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Abstract
The popular tensor train (TT) and tensor ring (TR) decom-
positions have achieved promising results in science and en-
gineering. However, TT and TR decompositions only estab-
lish an operation between adjacent two factors and are highly
sensitive to the permutation of tensor modes, leading to an in-
adequate and inflexible representation. In this paper, we pro-
pose a generalized tensor decomposition, which decomposes
an N th-order tensor into a set of N th-order factors and es-
tablishes an operation between any two factors. Since it can
be graphically interpreted as a fully-connected network, we
named it fully-connected tensor network (FCTN) decomposi-
tion. The superiorities of the FCTN decomposition lie in the
outstanding capability for characterizing adequately the in-
trinsic correlations between any two modes of tensors and the
essential invariance for transposition. Furthermore, we em-
ploy the FCTN decomposition to one representative task, i.e.,
tensor completion, and develop an efficient solving algorithm
based on proximal alternating minimization. Theoretically,
we prove the convergence of the developed algorithm, i.e., the
sequence obtained by it globally converges to a critical point.
Experimental results substantiate that the proposed method
compares favorably to the state-of-the-art methods based on
other tensor decompositions.

Introduction
The rapid advance in science and technology has given
rise to the wide presence of higher-order data, e.g., multi-
temporal, multi-spectral, and multi-scale data, which are
usually expressed by higher-order tensors. Tensor decom-
positions focus on decomposing a higher-order tensor to
a set of low-dimensional factors used to represent its la-
tent features, which have powerful capability to capture the
global correlations of tensors and have been widely applied
in a variety of fields, such as signal processing, computer
vision, and medical imaging (Kolda and Bader 2009; Mu
et al. 2014; Anandkumar et al. 2014; Cong et al. 2015;
Zhao, Zhang, and Cichocki 2015; Lu et al. 2016; Yokota
and Hontani 2017; Yokota et al. 2019; Zheng et al. 2020).
By designing different structures of latent factors and dif-
ferent multi-linear operations among them, various tensor
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decompositions have been proposed and attracted consider-
able attention. Among them, the Tucker decomposition and
the CANDECOMP/PARAFAC (CP) decomposition as two
most classical decompositions have achieved great success
in the past decade (Kolda and Bader 2009; Gandy, Recht,
and Yamada 2011; Liu et al. 2013, 2014; Zhao et al. 2016;
Yokota, Zhao, and Cichocki 2016; Li, Ye, and Xu 2017; Xie
et al. 2018; Yao et al. 2019; He et al. 2019; Phan et al. 2020).

More recently, an increasing number of tensor network-
based tensor decompositions have emerged and shown great
ability to deal with higher-order, especially beyond third-
order, tensors. One of the most representative among them is
the tensor train (TT) decomposition (Oseledets 2011), which
decomposes an N th-order tensor into N -2 third-order ten-
sors located at intermediate and two matrices located at both
sides (see Figure 1(a)). Besides, from the first TT factor (ma-
trix), each factor needs to conduct a multi-linear operation
with its next factor, until the last one (matrix). Subsequently,
as an extension of the TT decomposition, tensor ring (TR)
decomposition (Zhao et al. 2016) replaced two matrices in
TT factors by third-order tensors and established an addi-
tional multi-linear operation between them (see Figure 1(b)).
Since TT and TR decompositions have the outstanding capa-
bility in super-compression and computational practicabil-
ity, they have been employed in many applications, such as
signal restoration, compression and reconstruction, and im-
age/video recovery (Bengua et al. 2017; Imaizumi, Maehara,
and Hayashi 2017; Ding et al. 2019; Zhao et al. 2019; Yuan
et al. 2018; Yuan et al. 2019; Chen et al. 2020). Many of
them can be regarded as a tensor completion (TC) problem,
which aims to complete a tensor from its partial observation.

However, there are two limitations to TT and TR decom-
positions. First, these two decompositions only establish an
operation/connection between adjacent two factors, rather
than any two factors, which leads to a limited characteri-
zation for correlations of tensors. Second, TT decomposi-
tion keeps the invariance only when the modes of the target
tensor make a reverse permuting, while TR decomposition
keeps the invariance only when the modes of the target ten-
sor make a circular shifting or a reverse permuting. These
imply that these two decompositions are highly sensitive to
the permutation of tensor modes, leading to the inflexibility
of decompositions and applications.
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(b) TR decomposition (c) FCTN decomposition

Figure 1: A graphical representation of TT, TR, and the proposed FCTN decompositions.

