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Abstract

Automated data augmentation has shown superior perfor-
mance in image recognition. Existing works search for dataset-
level augmentation policies without considering individual
sample variations, which are likely to be sub-optimal. On the
other hand, learning different policies for different samples
naively could greatly increase the computing cost. In this paper,
we learn a sample-aware data augmentation policy efficiently
by formulating it as a sample reweighting problem. Specifi-
cally, an augmentation policy network takes a transformation
and the corresponding augmented image as inputs, and outputs
a weight to adjust the augmented image loss computed by a
task network. At training stage, the task network minimizes
the weighted losses of augmented training images, while the
policy network minimizes the loss of the task network on a
validation set via meta-learning. We theoretically prove the
convergence of the training procedure and further derive the
exact convergence rate. Superior performance is achieved on
widely-used benchmarks including CIFAR-10/100, Omniglot,
and ImageNet.

Introduction
Data augmentation is widely used to increase the diver-
sity of training data in order to improve model generaliza-
tion (Krizhevsky, Sutskever, and Hinton 2012; Srivastava,
Greff, and Schmidhuber 2015; Han, Kim, and Kim 2017;
DeVries and Taylor 2017; Zhang et al. 2017; Yun et al. 2019).
Automated data augmentation that searches for data-driven
augmentation policies improves the performance of deep
models in image recognition compared with the manually
designed ones. A data augmentation policy is a distribution of
transformations, according to which training samples are aug-
mented. Reinforcement learning (Cubuk et al. 2019a; Zhang
et al. 2020), population-based training (Ho et al. 2019), and
Bayesian optimization (Lim et al. 2019) have been employed
to learn augmentation policies from target datasets. Despite
the difference of search algorithms, these approaches search
for policies at the dataset level, i.e., all samples in the dataset
are augmented with the same policy. For an image recogni-
tion task, left translation may be suitable for the image where
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the target object is on the right, but may not be suitable for
the image where the target object is on the left (see Figure 4).
According to this observation, dataset-level polices may give
rise to various noises such as noisy labels, misalignment,
or image distortion, since different samples vary greatly in
object scale, position, color, illumination, etc.

To increase data diversity while avoiding noises, it is ap-
pealing to learn a sample-aware data augmentation policy,
i.e., learning different distributions of transformations for
different samples. However, it is time-consuming to evaluate
a large number of distributions and non-trivial to determine
the relation among the distributions. Augmenting training
samples with the corresponding policies, we consider the
augmented sample loss as a random variable and train a
task network to minimize the expectation of the augmented
sample loss. From this perspective, learning a sample-aware
policy can be regarded as reweighting the augmented sample
losses and the computing cost can be greatly reduced.

In this paper, we propose an efficient method, called
MetaAugment, to learn a sample-aware data augmentation
policy by formulating it as a sample reweighting problem. An
overview of the proposed method is illustrated in Figure 1.
Given a transformation and the corresponding augmented
image feature, extracted by a task network, an augmenta-
tion policy network outputs the weight of the augmented
image loss. The task network is optimized by minimizing the
weighted training loss, while the goal of the policy network
is to improve the performance of the task network on a val-
idation set via adjusting the weights of the losses. This is a
bilevel optimization problem (Colson, Marcotte, and Savard
2007) which is hard to be optimized. We leverage the mech-
anism of meta-learning (Finn, Abbeel, and Levine 2017; Li
et al. 2017; Ren et al. 2018; Wu et al. 2018; Liu, Simonyan,
and Yang 2019; Shu et al. 2019) to solve this problem. The
motivation is based on the ability of meta-learning to extract
useful knowledge from related tasks. During training, clas-
sification for each batch of samples is treated as a task. The
policy network acts as a meta-learner to adapt the task net-
work with the augmented samples such that it can perform
well on a batch of validation samples. Instead of learning
an initialization for fast adaptation in downstream tasks, the
policy network learns to augment while guiding the actual
training process of the task network. We also propose a novel
transformation sampler that samples transformations accord-
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Figure 1: An overview of the proposed MetaAugment. The augmentation policy network outputs the weights of the augmented
image losses and is learned to evaluate the effectiveness of different transformations for different training images via meta-
learning, while the task network is trained to minimize the weighted training loss alternately with the updating of the policy
network. For higher training efficiency, the transformation sampler samples transformations according to a distribution refined
with the training process of the policy network.

ing to a distribution estimated by the outputs of the policy
network. In principle, the distribution reflects the overall ef-
fectiveness of the transformations for the whole dataset and
the transformation sampler can avoid invalid ones to improve
the training efficiency. Furthermore, we theoretically show
the convergence guarantee of our algorithm.

