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Abstract
One crucial objective of multi-task learning is to align dis-
tributions across tasks so that the information between them
can be transferred and shared. However, existing approaches
only focused on matching the marginal feature distribution
while ignoring the semantic information, which may hinder
the learning performance. To address this issue, we propose to
leverage the label information in multi-task learning by explor-
ing the semantic conditional relations among tasks. We first
theoretically analyze the generalization bound of multi-task
learning based on the notion of Jensen-Shannon divergence,
which provides new insights into the value of label information
in multi-task learning. Our analysis also leads to a concrete
algorithm that jointly matches the semantic distribution and
controls label distribution divergence. To confirm the effective-
ness of the proposed method, we first compare the algorithm
with several baselines on some benchmarks and then test the
algorithms under label space shift conditions. Empirical re-
sults demonstrate that the proposed method could outperform
most baselines and achieve state-of-the-art performance, par-
ticularly showing the benefits under the label shift conditions.

Introduction
General machine learning paradigms typically focus on learn-
ing individual tasks. Even though significant progress has
been achieved, recent successes in machine learning, espe-
cially in the deep learning area, usually rely on a large amount
of labelled data to obtain a small generalization error. In prac-
tice, however, acquiring labelled data could be highly pro-
hibitive, e.g., when classifying multiple objects in an image
(Long et al. 2017), when analyzing patient data in healthcare
data analysis (Wang and Pineau 2015; Zhou et al. 2021b),
or when modelling users’ products preferences (Murugesan
and Carbonell 2017). Data hungry has become a long-term
problem for deep learning. Multi-task learning (MTL) aims
at addressing this issue by simultaneously learning from mul-
tiple tasks and leveraging the shared knowledge across them.
Many MTL approaches have been implemented in computer
vision (Zhao et al. 2018), natural language processing (Bin-
gel and Søgaard 2017), medical data analysis (Moeskops
et al. 2016; Li, Carlson et al. 2018) or brain-computer inter-
action (Wang et al. 2020) problems etc. It has been shown

*The corresponding author: bwang@csd.uwo.ca (B. Wang)
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with benefits to reduce the amount of annotated data per task
to reach the desired performance.

The crucial idea behind MTL is to extract and leverage
the knowledge and information shared across the tasks to
improve the overall performances (Wang et al. 2019b), which
can be achieved by task-invariant feature learning (Maurer,
Pontil, and Romera-Paredes 2016; Luo, Tao, and Wen 2017)
or task relation learning (Zhang and Yeung 2012; Bingel and
Søgaard 2017; Zhou et al. 2021b). One major issue with most
of the existing feature learning approaches is that they only
align the marginal distributions P(x) to extract the shared
features without taking advantage of label information of
the tasks. Consequently, the features can lack discriminative
power for supervised learning even if their marginal features
have been matched properly (Dou et al. 2019). Furthermore,
only aligning P(x) cannot address the MTL problems when
the label space of each task differs from each other, i.e., label
shift problem (Redko et al. 2019).

While a few algorithms have been proposed to use seman-
tic matching for MTL (Zhuang et al. 2017; Luo, Tao, and
Wen 2017) and have shown improved performances, the the-
oretical justifications for the value of labels remain elusive.
Most theoretical results (Shui et al. 2019; Mao, Liu, and Lin
2020) for MTL derive from the notion ofH-divergence (Ben-
David et al. 2010) or Wasserstein adversarial training (Redko,
Habrard, and Sebban 2017; Shen et al. 2018), which did not
take the label information into consideration. As a result,
they usually require additional assumptions, e.g., assuming
the combined error across tasks is small (Ben-David et al.
2010) to ensure the algorithms succeed, which may not hold
in practice.

To this end, we propose the first theoretical analysis for
MTL that considers semantic matching. Specifically, our re-
sults reveal that the MTL loss can be upper-bounded in terms
of the pair-wise discrepancy between the tasks, measured by
the Jensen-Shannon divergences of label distribution P(y)
and semantic distribution P(x|y).

The contributions of our work are trifold: 1. In contrast
to previous theoretical results (Shui et al. 2019; Mao, Liu,
and Lin 2020), which only consider the marginal distribution
discrepancy (e.g.,H-divergence), we build a complete MTL
theoretical framework upon the joint distribution discrepancy
based on the Jensen-Shannon divergence. Thus, our result
provides a deeper understanding of the general problem of
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MTL and insights into how to extract and leverage shared
knowledge in a more appropriate and principled way by ex-
ploiting the label information. 2. Our analysis also reveals
how the label shift problems affects the learning procedure
of MTL, which was missing in previous results. 3. Our the-
oretical result leads to a novel algorithm, namely Semantic
Multi-Task Learning (SMTL) algorithm, which explicitly
leverages the label information for MTL.