To tackle the above two limitations, we propose a fully-
connected tensor network (FCTN) decomposition, which
decomposes anN th-order tensor into a set ofN th-order fac-
tors and establishes a multi-linear operation/connection be-
tween any two factors (see Figure 1(c)). The proposed FCTN
decomposition has the superior capability to characterize di-
rectly the intrinsic correlations between any two modes of
tensors and is proved to be essentially invariable for any per-
mutations of tensor modes. The main contributions of this
paper are summarized as three-folds:

1) We propose an FCTN decomposition, which breaks
through the limitations of TT and TR decompositions in
terms of correlation characterization and transpositional in-
variance.

2) We employ the FCTN decomposition to the TC prob-
lem and develop an efficient proximal alternating minimiza-
tion (PAM)-based algorithm to solve it.

3) We theoretically demonstrate the convergence of the
developed algorithm by proving the sequence obtained by it
globally converges to a critical point (local minima).

Notations and Preliminaries
In this paper, we denote scalars, vectors, matrices,
and tensors by x, x, X, and X , respectively. For
an N th-order tensor X ∈ RI1×I2×···×IN , we employ
X (i1, i2, · · · , iN ) to denote its (i1, i2, · · · , iN )th element.
The Frobenius norm of X is defined as ‖X‖F =√∑

i1,i2,··· ,iN |X (i1, i2, · · · , iN )|2. For the sake of clarity,

we use X1:d to denote (X1,X2, · · · ,Xd).

FCTN Decomposition
Basic Theory
Before proposing the FCTN decomposition, we first develop
several basic definitions and theorems.

Definition 1 (Generalized Tensor Transposition)
Supposing that X ∈ RI1×I2×···×IN is an N th-order tensor
and the vector n is a reordering of the vector (1, 2, · · · , N).
The vector n-based generalized tensor transposition of X is

defined as a tensor ~Xn ∈ RIn1×In2×···×InN , which is gen-
erated by rearranging the modes of X in the order specified
by the vector n. We denote the corresponding operation
and its inverse operation by ~Xn = permute(X ,n) and
X = ipermute( ~Xn,n), respectively.
Definition 2 (Generalized Tensor Unfolding) Supposing
that X ∈ RI1×I2×···×IN is an N th-order tensor and the
vector n is a reordering of the vector (1, 2, · · · , N). The
generalized tensor unfolding of X is defined as a matrix

X[n1:d;nd+1:N ] = reshape1
(
~Xn,

d∏
i=1

Ini ,

N∏
i=d+1

Ini

)
.

We denote the corresponding operation and its inverse oper-
ation by X[n1:d;nd+1:N ] = GenUnfold(X , n1:d;nd+1:N ) and
X = GenFold(X[n1:d;nd+1:N ], n1:d;nd+1:N ), respectively.

For example, the traditional mode-k unfolding (Kolda and
Bader 2009) of X is X[k;1,2,··· ,k−1,k+1,··· ,N ], which is also
simply denoted by X(k).
Definition 3 (Tensor Contraction) Supposing that vectors
n and m are the reordering of vectors (1, 2, · · · , N) and
(1, 2, · · · ,M), respectively; X ∈ RI1×I2×···×IN and Y ∈
RJ1×J2×···×JM are two tensors satisfied Ini

= Jmi
with i =

1, 2, · · · , d. The tensor contraction along the n1:dth-modes
of X and the m1:dth-modes of Y yields an (N +M −2d)th-
order tensor

Z = X ×m1:d
n1:d
Y ∈ RInd+1

×···×InN
×Jmd+1

×···×JmM ,

whose elements
Z(ind+1

,· · ·, inN
,jmd+1

,· · ·, jmM
) =

In1∑
in1

=1

In2∑
in2

=1

· · ·
Ind∑

ind
=1

{
~Xn(in1 ,· · ·, ind

, ind+1
,· · ·, inN

)

~Ym(in1
,· · ·, ind

, jmd+1
,· · ·, jmM

)
}
.