Our main contributions can be summarized as follows:
1) We propose MetaAugment to learn a sample-aware

augmentation policy network that captures the variability of
training samples and evaluates the effectiveness of transfor-
mations for different samples.

2) We systematically investigate the convergence proper-
ties under two cases: (i) the policy network has its own feature
extractor; (ii) the policy network depends on the parameters
of the task network. We also point out the exact convergence
rate and the optimization bias of our algorithm.

3) Extensive experimental results show that our method
consistently improves the performance of various deep net-
works and outperforms previous automated data augmenta-
tion methods on CIFAR-10/100, Omniglot, and ImageNet.

Related Work
Automated Data Augmentation. There are rich studies on
data augmentation in the past few decades, while automated
data augmentation is a relatively new topic. Inspired by neu-
ral architecture search, AutoAugment (Cubuk et al. 2019a)
adopts reinforcement learning to train a controller to gener-
ate augmentation policies such that a task network trained
along with the policies may have the highest validation ac-
curacy. Adversarial AutoAugment (Zhang et al. 2020) trains
a controller to generate adversarial augmentation policies
that increase the training loss of a task network. Inspired by
hyper-parameter optimization, PBA (Ho et al. 2019) learns

an epoch-aware augmentation schedule instead of a fixed
policy for all training epochs. Following Bayesian optimiza-
tion, FAA (Lim et al. 2019) searches for policies that match
the distribution of augmented data with that of unaugmented
data. DADA (Li et al. 2020) proposes to relax the discrete se-
lection of augmentation policies to be differentiable and uses
gradient-based optimization to do policy search. These meth-
ods overlook the variability of training samples and adopt
the same policy for all samples. RandAugment (Cubuk et al.
2019b) shows that hyper-parameters in such policies do not
affect the results a lot. Our method learns a sample-aware pol-
icy network that associates different pairs of transformations
and augmented samples with different weights.
Sample Reweighting. There are many studies on sample
reweighting for specific issues, e.g., class imbalance (John-
son and Khoshgoftaar 2019) and label noise (Zhang and
Sabuncu 2018). Among them, there are mainly two types of
weighting functions. The first one, suitable for class imbal-
ance, is to increase the weights of hard samples (Freund and
Schapire 1995; Johnson and Khoshgoftaar 2019; Malisiewicz,
Gupta, and Efros 2011; Lin et al. 2017), while the second one,
suitable for noise label, is to increase the weights of easy sam-
ples (Kumar, Packer, and Koller 2010; Jiang et al. 2014a,b;
Zhang and Sabuncu 2018). Instead of manually designing
the weight functions, Ren et al. (2018) propose an online
reweighting method that learns sample weights directly from
data via meta-learning. Meta-Weight-Net (Shu et al. 2019)
adopts a neural network to learn the mapping from sample
loss to sample weight, which stabilize the weighting behavior.
Wang et al. (2019) train a scorer network to up-weight train-
ing data that have similar loss gradients with validation data
via reinforcement learning. Different from these works, our
policy network aims to evaluate different transformations for
different samples and assign weights to augmented samples.

11098



Methodology
Sample-Aware Data Augmentation
Consider an image recognition task with the training set
Dtr = {(xi, yi)}N

tr

i=1 , where yi is the label of the image xi,
and N tr is the sample size. Training samples are augmented
by various transformations. Each transformation consists of
two image processing functions, such as rotation, translation,
coloring, etc., to be applied in sequence. Each function is
associated with a magnitude that is rescaled to and sampled
uniformly from [0, 10]. Given K image processing functions
in order, let T m1,m2

j,k (xi) be a transformation applied on an
image xi with j-th and k-th functions in order and the mag-
nitudes are m1 and m2, respectively.

