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Abstract

Post-processing immunity is a fundamental property of dif-
ferential privacy: it enables the application of arbitrary data-
independent transformations to the results of differentially
private outputs without affecting their privacy guarantees.
When query outputs must satisfy domain constraints, post-
processing can be used to project the privacy-preserving out-
puts onto the feasible region. Moreover, when the feasible
region is convex, a widely adopted class of post-processing
steps is also guaranteed to improve accuracy. Post-processing
has been applied successfully in many applications including
census data-release, energy systems, and mobility. However,
its effects on the noise distribution is poorly understood: It
is often argued that post-processing may introduce bias and
increase variance. This paper takes a first step towards under-
standing the properties of post-processing. It considers the
release of census data and examines, both theoretically and
empirically, the behavior of a widely adopted class of post-
processing functions.

Introduction
Data sets and statistics about groups of individuals are in-
creasingly collected and released, feeding many optimiza-
tion and learning algorithms. In many cases, the released
data contain sensitive information whose privacy is strictly
regulated. For example, in the U.S., the census data is regu-
lated under Title 13 (U.S. Census Bureau 2020), which re-
quires that no individual be identified from any data release
by the Census Bureau. In Europe, data releases are regulated
according to the General Data Protection Regulation (EU
2016), which addresses the control and transfer of personal
data. Hence statistical agencies release privacy-preserving
data and statistics that conform to these requirements.

Differential Privacy (Dwork et al. 2006) is of particu-
lar interest to meet this goal. Differential privacy is a for-
mal privacy definition that bounds the disclosure risk of
any individual participating in a computation. It is consid-
ered the de-facto standard for privacy protection and has
been adopted by various corporations (Erlingsson, Pihur,
and Korolova 2014; Team 2017) and governmental agencies
(Abowd 2018).
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On data-release tasks, differentially private algorithms,
typically, inject carefully calibrated noise to the data before
release. However, whereas this process guarantees privacy, it
also affects the fidelity of the released data. In particular, the
injected noise often produces data sets that violate consis-
tency constraints of the application domain. For example, in
census statistics, the number of people satisfying a property
must be consistent in a geographical hierarchy, e.g., at the
national, state, and county levels. The injection of indepen-
dent noise, however, cannot ensure the consistency of these
constraints.

To overcome this limitation, the differentially private out-
puts can be post-processed via data-independent functions
that transform the noisy data to render it consistent with
the domain constraints. The post-processing step is guar-
anteed to retain differential privacy. Moreover, when the
feasible region is convex, a largely adopted class of post-
processing functions, called projections, is guaranteed to im-
prove accuracy. Post-processing has been applied success-
fully in many applications, including census data (Abowd
2018), energy systems (Fioretto, Mak, and Van Hentenryck
2020), and mobility (He et al. 2015). However, the effect
of post-processing on the noise distribution is poorly under-
stood: It is often argued that it may introduce bias and/or
increase variance. Figure 1 illustrates this aspect on a census
data-release problem, described later in the paper. It depicts
the distribution of the Laplacian residual x̃ − x, where x
denotes the true data and x̃ the noisy data, obtained by ap-
plying Laplacian noise to x, as well as the post-processed
residual x̂− x, where x̂ is the projection of x̃ onto the fea-
sible region. The results are shown for two counties, and, as
can be seen, the post-processing introduces significant bias
on their associated privacy-preserving data.

The key contribution of this paper is to take a first step to-
wards understanding the properties of post-processing. Mo-
tivated by census applications, it studies the behavior of
two widely adopted classes of post-processing functions,
called projections, for domains where the feasibility space
is specified by linear equations. The two classes differ by
the presence of non-negativity constraints. The paper shows
that, when non-negativity constraints are absent, the projec-
tion does not introduce bias. When projections include non-
negativity constraints, the paper presents an upper bound on
the bias, which provides some insights on the type of prob-
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Figure 1: Bias of Post-Processing on the Census Problem.

lems for which the bias will be significant. Finally, the pa-
per provides a detailed analysis of an important sub-problem
used to satisfy hierarchical constraints in data-release tasks:
It fully characterizes the residual distribution of the post-
processed data, shows that it converges towards the Laplace
distribution, and shed some interesting light on the effect of
projections on the variance of the post-processed data, which
may have strong implications with respect to group fairness.

While the paper discusses results focusing on differential
privacy mechanisms that use Laplace or Geometric noise,
the presented results generalize to other symmetric distribu-
tions.

Related Work
The adoption of post-processing to ensure that differentially
private output satisfy some property of interest is commonly
adopted in the privacy literature. Important contributions in-
clude the hierarchical mechanism of Hay et al. (2010) and
its extensions (Qardaji, Yang, and Li 2013; Cormode et al.
2012a), which uses a post-processing step that enforces ad-
ditive constraints based on a tree structure of the data uni-
verse to answer count queries over ranges. Other methods
have incorporated a partitioning scheme to the data-release
problem to increase the accuracy of the privacy-preserving
data by cleverly splitting the privacy budget in different hier-
archical levels (Xiao, Xiong, and Yuan 2010; Cormode et al.
2012b; Zhang, Xiao, and Xie 2016).