Especially, here requires nd+1 < nd+2 < · · · < nN and
md+1 < md+2 < · · · < mM to guarantee the uniqueness
of the tensor Z .

1Matlab commands.
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Furthermore, Theorem 1 delivers the relationship of the
tensor contraction and the matrix multiplication.

Theorem 1 Supposing that X ∈ RI1×I2×···×IN and Y ∈
RJ1×J2×···×JM are two tensors, we have

1) XT
[n1:d;nd+1:N ] =X[nd+1:N ;n1:d];

2) Z = X ×m1:d
n1:d
Y⇔

Z[1:N−d;N−d+1:N+M−2d] =X[nd+1:N ;n1:d]Y[m1:d;md+1:M ].

Here vectors n and m have the same setting as that in Defi-
nition 3.

FCTN Decomposition
Definition 4 (FCTN Decomposition) The FCTN decom-
position aims to decompose an N th-order tensor X ∈
RI1×I2×···×IN into a set of N th-order factor tensors
Gk ∈ RR1,k×R2,k×···×Rk−1,k×Ik×Rk,k+1×···×Rk,N with k =
1, 2, · · · , N . More specifically, the element-wise form of the
FCTN decomposition can be expressed as

X (i1, i2, · · · , iN ) =

R1,2∑
r1,2=1

R1,3∑
r1,3=1

· · ·
R1,N∑

r1,N=1

R2,3∑
r2,3=1

· · ·
R2,N∑

r2,N=1

· · ·
RN−1,N∑

rN−1,N=1{
G1(i1, r1,2, r1,3,· · ·, r1,N )

G2(r1,2, i2, r2,3,· · ·, r2,N )· · ·
Gk(r1,k, r2,k,· · ·, rk−1,k, ik, rk,k+1,· · ·, rk,N )· · ·
GN (r1,N , r2,N ,· · ·, rN−1,N , iN )

}
.

(1)

Moreover, we denote the FCTN decomposition by X =
FCTN

(
{Gk}Nk=1

)
= FCTN(G1,G2, · · · ,GN ) and call the

vector collected by Rk1,k2
(1 ≤ k1 < k2 ≤ N and k1, k2 ∈

N+) as the FCTN-ranks.

To illustrate the FCTN decomposition vividly, Figure 1(c)
gives a graphical representation of it. It is not hard to see
that for second-order tensors, the FCTN decomposition is
actually the matrix factorization and the FCTN-rank is ac-
tually the matrix rank. Furthermore, for higher-order ten-
sors, any two FCTN factors Gk1 and Gk2 have an equal-sized
mode Rk1,k2

used to conduct the tensor contraction opera-
tion, which enables the FCTN decomposition to characterize
adequately the intrinsic correlations between any two modes
of the target tensor. This indicates an essential advantage of
the FCTN decomposition over the TT and TR decomposi-
tions, which establish only the connection between adjacent
two factors, leading to a limited characterization for correla-
tions of tensors. Besides, the FCTN decomposition can de-
generate to the TT and TR decompositions by simply setting
the corresponding modes of factors to 1.

In second-order case, it is well known that the matrix fac-
torization is essentially invariable under the transpositional
condition, i.e., X = G1G2 ⇔ XT = GT

2G
T
1 . Naturally, it

is expected to extend this property to higher-order cases.

Theorem 2 (Transpositional Invariance) Supposing that
an N th-order tensor X has the following FCTN decom-
position: X = FCTN(G1,G2, · · · ,GN ). Then, its vector

n-based generalized tensor transposition ~Xn can be ex-
pressed as ~Xn = FCTN

(
~Gnn1

, ~Gnn2
, · · · , ~GnnN

)
, where n =

(n1, n2,· · ·, nN ) is a reordering of the vector (1, 2, · · · , N).
Theorem 2 illustrates another essential advantage of the

FCTN decomposition as compared with the TT and TR de-
compositions. More specifically, the FCTN decomposition
is essentially invariable, no matter how to permute the modes
of the target tensor. But TR decomposition keeps the invari-
ance only when the modes of the target tensor make a circu-
lar shifting or a reverse permuting. And TT decomposition
keeps the invariance only when the modes of the target ten-
sor make a reverse permuting.