Specifically, the proposed SMTL algorithm simultaneously
learns task-invariant features and task similarities to match
the semantic distributions across the tasks and minimizes
label distribution divergence via a label re-weighting loss
function. In addition, SMTL is based on a novel centroid
matching approach for task-invariant feature learning, which
is more efficient than other adversarial training based algo-
rithms. To examine the effectiveness of the proposed algo-
rithm, we evaluate SMTL on several benchmarks. The em-
pirical results show that the proposed approach outperforms
the baselines achieving state-of-the-art performance. Besides,
the experiment results show that our algorithm can be more
time-efficient than the adversarial baselines, which confirms
the benefits of our proposed method. Furthermore, we also
conduct a simulation of the label distribution shift scenario
showing that the proposed algorithm could handle the label
distribution shift problems that cannot be properly addressed
by other baselines.

Related Works
Multi-task Learning
MTL has been prevalent to lots of recent machine learning
topics (Li, Liu, and Chan 2014; Wang, Pineau, and Balle
2016; Teh et al. 2017). Our work majorly relates to some fea-
ture representation learning-based approaches and task rela-
tion based approaches. (Maurer, Pontil, and Romera-Paredes
2016) firstly analyzed generalization error of representation-
based approaches. (Murugesan et al. 2016; Pentina and Lam-
pert 2017) approached the online and transductive learn-
ing problem by MTL using a weighted summation of the
losses. (Wang et al. 2019a) analyzed the algorithmic stabil-
ity in MTL. For task relations learning, (Zhang and Yeung
2010; Cao et al. 2018a) define a convex optimization problem
to measure relationships while (Long et al. 2017; Kendall,
Gal, and Cipolla 2018) propose probabilistic models by con-
structing task covariance matrices or estimate the multi-task
likelihood via a deep Bayes model. Latterly, (Shui et al. 2019;
Mao, Liu, and Lin 2020) combines the feature representation
learning and task relations learning together and analyzed
generalization bound under the adversarial training scheme
motivated by the domain adaptation problems (Ben-David
et al. 2010; Shen et al. 2018; Shui et al. 2020), showing
improved performances in vision and language processing
applications, respectively. This kind of approach neglected
the value of label information, which may impair the learning
process. There were also some approaches to investigate the
situation where the label space may differ from each other.
(Su et al. 2020) investigate the problem where the task sam-
ples are confusing, and the model is trained to extract task
concepts by discriminating them.

Semantic Transfer
Leveraging semantic information has been prevalent in some
machine learning topics (Long et al. 2014), since it is easy to
implement when few labels are available. (Dou et al. 2019;
Zhou et al. 2021a; Matsuura and Harada 2020) proposed to
leverage the semantic information by adopting the metric
learning objective under an unsupervised scheme to enforce
a class-specific alignment for domain generalization prob-
lems. (Zhang et al. 2019) propose to learn the class-specific
prototype semantic information by a symmetric network to
align semantic features for unsupervised domain adaptation
problems. (Xie et al. 2018) theoretically analyzed the se-
mantic transfer method for domain adaptation problems with
a pseudo label. (Shui et al. 2020) investigated the value of
matching conditional and semantic distribution in domain
adaptation problems. In the notion of MTL, leveraging the se-
mantic information was investigated inconspicuously through
some matrix decomposition methods in the notion of ten-
sor learning. For example, (Zhuang et al. 2017) proposed a
non-negative matrix factorization-based approach to learn a
common semantic feature space underlying feature spaces of
each task. (Luo, Tao, and Wen 2017) proposed to leveraging
high-order statistics among tasks by analyzing the prediction
weight covariance tensor of them. However, the theoretical
analysis for leveraging the semantic information is still open.

Notations and Preliminaries
Problem Setup
Assuming a set of T tasks {D̂t}Tt=1, each of them is generated
by the underlying distribution Dt over X and by the under-
lying labelling functions ft : X → Y for {(Dt, ft)}Tt=1.
A multi-task (MTL) learner aims to find T hypothesis:
h1, . . . , hT over the hypothesis space H to minimize the
average expected error of all the tasks:

arg min
h∈H

1

T

T∑
i=1

εt(ht),

where εi(hi) ≡ εi(hi, fi) = Ex∼Di
`(hi(x), fi(x)) is the

expected error of task t and ` is the loss function. For each
task i, assume that there are mi examples. For each task
i, we consider a minimization of weighted empirical loss
for each task by defining a simplex αj ∈ ∆T = {αi,j ≥
0,
∑T
j=1 αi,j = 1} for the corresponding weight for task j.