Intuitively, not all of the augmented samples may help
to improve the performance of a task network, and thus, an
augmentation policy network is proposed to learn the effec-
tiveness of different transformations for different training
samples. Let f(xi;w) be the task network with parameters
w. By abuse of notation, the deep feature of xi extracted by
the task network is also denoted by f(xi;w). For each pair
of augmented sample feature f(T m1,m2

j,k (xi);w) and the em-
bedding of the applied transformation e(T m1,m2

j,k ), the policy
network P (·, · ;θ) with parameters θ takes the pair as input
and outputs a weight that is imposed on the augmented sam-
ple lossLi,j,k(m1,m2;w) = `(f(T m1,m2

j,k (xi);w), yi). The
task network is trained to minimize the following weighted
training loss:

Ltr(w,θ) = 1

N tr

Ntr∑
i=1

1

K2

K∑
j,k=1

Em1,m2∼U(0,10)

[
Pi,j,k(m1,m2;w,θ)Li,j,k(m1,m2;w)

]
,

where

Pi,j,k(m1,m2;w,θ) = P (f(T m1,m2
j,k (xi);w), e(T m1,m2

j,k );θ)

and U(0, 10) denotes the uniform distribution over [0, 10].
The objective of the policy network is to output the accu-
rate sample weights such that the task network has the best
performance on a validation set Dval = {(xvali′ , yvali′ )}Nval

i′=1

via minimizing Ltr(w,θ). Mathematically, we formulate the
following optimization problem:

min
θ

Lval(w∗(θ)) = 1

Nval

Nval∑
i′=1

Lvali′ (w∗(θ))

subject to w∗(θ) = argmin
w

Ltr(w,θ),
(1)

where Lvali′ (w∗(θ)) = `(f(xvali′ ;w∗(θ)), yvali′ ). This is a
bilevel optimization problem (Colson, Marcotte, and Savard
2007), which is hard to solve since as the updating of θ, the
parameters of the task network are required to be optimized
accordingly. Recent works (Ren et al. 2018; Wu et al. 2018;
Liu, Simonyan, and Yang 2019; Shu et al. 2019) use meta-
learning techniques to get approximate optimal solutions for
such bilevel optimization problems. We also leverage meta-
learning and employ the updating rules proposed in (Shu et al.
2019; Li et al. 2017; Antoniou, Edwards, and Storkey 2019)
to solve problem (1).

Proposed MetaAugment Algorithm
The policy and task networks are trained alternately. For each
iteration, a mini-batch of training data Dtrmi = {(xi, yi)}n

tr

i=1

with batch size ntr is sampled and for each xi, a transforma-
tion T m1,m2

ji,ki
is sampled to augment xi. For notation simplic-

ity, let Pi(w,θ) = P (f(T m1,m2

ji,ki
(xi);w), e(T m1,m2

ji,ki
);θ)

and Li(w) = `(f(T m1,m2

ji,ki
(xi);w), yi). Then the inner loop

update of w in iteration t+ 1 is

ŵ(t)(θ, α) = w(t) − α 1

ntr

ntr∑
i=1

Pi(w
(t),θ)∇wLi(w

(t)), (2)

where α is a learnable learning rate (Li et al. 2017; An-
toniou, Edwards, and Storkey 2019) and ∇wLi(w

(t)) =
∇wLi(w)

∣∣
w(t) . We adopt a learnable α because it is unclear

how to set the learning rate schedule manually for this inner
loop update and proper schedules may vary for different train-
ing datasets. We regard Pi(w,θ) as a function of θ and do
not take derivative of Pi(w,θ) with respect to w in Eq. (2).
This is because Pi(w,θ) shall be fixed when updating w
and the weighted training loss shall not be minimized via
minimizing Pi(w,θ). It can also avoid a second-order deriva-
tive when updating the policy network, which otherwise will
substantially increase the computational complexity.