The following theorem presents that the FCTN-ranks can
bound the rank of all generalized tensor unfolding.
Theorem 3 Supposing that an N th-order tensor X can be
represented by Equation (1), the following inequality holds:

Rank
(
X[n1:d;nd+1:N ]

)
≤

d∏
i=1

N∏
j=d+1

Rni,nj
,

where Rni,nj
= Rnj ,ni

if ni > nj and (n1, n2,· · ·, nN ) is a
reordering of the vector (1, 2, · · · , N).

Since the FCTN decomposition aims to characterize the
intrinsic correlations between any two modes by establish-
ing a connection between any two factors, the factors have
to be designed as N th-order tensors, which inevitably leads
to the increment of the storage cost as compared to TT and
TR decompositions. For an N th-order X ∈ RI×I×···×I ,
whose FCTN-ranks are the same value R1, the FCTN de-
composition requiresO(NIRN−1

1 ) parameters to express it.
It seems to stay on the same order of magnitude with that of
the Tucker decomposition (O(NIR2 + RN

2 ) parameters).
But when we express real-world data, the required FCTN-
rank R1 is usually far less than Tucker-rank R2, because
the FCTN decomposition uses RN−1

1 to bound Tucker-rank
R2 (as shown in Theorem 3). This indicates that the FCTN
decomposition is superior to the Tucker decomposition re-
garding the storage cost2.
Definition 5 (FCTN Composition) We call the process of
generating X by its FCTN factors Gk (k = 1, 2, · · ·N)
as the FCTN composition, which is also denoted by
FCTN

(
{Gk}Nk=1

)
. Furthermore, if one of the factors Gt (t ∈

{1, 2, · · · , N}) does not participate in the composition, we
denote it by FCTN

(
{Gk}Nk=1, /Gt

)
.

Theorem 4 Supposing that X = FCTN
(
{Gk}Nk=1

)
and

Mt = FCTN
(
{Gk}Nk=1, /Gt

)
, we obtain that

X(t) = (Gt)(t)(Mt)[m1:N−1;n1:N−1],

where

mi =

{
2i, if i < t,

2i− 1, if i ≥ t, and ni =

{
2i− 1, if i < t,

2i, if i ≥ t.
Theorem 4 reveals the relationship between one FCTN

factor and the composition of the other factors. It is of great
importance to the computation of the FCTN decomposition
since computing one factor usually needs to fix the others.

2More experimental evidence is provided in the supplementary
material, which is available at https://yubangzheng.github.io.
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FCTN Decomposition-Based TC Method
Model and Solving Algorithm
Due to space limitations, we only apply the FCTN decompo-
sition to one representative task, i.e., TC, which aims to re-
cover missing elements of a higher-order tensor from its an
incomplete observation. Giving an incomplete observation
F ∈ RI1×I2×···×IN of the target tensor X ∈ RI1×I2×···×IN ,
the proposed FCTN decomposition-based TC (FCTN-TC)
model can be formulated as

min
X ,G

1

2
‖X − FCTN(G1,G2, · · · ,GN )‖2F + ιS(X ), (2)

where G = (G1,G2,· · ·,GN ) and

ιS(X ) :=

{
0, if X ∈ S,
∞, otherwise,

with S := {X : PΩ(X−F)=0}.

Here Ω denotes the index of the known elements andPΩ(X )
is a projection operator which projects the elements in Ω to
themselves and all others to zeros.

Since all optimization variables are coupled with each
other, we employ the framework of PAM (Attouch, Bolte,
and Svaiter 2013) to solve (2), whose solution can be ob-
tained by alternately updating

G(s+1)
k =argmin

Gk

{
f(G(s+1)

1:k−1,Gk,G
(s)
k+1:N ,X

(s))

+
ρ

2
‖Gk−G(s)

k ‖
2
F

}
, k=1, 2, · · ·, N,

X (s+1) =argmin
X

{
f(G(s+1),X ) +

ρ

2
‖X−X (s)‖2F

}
,

(3)

where f(G,X ) is the objective function of (2) and ρ > 0 is
a proximal parameter.