It could be viewed as an explicit indicator of the task relations
revealing how much information leveraged from other tasks.

The empirical loss w.r.t. the hypothesis h for task i could
be defined as,

ε̂αi
(h) =

T∑
j=1

αi,j ε̂j(h), (1)

where ε̂i(h) = 1
mi

∑mi

j=1 `(h(xj), yj) is the average empiri-
cal error for task i.

Most of the existing adversarial based MTL approaches,
e.g. (Mao, Liu, and Lin 2020; Shui et al. 2019), were mo-
tivated by the theory of (Ben-David et al. 2010) using the
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H divergence. However, the H-divergence theory itself is
limited in many scenarios, e.g. when tackling the (seman-
tic) conditional shifts and understanding open set learning
problems (Panareda Busto and Gall 2017; Cao et al. 2018b;
You et al. 2019). In this work, we adopt the Jensen-Shannon
Divergence (DJS) to measure the differences of tasks and
analyze its potentials for controlling the semantic (covariate)
relations i.e. measure the divergence between the tasks.
Definition 1 (Jensen-Shannon divergence). LetDi(x, y) and
Dj(x, y) be two distribution over X × Y , and let M =
1
2 (Di + Dj), then the Jensen-Shannon (JS) divergence be-
tween Di and Dj is,

DJS(Di‖Dj) =
1

2
[DKL(Di‖M) +DKL(Dj‖M)]

where DKL(Di‖Dj) is the Kullback–Leibler divergence.
It has been prevalent in adversarial training based ap-

proaches in transfer learning (Dou et al. 2019; Matsuura
and Harada 2020; Zhao et al. 2019). In practice, we could
compute the Total Variation distance (dTV ) since it is an
upper bound of JS divergence (Lin 1991):

dTV (Di‖Dj) =
1

2
|Di −Dj | (2)

Leverage the Semantic and Label Information
As aforementioned, previous MTL advancements (e.g. (Mao,
Liu, and Lin 2020; Shui et al. 2019)) mostly only matched the
marginal distribution while neglecting the labelling informa-
tion. A successful MTL algorithm should take the semantic
(covariate) conditional information into consideration. For
example, consider the classification of different digits dataset
(e.g. MNIST (Di) and SVHN (Dj)) using MTL, when con-
ditioning on the certain digit category Y = y, it is clear that
Di(x|Y = y) 6= Dj(x|Y = y), indicating the necessity of
considering semantic information in MTL.

Moreover, a long-neglected issue in existing MTL ap-
proaches is that most MTL approaches all implicitly assumed
that the label marginal distribution P(y) are the same. How-
ever, this may not hold. For example, in a medical diagnostics
problem, if the data are collected from different hospitals with
different populations in that area, the label spaces for data
can vary from each other. Label shift refers to the situation
where the source and target distribution have different label
distribution (Redko et al. 2019), i.e., DJS(Di(y),Dj(y)) 6= 0.
While this issue has been investigated in literature by trans-
fer learning (Panareda Busto and Gall 2017; Geng, Huang,
and Chen 2020; Azizzadenesheli et al. 2019), however, the
analysis towards label space shift in MTL is still open.

We show, both theoretically and empirically, that the label
space shift can impair the MTL performance. Our theoreti-
cal and empirical results reveal that a successful multitask
learning algorithm should not only match the semantic dis-
tribution D(x|y) among all the tasks via adversarial training
with J-S divergence but also measure the label distribution
D(y) under a re-weighting scheme for all tasks. Specifically,
we consider the label distribution drift scenario, where the
number of classes is the same to each other across the tasks
while the number of instances in each class has obvious drift,
i.e., imbalanced label distribution for all the tasks.