The formulation ŵ(t)(θ, α) is regarded as a function of θ
and α, and then θ and α can be updated via the validation
loss computed by ŵ(t)(θ, α) on a mini-batch of validation
samplesDvalmi = {(xvali′ , yvali′ )}nval

i′=1 with batch size nval. The
outer loop updates of θ and α are formulated by

(θ(t+1), α(t+1)) = (θ(t), α(t))

− β 1

nval

nval∑
i′=1

∇(θ,α)L
val
i′ (ŵ(t)(θ(t), α(t))), (3)

where β is a learning rate and ∇(θ,α)L
val
i′ (ŵ(t)(θ(t), α(t)))

= ∇(θ,α)L
val
i′ (ŵ(t)(θ, α))

∣∣
(θ(t),α(t))

. The third step in itera-

tion t+ 1 is the outer loop update of w(t) with the updated
θ(t+1):

w(t+1) = w(t) − γ 1

ntr

ntr∑
i=1

Pi(w
(t),θ(t+1))∇wLi(w

(t)), (4)

where γ is a learning rate. With these updating rules, the two
networks can be trained efficiently.

Although the policy network outputs the weights that eval-
uate the importance of the augmented samples, sampling
invalid transformations constantly may lead to poor training
efficiency. We propose a novel transformation sampler that
sample transformations according to a probability distribution
estimated by the outputs of the policy network and refined
with the training process of the policy network. Specifically,
let {P (f(T m1,m2

ji,ki
(xi);w), e(T m1,m2

ji,ki
);θ)}r·ntr

i=1 denote the
collection of the policy network outputs in the last r itera-
tions. Then the average value of the outputs corresponding
to the transformation with j-th and k-th functions in order
(without magnitude) is estimated by

vj,k =
1

cj,k

r·ntr∑
i=1

∑
ji=j,ki=k

P (f(T m1,m2
ji,ki

(xi);w), e(T m1,m2
ji,ki

);θ),
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Algorithm 1 MetaAugment: Sample-Aware Data Augmenta-
tion Policy Learning

Input: Training data Dtr , validation data Dval, K image process-
ing functions, batch sizes ntr , nval, learning rate β, γ, sampler
hyper-parameters r, s, ε, iteration number T

Output: w(T ), θ(T ), {pj,k}Kj,k=1

1: Initialize w(0), θ(0), α(0), {pj,k = 1
K2 }Kj,k=1;

2: for 0 ≤ t ≤ T − 1 do
3: Sample a mini-batch of training samples Dtrmi with batch

size ntr;
4: For each sample in the mini-batch, sample a transforma-

tion according to pj,k and the corresponding magnitudes
uniformly from [0, 10];

5: Augment the batch data with the sampled transformations;
6: Sample a mini-batch of validation samples Dvalmi with batch

size nval;
7: Compute ŵ(t)(θ, α) according to Eq. (2);
8: Update (θ(t+1), α(t+1)) according to Eq. (3);
9: Update w(t+1) according to Eq. (4);

10: if (t+ 1) mod s = 0 then
11: Update pj,k according to Eq. (5) with the policy network

outputs in the last min(t+ 1, r) iterations;
12: end if
13: end for

where cj,k is the number of terms in the summation. In our
implementation, the output of the policy network is with the
Sigmoid function to ensure the output is positive. To balance
exploration and exploitation, and to avoid the biases caused
by underfitting of the policy network, the sampler samples
each transformation according to the following distribution:

pj,k = (1− ε) · vj,k∑K
l,m=1 vl,m

+ ε · 1

K2
, (5)

where ε is a hyper-parameter, and the corresponding mag-
nitudes are sampled uniformly from [0, 10]. The probability
pj,k is updated every s iterations. This estimated distribution
reflects the overall effectiveness of the transformations for
the whole dataset and evolves synergistically with the pol-
icy network. Dataset-level and sample-level augmentation
policies are combined together by these two modules. The
MetaAugment algorithm is summarized in Algorithm 1.

In each iteration, MetaAugment requires three forward and
backward passes of the task network, which makes it take 3×
training time than a standard training scheme. However, once
trained, the policy network, together with the task network
and the estimated distribution {pj,k}Kj,k=1 can be transferred
to train different networks on the same dataset efficiently.
More details are provided in Appendix.