1) Update Gk: According to Theorem 4, the Gk (k =
1, 2,· · ·, N)-subproblems can be rewritten as

G(s+1)
k =argmin

Gk

{
ρ

2
‖(Gk)(k) − (G

(s)
k )(k)‖2F

+
1

2
‖X(s)

(k)−(Gk)(k)(M
(s)
k )[m1:N−1;n1:N−1]‖2F

}
,

(4)

where M(s)
k = FCTN

(
G(s+1)

1:k−1,Gk,G
(s)
k+1:N , /Gk

)
, and vec-

tors m and n have the same setting as that in Theorem 4.
The problem (4) can be directly solved as

(G
(s+1)
k )(k) =[

X
(s)
(k)(M

(s)
k )[n1:N−1;m1:N−1]+ρ(G

(s)
k )(k)

]
[
(M

(s)
k )[m1:N−1;n1:N−1](M

(s)
k )[n1:N−1;m1:N−1]+ρI

]−1
,

(5)

and G(s+1)
k = GenFold

(
(G

(s+1)
k )(k), k; 1, · · · , k − 1, k +

1, · · · , N
)
.

2) Update X : The X -subproblem has the following
closed-form solution since it is a least square problem:

X (s+1)=PΩc

(
FCTN

(
{G(s+1)

k }Nk=1

)
+ρX (s)

1+ρ

)
+PΩ(F). (6)

Algorithm 1 PAM-Based Solver for the FCTN-TC Model.

1: Input: The incomplete tensor F ∈ RI1×I2×···×IN , the
index Ω, the maximal FCTN-rank Rmax, and ρ = 0.1.

2: Initialization: s = 0, smax = 1000,
X (0) = F , the initial FCTN-rank R =

max{ones1(N(N − 1)/2, 1), Rmax − 5}, and G(0)
k =

rand1(R1,k, R2,k, · · · , Rk−1,k, Ik, Rk,k+1, · · · , Rk,N ),
where k = 1, 2, · · · , N .

3: while not converged and s < smax do
4: Update G(s+1)

k via (5).
5: Update X (s+1) via (6).
6: Let R = min{R+ 1, Rmax} and expand G(s+1)

k if

‖X (s+1) −X (s)‖F /‖X (s)‖F < 10−2.

7: Check the convergence condition:

‖X (s+1) −X (s)‖F /‖X (s)‖F < 10−5.

8: Let s = s+ 1.
9: end while

10: Output: The reconstructed tensor X .

The whole process of the PAM-based solver for the
FCTN-TC model is summarized in Algorithm 1. Especially,
if the observed tensor F is complete (no missing elements),
the way for iteratively solving the factors Gk in the proposed
FCTN-TC method can be regarded as a strategy for obtain-
ing its one FCTN decomposition.

Computational Complexity Analysis
For an N th-order incomplete tensor F ∈ RI×I×···×I ,
we analyze the computational complexity of the pro-
posed FCTN-TC method by simply setting the FCTN-
ranks Rk1,k2

(1 ≤ k1 < k2 ≤ N and k1, k2 ∈ N+)
as the same value R. The computational cost lies on two
part: 1) updating Gk (k = 1, 2, · · · , N) and 2) updating
X . In (5), updating Gk involves the FCTN composition,
the matrix multiplication, and the matrix inversion, which
costs O

(
N
∑N

k=2 I
kRk(N−k)+k−1 + NIN−1R2(N−1) +

NR3(N−1)
)
. In (6), updating X requires the FCTN

composition costing O
(∑N

k=2 I
kRk(N−k)+k−1

)
. There-

fore, the whole computational complexity at each itera-
tion in the Algorithm 1 is O

(
N
∑N

k=2 I
kRk(N−k)+k−1 +

NIN−1R2(N−1)+NR3(N−1)
)
.

Convergence Analysis
In this section, we provide a theoretical guarantee for the
convergence of the developed PAM-based algorithm.

Theorem 5 The sequence {G(s),X (s)}s∈N obtained by the
Algorithm 1 globally converges to a critical point of (2).

To prove the Theorem 5, we only need to justify that the
following four conditions hold (Attouch, Bolte, and Svaiter
2013):

1) G(s) and X (s) (s ∈ N) are bounded;
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Figure 2: Reconstructed results on the synthetic dataset with
different permutations.

2) f(G,X ) is a proper lower semi-continuous function;
3) f(G,X ) satisfies the K-Ł property at {G(s),X (s)}s∈N;
4) {G(s),X (s)}s∈N satisfies Lemmas 1 and 2.