Methodology and Theoretical Insights
Intuitively, when aligning the distribution of different tasks,
features from the same class should be mapped near to each
other in the feature space satisfying the semantic conditional
relations. We firstly analyze the error bound with the no-
tion of Jensen-Shannon divergence based form to measure
the tasks discrepancies. Then, we further extend the results
to analyze to control the label space divergence and the se-
mantic conditional distribution divergence. All the proofs are
delegated to the supplementary materials.
Theorem 1. LetH be the hypothesis class h ∈ H. Suppose
we have T tasks generated by the underlying distribution
and labelling function {(D1, f1), . . . , (DT , fT )}. Assume the
loss function ` is bounded by L (max(`) − min(`) ≤ L).
Then, with high probability we have

1

T

T∑
t=1

εt(h) ≤ 1

T

T∑
t=1

εαt
(h) +

λ0
4T

L2

+
2

λ0T

T∑
t=1

T∑
i=1

αt,iDJS(Dt(x, y)‖Di(x, y))

where λ0 > 0 is a constant.
Theorem 1 showed that the averaged MTL error is bounded

by an averaged summation of all the tasks, the averaged
summation of task distribution divergence among all pair of
tasks and some constant value.

This bound indicates the joint distribution while we aim
to leverage the label (P(y)) and semantic (P(x|y)) informa-
tion, based on the aforementioned theorem 1, we could then
decompose it into the following results,
Corollary 1. Follow the setting of Theorem 1, we can further
bound the overall task error by

1

T

T∑
t=1

εt(h) ≤ 1

T

T∑
t=1

εαt
(h) + λ DJS(Dt(y)‖Di(y))︸ ︷︷ ︸

Label distribution divergence

+ λ E
y∼Dt(y)

DJS(Dt(x|y)‖Di(x|y))︸ ︷︷ ︸
Semantic distribution divergence

+ λ E
y∼Di(y)

DJS(Dt(x|y)‖Di(x|y))︸ ︷︷ ︸
Semantic distribution divergence

+
λ0
4T

L2

where λ ∈ RT×T is the corresponding matrix whose t-th
row and i-th column element is 2

λ0T

∑T
t=1

∑T
i=1 αt,i

Remark: Different from (Shui et al. 2019; Mao, Liu, and
Lin 2020), which were motivated by (Ben-David et al. 2010),
our theoretical results do not rely on extra assumption of the
existence of the optimal hypothesis to achieve a small com-
bined error. Besides, our results also provide new insight by
take advantage of label information and semantic conditional
relations.

Corollary 1 implies that the averaged error over all tasks
is bounded by the summation of task errors (the first term

11090



Algorithm 1 The Global Semantic Matching Method
Input: Training set from each tasks
Parameter: Feature extractor θf ; decay parameter γ
Output: The semantic loss

1: for k=1 to K do
2: CkDi

← 1
|Dk

i |
∑

(xi,yi)∈Dk
i
θf (xi)

3: CkDj
← 1
|Dk

j |
∑

(xj ,yj)∈Dk
j
θf (xj)

4: Ck
Di
← γCkDi

+ (1− γ)CkDi

5: Ck
Dj
← γCkDj

+ (1− γ)CkDj

6: LS ← LS + Φ(CDi
, CDj

)
7: end for
8: return LS

in R.H.S. of Corollary 1), the label distribution divergence
(the second term), a constant term (the third term), and the se-
mantic distribution divergence term (the last two terms). The
first term could be easily optimized by a general supervised
learning loss (e.g. the cross-entropy loss). To minimize this
bound now is equivalent to match the semantic distribution
among the tasks and measure the label divergence. Since the
labels of each task samples are available to the learner, we
could leverage the label and semantic information directly.

Label Re-weighting Loss

Corollary 1 indicates that the error is also controlled by the
label divergence term DJS(Di(y)‖Dj(y)). To reduce the in-
fluences caused by the label space shifts, we could adopt a
label correction re-weighting loss (Lipton, Wang, and Smola
2018) based on the number of instances in each class,

ε̂βDi
(h) =

∑
(xi,yi)∈D̂i

β(yi)`(h(xi), yi)) (3)

where β ∈ RK×1 is weight for each class, and βj is the
weight for class yj . For task i with total mi instances, the
weight of class k ∈ K (K is the total number of classes) is
computed by βk =

∑ |#y=yk|
mi

. This re-weighting scheme
guarantees the instances from different classes could have
equal probability to be sampled when training the model,
which re-weights the loss according to frequency of each
class that occurs during training. By doing so, the learner
will not neglect those classes who have fewer instances and
therefore takes care of label drift.

Note: the coefficient β is computed for re-weighting the
loss from each task while α is a set of weights indicating
the relations between each other, i.e. how much information
leveraged from other tasks.