Convergence Analysis
Motivated by Meta-Weight-Net (Shu et al. 2019), we analyze
the convergence of the proposed algorithm. In technical de-
tails, we release the assumptions of Meta-Weight-Net, e.g.∑∞
t=1 βt ≤ ∞ and

∑∞
t=1 β

2
t ≤ ∞, which are invalid in

many cases. We find a proper trade-off between the training
and validation convergence and exactly point out the con-
vergence rate and the optimization bias. Furthermore, we

systematically investigate two situations: (i) the policy net-
work has its own feature extractor; (ii) the policy network
depends on the feature extractor of the task network. For the
case (i), the convergence is guaranteed on both validation and
training data, while for the case (ii), the conclusion on the
validation data still holds, but the convergence is not ensured
on the training data. However, if the policy network is also
a deep network, it will take nearly 4.5× training time than a
standard training scheme. Also, with limited validation data,
it may overfit and thus make the task network overfit the vali-
dation data. Hence, we choose the latter case in our algorithm.
We assume α is fixed during training and postpone the proof
into Appendix.
Theorem 1. Suppose that the loss function ` has ρ1-bounded
gradients with respect to w under both (augmented) training
data and validation data, ` is Lipschitz smooth with constant
ρ2, the policy network P is differential with a δ1-bounded
gradient and twice differential with its Hessian bounded by
δ2 with respect to θ, and the absolute values of P and ` are
bounded above by C1 and C2, respectively. Furthermore, for
any iteration 0 ≤ t ≤ T − 1, the variance of the weighted
training loss (validation loss) gradient on a mini-batch of
training (validation) samples is bounded above. Let

α =
c log T

T
, β =

√
c′ log log T

T
, γ =

c′′ log T

T
,

for some positive constants c, c′ and c′′. The number of
iterations T is sufficiently large such that αβρ21(αδ

2
1ρ2 +

δ2) < 1 and γC1ρ2 < 1. If the policy network has its own
feature extractor, we have

1

T

T−1∑
t=0

E
[∥∥∇θLval(ŵ(t)(θ(t)))

∥∥2] ≤ O(
log T√

T log log T
), (6)

lim
T→∞

1

T

T−1∑
t=0

E
[
‖∇wLtr(w(t),θ(t+1))‖2

]
= 0. (7)

If the policy network uses the feature extractor of the task
network, the weights in the training loss will change when w
updates. Since we regard P as a fixed weight when updating
w, the weighted training loss at the end of the last iteration is
different from the weighted training loss at the beginning of
the current iteration. The discontinuity leads to a bias term in
the convergence of the weighted training loss.
Theorem 2. Suppose the assumptions of Theorem 1 hold.
Further assume that the policy network P depends on w and
is differential with a δ̃1-bounded gradient with respect to w.
Then we have that (6) still holds and

1

T

T−1∑
t=0

E
[
‖∇wLtr(w(t),θ(t+1))‖2

]
− 2ρ1δ̃1C1C2 ≤ o(1). (8)

According to the proof of Theorem 2, one can find that
under certain conditions, (7) can still hold even if the policy
network depends on the feature extractor of the task network.

Experimental Results
In this section, we evaluate MetaAugment for image recogni-
tion tasks on CIFAR-10/100 (Krizhevsky and Hinton 2009),
Omniglot (Lake et al. 2011), and ImageNet (Deng et al. 2009).
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Dataset Model Baseline AA FAA PBA DADA RA AdvAA MetaAugment

CIFAR-10 WRN-28-10 96.1 97.4 97.3 97.42 97.3 97.3 98.10 97.76±0.04
WRN-40-2 94.7 96.3 96.4 - 96.4 - - 96.79±0.06
Shake-Shake (26 2x96d) 97.1 98.0 98.0 97.97 98.0 98.0 98.15 98.29±0.03
Shake-Shake (26 2x112d) 97.2 98.1 98.1 97.97 98.0 - 98.22 98.28±0.01
PyramidNet+ShakeDrop 97.3 98.5 98.3 98.54 98.3 98.5 98.64 98.57±0.02

CIFAR-100 WRN-28-10 81.2 82.9 82.8 83.27 82.5 83.3 84.51 83.79±0.11
WRN-40-2 74.0 79.3 79.4 - 79.1 - - 80.60±0.16
Shake-Shake (26 2x96d) 82.9 85.7 85.4 84.69 84.7 - 85.90 85.97±0.09
PyramidNet+ShakeDrop 86.0 89.3 88.3 89.06 88.8 - 89.58 89.46±0.11

Table 1: Top-1 test accuracy (%) on CIFAR-10 and CIFAR-100.