Lemma 1 (Sufficient Decrease) Letting {G(s),X (s)}s∈N
be the sequence obtained by the Algorithm 1, then it satisfies

f(G(s+1)
1:k ,G(s)

k+1:N ,X
(s))+

ρ

2
‖G(s+1)

k −G(s)
k ‖

2
F

≤ f(G(s+1)
1:k−1,G

(s)
k:N ,X

(s)), k=1, 2,· · ·, N ;

f(G(s+1),X (s+1))+
ρ

2
‖X (s+1)−X (s)‖2F ≤f(G(s+1),X (s)).

Lemma 2 (Relative Error) Letting {G(s),X (s)}s∈N be the
sequence obtained by the Algorithm 1, then there exists
A(s+1)

k ∈ 0 and A(s+1) ∈ ∂X ιS(X (s+1)) satisfied

‖A(s+1)
k +∇Gkh(G(s+1)

1:k ,G(s)
k+1:N ,X

(s))‖F
≤ ρ‖G(s+1)

k −G(s)
k ‖F , k=1, 2,· · ·, N ;

‖A(s+1)+∇Xh(G(s+1),X (s+1))‖F ≤ ρ‖X (s+1)−X (s)‖F ,

where h(G,X )= 1
2‖X−FCTN

(
{Gk}Nk=1

)
‖2F .

The detailed proof for the above four conditions is pre-
sented in the supplementary materials.

Numerical Experiments
We test the performance of the proposed FCTN-TC method3

by conducting synthetic data and real data experiments. The
missing ratio (MR) is defined as the ratio of the number of
missing elements and the total elements.

Synthetic Data Experiments
This section mainly aims to verify the superiorities of the
proposed FCTN decomposition over the TT and TR de-
compositions by contrasting the performance of their cor-
responding TC methods, i.e., FCTN-TC, TT-TC, and TR-
TC. All methods are solved by PAM to get rid of the in-
fluence of the algorithm. Since TT decomposition is a spe-
cial case of TR and FCTN decompositions, we generate

3The code is available at https://yubangzheng.github.io.

Dataset MR 95% 90% 80% Mean
time (s)

news

Observed 8.7149 8.9503 9.4607 —
HaLRTC 14.490 18.507 22.460 36.738

TMac 25.092 27.035 29.778 911.14
t-SVD 25.070 28.130 31.402 74.807

TMacTT 24.699 27.492 31.546 465.75
TRLRF 22.558 27.823 31.447 891.96

FCTN-TC 26.392 29.523 33.048 473.50

containe

Observed 4.5969 4.8315 5.3421 —
HaLRTC 18.617 21.556 25.191 34.528

TMac 26.941 26.142 32.533 1224.4
t-SVD 28.814 34.912 39.722 71.510

TMacTT 28.139 31.282 37.088 450.70
TRLRF 30.631 32.512 38.324 640.41

FCTN-TC 30.805 37.326 42.974 412.72

elephants

Observed 3.8499 4.0847 4.5946 —
HaLRTC 16.651 20.334 24.813 38.541

TMac 26.753 28.648 31.010 500.70
t-SVD 21.810 27.252 30.975 63.994

TMacTT 25.918 28.880 32.232 204.64
TRLRF 27.120 28.361 32.133 592.13

FCTN-TC 27.780 30.835 34.391 455.71

bunny

Observed 6.4291 6.6638 7.1736 —
HaLRTC 14.561 19.128 23.396 32.882

TMac 25.464 28.169 30.525 779.78
t-SVD 21.552 26.094 30.344 66.294

TMacTT 26.252 29.512 33.096 264.15
TRLRF 27.749 29.034 33.224 652.03

FCTN-TC 28.337 32.230 36.135 468.25

HSV

Observed 8.4157 8.6506 9.1594 —
HaLRTC 12.008 22.140 29.000 15.456

TMac 31.151 36.749 41.663 93.065
t-SVD 35.328 40.379 45.801 30.533

TMacTT 36.478 41.561 46.581 131.31
TRLRF 37.352 41.796 46.211 4776.5

FCTN-TC 43.256 48.175 52.701 501.03

Table 1: The PSNR values and the running times of all uti-
lized methods on the CV and HSV datasets.