When training the model, we maintain the task specific
loss Li = ε̂βDi

(h) and compute the total classification loss

LC =
T∑
i=1

αiε̂
β
Di

(h) (4)

Shared Feature
 Extractor

Task Specific 
Classifiers

Labelled
Features

Task 1

Task i

Task T
Semantic

Loss

Figure 1: The overall model architecture

Semantic Matching and Task Relation Update
To compute Eq. 4, we still need to estimate the task relation
coefficients α. As it indicates the relations between tasks, we
are not able to measure its value at the beginning. To a better
estimation, we need to update the coefficient α automatically
during the training process. Through Corollary 1, we could
solve the coefficients via an convex optimization as

min
α1,...,αT

LC +
T∑

i,t=1

αt,i
∑

y
(D̂i(y) + D̂t(y)))Ei,t

+

T∑
t=1

||αt||2

s.t.
∑
t

αt = 1

(5)

where Ei,t = DJS

(
D̂t(x|y)‖D̂t(x|y)

)
is the empirical se-

mantic distribution divergence.
To align the semantic distribution, we adopt the centroid

matching method by computing the Euclidean distance be-
tween two centroids in the embedding space. Denote CkDi

and CkDj
by two feature centroids from class k of distribution

Di and Dj respectively, it could be computed by,

Φ(CkDi
, CkDj

) = ||CkDi
− CkDj

||2 (6)

Algorithm 2 The proposed Semantic Multi-task learning
algorithm

Require: Samples from different tasks {D̂t}Tt=1, initial co-
efficients {αt}Tt=1 and learning rate η

Ensure: Neural network θf , {θCt }Tt=1 and coefficient
α1, . . . ,αT

1: while Algorithm Not converge do
2: for min-batch {(xbt ,ybt)} from task {D̂t}Tt=1 do
3: Compute the classification objective LC by Eq. 4
4: Compute the semantic matching objective LS via

Algorithm 1
5: Update the network parameters θf ,θct by:

θf ← θf − η ∂LC+LS

∂θf and θct ← θct − η ∂LC+LS

∂θc
t

6: end for
7: Update {αt}Tt=1 by optimizing over Eq. (5).
8: end while
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3K 5K 8K
Approach M M-M S avg. M M-M S Avg. M M-M S Avg.
Vanilla 93.9 77.1 57.3 76.1 96.3 79.1 68.0 81.1 97.7 83.7 71.4 84.2
Weighed 89.3 76.4 70.2 78.3 91.8 74.2 73.6 79.8 92.3 76.9 74.1 81.1
Adv.H 90.1 81.2 70.8 80.7 91.9 83.7 73.6 82.9 94.9 85.2 79.1 86.4
Adv.W 96.8 81.3 69.5 82.5 97.5 83.4 72.6 84.5 98.1 84.3 75.4 86.1
Multi-Obj. 97.5 76.9 54.8 76.4 98.2 80.2 61.2 79.9 98.5 82.8 69.9 83.7
AMTNN 96.9 80.8 77.1 84.9 97.7 83.6 78.4 86.6 98.1 83.1 80.2 87.1
Ours 95.4 80.1 81.5 85.7 95.8 82.4 83.3 87.2 96.0 83.9 85.4 88.4

Table 1: The empirical results (in %) on the digits datasets.

10% 15% 20%
Approach A C P S avg. A C P S avg. A C P S avg.
Vanilla 78.8 81.8 87.1 83.4 82.8 82.8 86.7 89.3 84.9 85.9 84.1 87.9 90.5 85.8 87.1
Weighted 82.7 86.2 89.7 84.9 85.9 85.1 87.9 91.2 87.3 87.9 86.1 89.7 92.1 88.4 89.1
Adv.W 78.8 83.9 87.6 84.0 83.6 83.6 84.8 84.7 84.0 84.2 83.5 89.5 91.4 87.3 87.9
Adv.H 76.8 84.3 88.3 84.0 83.3 82.6 87.8 89.9 86.1 86.6 84.4 87.6 91.5 88.3 87.9
Multi-Obj. 79.4 83.4 87.0 82.9 83.2 82.7 87.5 89.1 86.5 86.4 84.3 88.7 91.0 88.8 88.2
AMTNN 82.8 86.7 91.3 81.2 85.5 85.1 88.8 92.9 85.8 88.2 87.4 89.9 93.7 87.7 89.7
Ours 80.6 87.9 94.4 91.9 88.9 83.4 89.8 94.5 93.1 90.2 86.3 91.6 95.5 93.8 91.8

Table 2: The empirical results (in %) on PACS dataset with AlexNet as feature extractor.