Dataset Model AdvAA MetaAugment+MT

CIFAR-10 WRN-28-10 98.10 98.26±0.02
CIFAR-100 WRN-28-10 84.51 85.21±0.09

Table 2: Top-1 test accuracy (%) on CIFAR using Multiple
Transformations (MT) for each sample in a mini-batch.

We show the effectiveness of MetaAugment with different
task network architectures and visualize the learned augmen-
tation policies to illustrate the necessity of sample-aware data
augmentation.

In our implementation, we use K = 14 image processing
functions: AutoContrast, Equalize, Rotate, Posterize, Solar-
ize, Color, Contrast, Brightness, Sharpness, ShearX/Y, Trans-
lateX/Y, Identity (Cubuk et al. 2019b,a; Ho et al. 2019; Lim
et al. 2019; Zhang et al. 2020). The embedding of a particu-
lar transformation T m1,m2

j,k is a 28-dimensional vector with
m1 + 1 in (2j − 1)-th position, m2 + 1 in (2k)-th position,
and 0 elsewhere. For AutoContrast, Equalize, and Identity
that do not use magnitude, we let 11 be in their positions. The
augmentation policy network is an MLP that takes the embed-
ding of the transformation and the corresponding augmented
image feature as inputs, each followed by a fully-connected
layer of size 100 with ReLU nonlinearities. The two inter-
mediate features are then concatenated together, followed by
a fully-connected output layer of size 1. The Sigmoid func-
tion is applied to the output. We also normalize the output
weights of training samples in each mini-batch, i.e., each
weight is divided by the sum of all weights in the mini-batch.
More implementation details and the hyper-parameters we
used are provided in Appendix. All of the reported results are
averaged over five runs with different random seeds.

Results on CIFAR, Omniglot, and ImageNet
CIFAR. CIFAR-10 and CIFAR-100 consist of 50,000 im-
ages for training and 10,000 images for testing. For our
method, we hold out 1,000 training images as the valida-
tion data. We compare MetaAugment with Baseline, Au-
toAugment (AA) (Cubuk et al. 2019a), FAA (Lim et al.
2019), PBA (Ho et al. 2019), DADA (Li et al. 2020),
RandAugment (RA) (Cubuk et al. 2019b), and Adversar-
ial AutoAugment (AdvAA) (Zhang et al. 2020) on Wide-
ResNet (WRN) (Zagoruyko and Komodakis 2016), Shake-

(a) CIFAR-10 (b) CIFAR-100

(c) Omniglot (d) ImageNet

Figure 2: Estimated distributions of transformations on (a)
CIFAR-10, (b) CIFAR-100, (c) Omniglot, and (d) ImageNet.

Shake (Gastaldi 2017), and PyramidNet+ShakeDrop (Han,
Kim, and Kim 2017; Yamada et al. 2018). The Baseline
adopts the standard data augmentation: horizontal flipping
with 50% probability, zero-padding and random cropping.
For MetaAugment, the transformation is applied after hori-
zontal flipping, and then Cutout (DeVries and Taylor 2017)
with 16× 16 pixels is applied.

The mean test accuracy and Standard Deviation (Std Dev)
of MetaAugment, together with the results of other com-
petitors, are reported in Table 1. On both of CIFAR-10
and CIFAR-100, our method outperforms AA, FAA, PBA,
DADA, and RA on all of the models. Compared with AdvAA,
MetaAugment shows slightly worse results on WRN-28-10
and PyramidNet+ShakeDrop, and better results on Shake-
Shake. However, AdvAA trains a task network with a large
batch consisting of samples augmented by 8 augmentation
policies. The Multiple-Transformation-per-sample (MT) trick
leads to better performance but 8×more computing cost than
the regular training. We also compare MetaAugment with Ad-
vAA in the MT setting. Each training sample in a mini-batch
is augmented by 4 transformations and all the augmented
samples are used to train the task network. The results are
illustrated in Table 2. It can be seen that MetaAugment out-
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Model Baseline FAA PBA RA MetaAugment

WRN-28-10 87.89 89.24 89.25 87.86 89.61±0.05
WRN-40-2 85.86 88.72 88.30 88.10 89.12±0.10

Table 3: Top-1 test accuracy (%) on Omniglot.

performs AdvAA in this setting. Moreover, AdvAA assumes
all transformations do not change the labels of data, which
may not be valid in challenging cases. More details can be
found in Figure 3. We visualize the estimated distributions of
transformations in Figure 2. The difference in probability val-
ues is greater on CIFAR-100 than that on CIFAR-10, which
shows the effectiveness of different transformations varies
more on CIFAR-100.

