convergence rate of the new kNN adaptive
classifier

O(N−θ lncN) for some constant c. The theoretical rate of
Fig. 1(a) comes from Theorem 2 with γ = 2/d, while Fig. 1
(b)-(d) comes from Theorem 3 with β = 1, 1, 2 respectively.
For Fig. 2, the theoretical results come from Theorem 4, in
which (a) comes from Theorem 4(1), while the remainders
come from Theorem 4(2). Note that the margin parameter is
α = 1 for all of the eight cases, therefore α is not listed in
the table.

From Table 1, we can observe that for some cases, the
empirical rates are approximately the same as the theoreti-
cal bounds, while for most of the other cases, the empirical
rates are actually faster. As discussed in Section 4, under
the assumptions in Theorem 2 and 3, the convergence rates
are already minimax optimal. However, the minimax lower
bounds in (Audibert and Tsybakov 2007; Zhao and Lai 2019)
are established for the worst case that satisfies the assump-
tions. Our numerical results show that for many common
distributions, the real convergence rates can be much faster.
In particular, if the assumptions (a)-(f) in Theorem 4 hold,
then the convergence rates are fast and do not decay with
the increase of dimensionality. These assumptions hold com-
monly for cases that are constructed by random mixtures of
two distributions with opposite labels, different means but
the same shapes.

Conclusion
In this paper, we have proposed a new adaptive kNN classifi-
er, which selects different k for different test samples. Our
analysis has shown that it is minimax optimal up to a log
polynomial factor under some assumptions. Moreover, if the
Bayes decision boundary is linear, under some other assump-
tions, the convergence rate can be faster, and does not become
slower with the increase of the dimensionality. Compared
with previous adaptive kNN methods, this method is more
convenient to use since it does not require any knowledge
of the underlying distribution. The performance of our new
method is also competitive, since for many common distri-
butions, the real convergence rate is faster than the minimax
lower bound. Numerical experiments have been conducted
to validate our theoretical analysis.
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