Method A C D W avg.
Vanilla 84.2 80.6 90.8 81.8 84.3
Weighted 88.1 81.5 94.9 94.2 88.6
Adv.H 81.5 73.8 91.4 86.1 83.3
Adv.W 84.9 80.9 94.5 87.5 86.9
Multi-Obj. 82.3 76.7 91.2 86.8 84.3
AMTNN 89.3 84.3 98.4 94.1 91.7

Ours 90.9 85.3 98.1 94.2 92.1

Table 3: Average test accuracy (in %) of MTL algorithms on
Office-Caltech dataset with AlexNet as feature extractor.

Then, we re-visited the moving average centroid method
by (Xie et al. 2018) where a global centroid matrix was main-
tained to compute the semantic information between a labeled
source and an unlabeled target distribution in DA problem.
Unlike (Xie et al. 2018), we could explicitly measure the se-
mantic distribution across all the tasks rather than through as-
signing pseudo labels to compute them. We illustrate the mod-
ified moving average centroid method, namely The Global
Semantic Matching Method in Algorithm 1.

Remark: In Algorithm 1, LS is an approximation of the
total variation distance (see Eq. 2) of the two centroids,
which is an upper bound of DJS (Di(x|y),Dj(x|y)). Com-
pared with adversarial training based method, this semantic
matching process does not need to train pair-wised discrim-
inators, which may help to reduce the computational costs.
For example, for m tasks, (Shui et al. 2019) needs to train
m(m−1)

2 discriminators. When the number of tasks increase,
the training procedure may become time-inefficient.

The Full Objective and Proposed Algorithm
With the key components introduced in previous sections,
we could summarize the full method. A general model ar-
chitecture is provided in Fig. 1. The model learns multiple
tasks jointly by a shared feature extractor. For each task, we
implement a task-specific classifier. The classifier was trained
under a re-weighting loss via measuring label distribution of
each task, and we also maintain the semantic loss to match
the semantic distribution across tasks to achieve the semantic
transfer objective. The proposed Semantic Multi-task learn-
ing (SMTL) method is illustrated in Algorithm 2

Experiments and Analysis
We examined the proposed approach comparing with sev-
eral baselines on Digits, PACS (Li et al. 2017), Office-
31 (Saenko et al. 2010), Office-Caltech (Gong et al. 2012)
and Office-home (Venkateswara et al. 2017) dataset. For the
Digits benchmark, we evaluate the algorithms on MNIST
(M), MNIST-M (M-M) and SVHN (S) simultaneously. The
PACS dataset contains images from four tasks: Photo (P), Art
painting (A), Cartoon (C), Sketch (S), with objects from 7
classes. Office-31 dataset contains three different tasks: Ama-
zon (A), Dslr (D) and Webcam (W); Office-Caltech contains
four different tasks: Amazon (A), Dslr (D), Webcam (W) and
Caltech (C); Office-home contains four different tasks: Art
(Ar), Clipart (Cl), Product (Pr) and Real World (Rw).

To evaluate the performance of our proposed algorithm,
we re-implement and compare our method with the following
principled approaches:

• Vanilla MTL: Learning all the tasks simultane-
ously while optimizing the average summation loss:
1
T

∑T
t=1 ε̂t(θ

f ,θct), i.e., compute the loss uniformly.
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5% 10% 20%
Approach A D W avg. A D W avg. A D W avg.
Vanilla 61.3 71.8 72.1 68.3 73.2 80.6 82.1 78.6 79.4 91.2 93.1 87.9
Weighted 63.3 87.4 84.9 78.5 70.6 92.1 88.4 83.7 76.8 96.6 95.6 89.7
Adv.W 66.5 71.8 69.9 69.7 74.7 85.9 85.7 82.1 79.3 93.8 92.2 88.4
Adv.H 65.8 73.5 71.4 70.2 71.0 84.1 89.4 81.4 79.7 93.7 93.7 89.1
Multi-Obj. 68.9 72.5 72.3 71.3 74.6 86.8 86.9 82.8 79.2 92.1 94.7 88.6
AMTNN 63.3 80.1 85.4 79.3 71.3 92.8 89.6 84.6 80.2 94.2 94.4 89.6

Ours 68.5 87.9 86.5 80.9 75.7 92.8 90.8 86.4 81.1 96.5 96.1 91.2

Table 4: The empirical results (in %) on Office-31 dataset with ResNet-18 as feature extractor.