We train the policy network to assign proper weights to
the augmented samples and use all of them to train the task
network instead of rejecting the augmented samples with low
weights. We also conduct experiment on the case that the
policy network rejects the augmented samples with weights
less than the mean of all the weights in a mini-batch. The
results on CIFAR-100 with task networks WRN-28-10 and
WRN-40-2 are 82.57% and 79.01% respectively, which are
worse than the original case. It implies that samples with
small weights are still useful. Ideally, the policy network
can automatically assign very small weights to augmented
samples that hurt the validation accuracy and we need no
additional zeroing. Intuitively, rejecting augmented samples
using a carefully selected threshold number may be helpful,
but it is a bit far from the main idea of this paper.
Omniglot. To investigate the universality of our method, we
conduct experiments on Omniglot which contains images of
1,623 characters instead of natural objects. For each charac-
ter, we select 15, 2, and 3 images as training, validation, and
test data. We compare MetaAugment with Baseline, FAA,
PBA, and RA on WRN. The Baseline models are trained
without data augmentation. For MetaAugment, transforma-
tions are applied to training samples directly with no Cutout
added. For FAA and PBA, we do experiments with their
open-source codes. For RA, we use our own implementation
that randomly samples transformations and adopts the same
weight for augmented samples. Implementation details are
provided in Appendix.

The results are reported in Table 3. It can be seen that
MetaAugment outperforms the Baseline and RA by a wide
margin and still achieves better results than FAA and PBA.
We also visualize the estimated distribution in Figure 2. Dif-
ferent from CIFAR, geometric transformations have low prob-
ability values. This is because the geometric structure is the
key feature of characters and should not be changed a lot
as shown in Figure 3. In contrast, natural images in CIFAR
contain rich texture and color information and less depend
on geometric structure. The results indicate the robustness of
our policy network when dealing with bad transformations.
To compare with adversarial strategy in AdvAA, we visualize
samples selected by adversarial strategy and our strategy, i.e.,
samples with high losses but low weights and those with low
losses but high weights, in Figure 3. In the first two rows,
we observe that geometric transformations with large mag-
nitudes may not preserve the labels and make the characters

 
Original Transformation 

(Magnitude) 
Augmented Weight/Loss Hard 

Negative 

 

Identity 
TranslateY (m=9.8) 

 

0.08/4.97 

 

 

Rotate (m=9.9) 
Rotate (m=9.4) 

 

0.02/9.71 

 

 

Identity 
TranslateY (m=2.5) 

 

0.32/0.02 

 

 

AutoContrast 
ShearX (m=9.1) 

 

0.35/0.01 

 

Figure 3: Examples of augmented samples on Omniglot.
Here, hard negative means a validation sample w.r.t. sim-
ilar feature map but different label.

look like samples of different classes (the hard negatives).
In this case, AdvAA that prefers the transformations lead-
ing to large sample losses may harm the performance. In
the last two rows, we observe that our method prefers the
transformations that preserve the labels and key features of
the augmented samples. Our method is more robust when
many bad augmentation transformations are introduced in
the search space.
ImageNet. ImageNet consists of colored images in 1,000
classes, with about 1.2 million images for training. For each
class, we hold out 2% of training images for validation. We
compare MetaAugment with Baseline, AA, FAA, DADA,
RA, and AdvAA on ResNet-50 (He et al. 2016a) and ResNet-
200 (He et al. 2016b). The Baseline models are trained with
the standard Inception-style pre-processing (Szegedy et al.
2015). For MetaAugment, the transformation is applied af-
ter random cropping, resizing to 224× 224, and horizontal
flipping with 50% probability.