synthetic tensors by the TT composition of TT factors,
sampled from uniform distribution U(0, 1), for the sake of
fairness. The testing data includes a fourth-order tensor of
size 20 × 20 × 20 × 20 and a fifth-order tensor of size
12 × 12 × 12 × 12 × 12, whose TT-ranks are (10, 80, 10)
and (8, 48, 48, 8), respectively. Besides, for each data, we
test two permutations, i.e., its original ordering and one gen-
eralized transposition (n are (2, 4, 1, 3) and (2, 4, 1, 3, 5) for
fourth-order and fifth-order tensors, respectively). The rela-
tive error between the reconstructed tensor and the ground
truth, i.e., RSE = ‖X − Xtrue‖F /‖Xtrue‖F , is adopted to
evaluate the performance of different methods. The method-
ology for selecting the missing elements is purely random
sampling. The hyper-parameters needed to adjust in the pro-
posed FCTN-TC method only involve the maximal FCTN-
ranks, i.e., Rmax

k1,k2
(1≤k1<k2≤N and k1, k2∈N+), which

are simply set as the same value.
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Observed HaLRTC TMac t-SVD TMacTT TRLRF FCTN-TC Ground truth
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Figure 3: Reconstructed results on two testing CVs with MR=90%. From top to bottom: the odd-numbered rows are the visual
results at the 1st frame of the CV containe and the 35th frame of the CV bunny, respectively; the even-numbered rows are the
corresponding residual images average over three color channels.

Figure 2 shows the reconstructed results of different meth-
ods on the synthetic data under different MRs, where the
RSE value under each case is averaged over the values
obtained by 50 independent tests. We observe that 1) the
performance of the proposed FCTN-TC method is pro-
nouncedly robust to different permutations, while that of TT-
TC and TR-TC are sensitive; and 2) the proposed FCTN-TC
method always achieves the lowest RSE values among three
methods under different datasets, MRs, and permutations.
This is because the rearranging of tensor modes shifts the
correlation among them (e.g., the correlation between the
first and second modes shifts to the first and third modes),
leading to the change in the performance of TT and TR
decomposition-based methods. But owing that the proposed
FCTN decomposition can characterize the correlations be-
tween any two modes and is essentially invariable for tensor
transposition, the FCTN-TC method obtains the best and ro-
bust results. These testing results provide empirical evidence
for the fore theoretical analysis regarding the superiorities of
the FCTN decomposition.

Real Data Experiments

This section mainly aims to test the performance of the pro-
posed FCTN-TC method on two types of real data by con-
trasting it with the state-of-the-art methods based on differ-
ent tensor decompositions, including HaLRTC (Liu et al.
2013), TMac (Xu et al. 2015), t-SVD (Zhang and Aeron
2017), TMacTT (Bengua et al. 2017), and TRLRF (Yuan
et al. 2019). All hyper-parameters involved in all compared
methods are manually adjusted to achieve optimal perfor-
mance following the authors’ recommendations and codes.

For instance, In TMac, TMacTT, and TRLRF, the hyper-
parameters are mainly Tucker-rank, TT-rank, and TR-rank.
We adjust them in a certain range. In HaLRTC and t-SVD,
the hyper-parameters are mainly the threshold for the singu-
lar value thresholding operation, which is selected from the
candidate set {10−6, 10−5, 10−4, 10−3, 10−2, 10−1}.

Video Data Completion. The testing video dataset in-
cludes four color videos4 (CVs) of size 144× 176× 3× 50
(spatial height×spatial width×color channel×frame) and a
hyperspectral video5 (HSV) of size 60× 60× 20× 20 (spa-
tial height×spatial width×band×frame) (Mian and Hartley
2012). For each data, we test three MRs: 80%, 90%, and
95%, and employ the peak signal-to-noise ratio (PSNR) as
the quantitative metric. The methodology for selecting the
missing elements is purely random sampling and the pixel
values of the testing data are normalized into [0, 1].