5% 10% 20%
Approach Ar Cl Pr Rw avg. Ar Cl Pr Rw avg. Ar Cl Pr Rw avg.
Vanilla 26.2 30.1 57.6 47.4 40.3 35.8 43.3 67.1 56.8 50.7 45.5 56.1 74.4 62.6 59.6
Weighted 26.8 31.8 59.2 50.5 42.1 38.2 45.3 69.1 58.3 52.7 47.9 56.7 75.6 64.8 61.2
Adv.W 26.8 32.7 58.3 47.1 41.2 38.5 44.4 67.6 59.5 52.3 47.9 56.7 75.4 65.7 61.3
Adv.H 27.7 32.1 59.6 51.1 42.7 39.0 45.8 69.4 58.8 53.2 46.7 56.5 75.6 65.1 61.0
Multi-Obj. 25.6 31.7 58.7 51.5 41.8 34.6 43.3 66.1 56.8 50.2 46.2 56.6 74.3 62.8 59.8
AMTNN 32.5 34.5 56.3 49.9 43.3 41.1 47.5 68.4 58.9 53.9 48.9 60.7 75.4 64.7 62.1

Ours 38.3 40.9 62.3 55.5 49.2 43.8 50.4 71.3 62.3 57.1 51.2 60.6 77.9 66.1 64.3

Table 5: The empirical results (in %) on Office-home dataset with ResNet-18 as feature extractor.

Method A D W avg.
Cls. only 79.4 91.2 93.1 87.9
w.o. re-weighting 80.2 94.7 94.1 89.6
w.o. sem. matching 79.8 96.1 95.4 90.4
w.o. cvx opt. 80.7 96.8 95.3 90.9
Full method 81.1 96.5 96.1 91.2

Table 6: Ablation studies on Office-31 dataset.

• Weighted MTL: Adapted from (Murugesan et al. 2016),
learning a weighted summation of losses over different
tasks: 1

T

∑T
t=1 ε̂αt

(θf ,θct)

• Adv.H: Adapted from (Liu, Qiu, and Huang 2017) by using
the same loss function while training withH-divergence
as adversarial objective.

• Adv.W: Replace the adversarial loss of Adv.H by Wasser-
stein distance based adversarial training method.

• Multi-Obj.: Adapted from (Sener and Koltun 2018), cast-
ing the multi-task learning problem as a multi-objective
problem

• AMTNN: Adapted from (Shui et al. 2019), a gradient re-
versal layer with Wasserstein adversarial training method.

Experiments on Benchmark Datasets
We first evaluate the MTL algorithms on Digits dataset. In or-
der to show the effectiveness of MTL methods when dealing
with small amount of labelled instances, we follow the eval-
uation protocol of (Shui et al. 2019) by randomly selecting

3k, 6k and 8k instances of the training dataset and choose 1k
dataset as validation set while testing one the full test set. For
the SVHN dataset, we resize the images to 28× 28× 1, ex-
cept for that, we do not apply any data-augmentation towards
to digits dataset. A LeNet-5 (LeCun et al. 1998) model is
implemented as feature extractor and three 3-layer MLPs are
deployed as task-specific classifiers, and extract the semantic
feature from the classifier with size 128. We adopt the Adam
optimizer (Kingma and Ba 2014) for training the model from
scratch. The model is trained for 50 epochs while the initial
learning rate is set by 1× 10−3 and is decayed 5% for every
5 epochs. The results are reported in Table 1.

For the computer vision applications, we then test the
SMTL algorithm comparing with the baselines on PACS and
Caltech datasests using the AlexNet (Krizhevsky, Sutskever,
and Hinton 2012) as feature extractor. For investigating the
performance when limited amount labelled instances are
available, we evaluate the algorithms on PACS dataset ran-
domly select 10%, 15% and 20% of the total dataset for
training, respectively. Since this Office-Caltech dataset is
relatively small, we only test the dataset by using 20% of
the total images to train the model. We use the pre-trained
AlexNet provided by PyTorch (Paszke et al. 2019) while re-
moving the last FC layers as feature extractor (out feature size
4096). On top of the feature extractor, we implement several
MLPs as task-specific classifiers. The test results are reported
in Table 2 and Table 3, respectively. After that, we then eval-
uate the algorithms on Office-31 and Office-Home dataset
by randomly select 5%, 10% and 20% training samples with
pre-trained ResNet-18 model of PyTorch while removing the
last FC layers as feature extractor (out feature size 512). For
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Figure 2: Relative time comparison (one training epoch) of
the MTL algorithm on different benchmarks.

these four vision benchmarks we follow the pre-processing
and train/val/test protocol by (Long et al. 2017; Cao et al.
2018a; Li et al. 2017). We adopt the Adam optimizer with
initial learning rate 2×10−4 and decayed 5% every 5 epochs
while totally training for 80 epochs. For stable training, we
also enable the weight-decay in Adam optimizer to enforce
a L2 regularization. The test results are reported in Table 4
and 5, respectively.