The results are presented in Table 4. MetaAugment
outperforms all the other automated data augmentation
methods. The model ResNet-50 is trained with Multiple-
Transformation-per-sample trick, i.e., each training sample in
a mini-batch is augmented by 4 transformations. By assign-
ing proper weights to the augmented samples, MetaAugment
achieves superior performance. The estimated distribution of
transformations is visualized in Figure 2. Transformations
with Sharpness, ShearX, and ShearY have high probability
values, while transformations with Equalize, Solarize, and
Posterize have low probability values. To illustrate the neces-
sity of sample-aware data augmentation, we display some
augmented samples with high and low learned weights in
Figure 4. Similar transformations may have very different
effects on different images. The policy network imposes high
weights on the augmented images with elephant and duck
that increase the diversity of training data, and imposes low
weights on the augmented images with cock and scorpion that
lose semantic information caused by the translation. Even
for transformations with Equalize, Solarize, and Posterize
that have low priority at the dataset level, the policy net-
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Model Baseline AA FAA DADA RA AdvAA MetaAugment

ResNet-50 76.3 / 93.1 77.6 / 93.8 77.6 / 93.7 77.5 / 93.5 77.6 / 93.8 79.40 / 94.47 79.74±0.08 / 94.64±0.03
ResNet-200 78.5 / 94.2 80.0 / 95.0 80.6 / 95.3 - - 81.32 / 95.30 81.43±0.08 / 95.52±0.04

Table 4: Top-1 / Top-5 test accuracy (%) on ImageNet.

(a) Augmented samples with high weights

(b) Augmented samples with low weights

Figure 4: Examples of augmented samples with (a) high and
(b) low weights on ImageNet.

work is learned to assign high weights to informative images
augmented by such transformations, as shown in Figure 4(a).

Ablation Studies
Transformation Sampler. In the transformation sampler
module, the hyper-parameter ε in Eq. (5) determines the
probability of random sampling transformations. To investi-
gate the influence of ε, we conduct experiments on Omniglot
with task network WRN-28-10. The mean test accuracy and
Std Dev over five runs with different values of ε are depicted
in Figure 5. As expected, sampling transformations accord-
ing to the estimated distribution with a certain randomness
(ε = 0.1) outperforms random sampling (ε = 1.0).
Augmentation Policy Network. To demonstration the con-
tributions of all the components in the policy network, we
compare different designs of the policy network. We conduct
experiments on the cases that the policy network does not
take the transformation embedding as input and the policy
network has its own feature extractor. The comparison results
of WRN-28-10 trained on CIFAR and Omniglot are shown
in Table 5.

First, we observe that the policy network with Transfor-
mation Embedding (w.TE) as input achieves 0.3% higher
accuracy than that without TE (o.TE) in average. That means
TE contains additional information beyond the images. For
example, both the augmented sample and the hard negative
in the first row of Figure 3 look like vertical lines, but can
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²
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Figure 5: Test accuracy (averaged over five runs) of WRN-
28-10 trained on Omniglot with different values of ε.

Dataset o.TE w.TE own FE share FE

CIFAR-10 97.58 97.76 97.59 97.76
CIFAR-100 83.49 83.79 83.68 83.79
Omniglot 89.29 89.61 89.29 89.61

Table 5: Top-1 test accuracy (%) of WRN-28-10 with differ-
ent designs of the policy network.

be generated by different transformations (TranslateY and
Identity, respectively) and have different labels. With TE
as input, the policy network is learned to impose different
weights on them. On the other hand, the dimension of TE (28
in our setting) is much lower than that of the image feature
(640 in WRN-28-10), so the TE branch hardly increases the
computing cost.

Secondly, we evaluate the performance of the policy net-
work with its own feature extractor (own FE) and that shared
a common one with the task network (share FE). The latter
one performs consistently better than the former one. Also,
the former one takes more training time (1.2× more real
running-time) since the feature extraction is repeated twice
for the policy network and the task network, respectively.

Conclusions
In this paper, a sample-aware augmentation policy network
is proposed to reweight augmented samples. We leverage
the mechanism of meta-learning and use gradient-based op-
timization instead of non-differentiable approaches or rein-
forcement learning, which can balance the learning efficiency
and model performance. As expected, the learned policy net-
work can distinguish informative augmented images from the
junks and thus greatly reduce the noises caused by intensive
data augmentation. Extensive experiments demonstrate the
superiority of the proposed method to the existing methods
using dataset-level augmentation policies.
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