For the proposed FCTN-TC method, on CV dataset,
we set Rmax

1,4 and Rmax
2,4 as the same value since they

all directly characterize the correlation between the spa-
tial modes (height and width, respectively) and the tem-
poral mode. And we set Rmax

1,3 , Rmax
2,3 , and Rmax

3,4 as the
same value, since the third mode represents the color
channel. Therefore, only Rmax

1,2 , Rmax
1,3 , and Rmax

1,4 need to
adjust, which are recommended to select from the can-
didate sets {10, 15, 20, 25, 30, 35, 40, 45, 50}, {2, 3}, and
{4, 5, 6, 7, 8}, respectively. On the HSV dataset, we sim-
ply set Rmax

k1,k2
(1 ≤ k1 < k2 ≤ 4 and k1, k2 ∈ N+) as the

same value recommended to select from the candidate set
{4, 5, 6, 7, 8}.

4The data is available at http://trace.eas.asu.edu/yuv/.
5The data is available at http://openremotesensing.net/kb/data/.
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Figure 4: Reconstructed results on the traffic flow dataset with MR=40%. The first and the second rows are the results on the
2nd day and the corresponding residual results, respectively.

Table 1 reports the PSNR values and the running times
of all utilized methods under different MRs on the testing
CVs and HSV. In terms of effect (PSNR), we see that the
proposed FCTN-TC method compares favorably to the other
methods on both the testing CVs and HSV. Especially on the
HSV, the FCTN-TC method is ahead by about 5dB of PSNR
compared to the second-best method. In terms of efficiency
(running time), we observe that on the CV dataset, the mean
of the running time of the FCTN-TC method stays roughly
on the same order of magnitude with that of the compared
decomposition-based methods, i.e., TMac, TMacTT, and
TRLRF. The main reason is that although the computational
complexity of the FCTN-TC method is theoretically higher,
the setting rank of it for obtaining the optimal result is usu-
ally lower than that of the compared ones.

Furthermore, Figure 3 shows the reconstructed spatial im-
ages and their corresponding residual images (the absolute
difference between the reconstructed image and the ground
truth) of two CVs. From Figure 3, we observe that the results
obtained by the proposed FCTN-TC method are markedly
superior to those by the compared ones, especially for the
recovery of local details, such as ripples in the CV containe
and grasses in the CV bunny.

Traffic Data Completion. This experiment was realized
with traffic data provided by the NeCS team from the Greno-
ble Traffic Lab (GTL)6. The testing traffic flow dataset
is collected from 19 road segments within 31 days from
January 1, 2019, to January 31, 2019, and the time inter-
val is 2 minutes. The size of it is 30 × 24 × 31 × 19
(minute×hour×day×segment). In the traffic dataset, the
damage to detectors usually leads to the data missing over
some time. Therefore, we consider the slice (made up of the
first and second modes) missing problem. The MR is set to
be 40% and the RSE is employed as the quantitative metric.
We simply set Rmax

k1,k2
(1≤ k1 <k2 ≤ 4 and k1, k2 ∈N+) as

the same value, i.e., 5.
In Figure 4, we present the reconstructed results on the

6Homepage: http://gtl.inrialpes.fr/.

2nd day and the RSE value of the whole dataset. As ob-
served, the proposed FCTN-TC method achieves the best
approximation to the ground truth among different methods.
This illustrates the superior of the proposed FCTN decom-
position on the slice missing problem.

In summary, the above experimental results imply the su-
perior capability of the proposed FCTN decomposition for
capturing the intrinsic information of higher-order tensors,
as compared to other tensor decompositions.

Conclusion
This paper proposed a novel tensor decomposition scheme,
i.e., the FCTN decomposition, which factorizes an N th-
order tensor into a set of N th-order factors with full connec-
tions. The FCTN decomposition showed its outstanding ca-
pability to adequately characterize the correlations between
any two modes of tensors and was proved to be essentially
transpositional invariable. Meanwhile, an FCTN-TC model
was proposed with an efficient PAM-based solver, whose
convergence was theoretically guaranteed. Experimental re-
sults demonstrated that the FCTN-TC method delivered an
overall better performance than the compared ones.

Similar to CP and TR decompositions (Kolda and Bader
2009; Zhao et al. 2016), the proposed FCTN decomposition
faces difficulty in finding the optimal FCTN-ranks. In the fu-
ture, we will work to solve this challenging problem, deeply
explore the essential feature of the FCTN factors, and apply
the FCTN decomposition to more applications.
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