From Table. 1∼ 5, we could observe that our proposed
method could outperform the baselines and improve the
benchmark performances with state-of-the-art performances.
Particularly, we found that when there are only few of la-
belled instances (e.g. 5% of the total instances), our method
could have a large margin of improvements regarding the
baselines. This confirms the effectiveness of our methods
when dealing with limited data.

Further Analysis
Ablation Studies In order to investigate the effectiveness
of each component of our method, we conduct ablation stud-
ies (Table 6) of the proposed method on Office-31 dataset
(20% of total instances) with four ablations, namely 1) Cls.
only: remove all of the re-weighting scheme, semantic match-
ing and the convex optimization towards updating α; 2) w.o.
re-weighting: removing the re-weighting scheme inside the
label weighting loss; 3) w.o. sem. matching: omitting the se-
mantic matching; and 4) w.o. cvx. opt.: omit the optimization
procedure for updating α, i.e, Eq. (5). The results showed
that the label re-weighting scheme is crucial for the algo-
rithm. Besides, we also observe −1.0% drop when omitting
the semantic matching procedure and −0.5% once we omit
the convex optimization procedure for α.

Time Efficiency As our method doesn’t rely on adversar-
ial training, it has better time efficiency. We compare the
time-efficiency of the MTL algorithms on Digits (8k), PACS
(20%), Office-31 (20%) and Office-home (20%) datasets, and
report the time comparison of one training epoch in a relative
percentage bar chart in Fig. 2. The adversarial based train-
ing methods (Adv.H, Adv.W and AMTNN) take longer time
for a training epoch, especially on the Office-home dataset.
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Figure 3: Performance comparison under label distribution
drift scenario. Left: Evaluations on Office-31 dataset with dif-
ferent drift ratio; Right: Evaluations on Office-Home dataset
with different drift ratio.

Take the improved performance (Table 1∼5) into considera-
tion. Our method could improve that benchmark performance
while reduce the time needed for training. This also demon-
strates the benefits of algorithm in terms of time-efficiency.

Performance under Label Shift We evaluate the MTL
algorithms’ performance under label shift situation where the
label distribution drifts, i.e., the number of classes keeps the
same with original one while some classes drift by a certain
percentage for a specific task on Office-31 and Office-home
dataset. The drift simulation is implemented as keeping all
the classes within all the tasks while simulating a significant
label distribution drift by randomly drop out some part of
the instances of certain tasks. For Office-31 dataset, the task
Amazon’s class 1 ∼ 10, task Dslr’s class 10 ∼ 20 and task
Webcam’s class 21 ∼ 30 are drifted with different ratios
(10% ∼ 80%) while for Office-home dataset, we drift classes
1 ∼ 16 of Art, classes 17 ∼ 32 of Clipart, classes 33 ∼ 48
of Product, and classes 49 ∼ 64 of Real World with different
ratios (10% ∼ 80%).

We show the performance under label distribution drift
ranging from 10% ∼ 80% on Office-31 dataset (left) and on
Office-Home dataset (right) in Fig. 3. As we could observe
from Fig. 3, when the label space drifts, all the algorithms
drop off. Our algorithm could outperform the baselines with
a large margin when label space shift. This demonstrates the
benefits of our algorithm for handling label shift problems.

Conclusion
We propose to leverage the labeling information across dif-
ferent tasks in multi-task learning problems. We first theoreti-
cally analyze the generalization bound of multi-task learning
based on the notion of Jensen-Shannon divergence, which
provides new insights into the value of label information by
exploiting the semantic conditional distribution in multi-task
learning. Our theoretical results also lead to a concrete al-
gorithm that jointly matches the semantic distribution and
controls label distribution divergence. The empirical results
demonstrates the effectiveness of our algorithm on improving
the benchmark performance with better time efficiency and
particularly show the benefits when label distribution shift.
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