These post-processing algorithms have been used to re-
lease privacy preserving data sets for a wide array of applica-
tions, including transportation (Fioretto, Lee, and Van Hen-
tenryck 2018), location privacy (He et al. 2015), and energy
optimization (Fioretto, Mak, and Van Hentenryck 2020). Of
particular interest is the TopDown algorithm (Abowd 2018),
used by the US Census for the 2018 end-to-end test in prepa-
ration for the 2020 release. The algorithm is based on post-
processing to satisfy consistency of hierarchical counts.

Preliminaries: Differential Privacy
Differential privacy (DP) (Dwork et al. 2006) is a rigorous
privacy notion used to protect disclosures of an individual’s
data in a computation. Informally, it states that the probabil-
ity of any differentially private output does not change much
when a single individual data is added or removed to the
data set, limiting the amount of information that the output
reveals about any individual.

Figure 2: Example of hierarchical data set.

Definition 1 (Differential Privacy). A randomized mecha-
nism M : D → R with domain D and range R is ε-
differentially private if, for any output O ⊆ R and data sets
D,D′ ∈ D differing by at most one entry (written D ∼ D′),

Pr[M(D) ∈ O] ≤ exp(ε)Pr[M(D′) ∈ O]. (1)

The parameter ε ≥ 0 is the privacy loss of the mechanism,
with values close to 0 denoting strong privacy.

An important differential privacy property is its immunity
to post-processing, stating that a differentially private output
can be arbitrarily transformed, using some data-independent
function, without impacting its privacy guarantees.

Theorem 2 (Post-Processing (Dwork et al. 2006)). LetM
be an ε-differentially private mechanism and g be an arbi-
trary mapping from the set of possible outputs to an arbi-
trary set. Then, g ◦M is ε-differentially private.

A function f (also called query) from a data set D ∈ D
to a result set R ⊆ Rn can be made differentially private
by injecting random noise to its output. The amount of noise
depends on the global sensitivity of the query, denoted by
∆f and defined as ∆f = maxD∼D′ ‖f(D)− f(D′)‖1 .

The Laplace distribution with 0 mean and scale λ, denoted
by Lap(λ), has a probability density function Lap(x|λ) =
1

2λe
− |x|λ . It can be used to obtain an ε-differentially private

algorithm to answer numeric queries (Dwork et al. 2006). In
the following, Lap(λ)n denotes the i.i.d. Laplace distribu-
tion with 0 mean and scale λ over n dimensions.

Theorem 3 (Laplace Mechanism). Let f : D → Rn be a
numeric query. The Laplace mechanism that outputs f(D)+
η, where η ∈ Rn is drawn from the Laplace distribution
Lap(∆f/ε)n, achieves ε-differential privacy.

Settings and Goal
The paper uses the following notation: boldface symbols de-
note vectors while italic symbols are used to denote scalars
or random variables. The paper considers data sets of the
form x ∈ Rn, where each element xi of x is a real-
valued quantity describing, for example, the number of in-
dividuals living in a geographical region. To produce ε-
differentially private outputs, this work adopts the Laplace
mechanism which, for an appropriately chosen λ, produces
a new privacy-preserving data set x̃ = x+ Lap(λ)n. How-
ever, all results presented in this paper generalizes to other
symmetric distributions as discussed later.

The original datax is assumed to satisfy a set of data inde-
pendent constraintsK. This paper focuses on the case where
K is a set of linear constraints which, as mentioned in the
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introduction, arise in a widespread number of applications
(Fioretto and Van Hentenryck 2019; Abowd 2018; He et al.
2015; Fioretto, Mak, and Van Hentenryck 2020). Of particu-
lar relevance to this work are hierarchical data release prob-
lems, as those faced by the US Census Bureau. Consider the
illustration in Figure 2. The tree depicts the hierarchy of the
US territories, partitioned in states and counties. Each node
is associated with a value representing the number of indi-
viduals living in the corresponding territory. The constraint
setK then specifies that the value of a node is the sum of the
values of its children and that all values are non-negative.

Due to the use of independent noise, the differentially pri-
vate version x̃ of x, may not satisfy the original constraints.
This scenario happens with very high probability in the hi-
erarchical data-release problem considered. The paper, thus,
focuses on mechanisms that generates outputs x̂ that satisfy
two properties: (1) they guarantee ε-differential privacy, and
(2) x̂ satisfy the constraints in K.

Projection Operators

To meet these two objectives, the paper studies an important
class of post-processing operators, called projections, that
transform released data x̃ to satisfy the constraints inK. This
paper focuses on the following two projections:

x̂ := arg min
v∈K

‖v − x̃‖2

K = {v ∈ Rn | Av = b}
(P )

and,

x̂+ := arg min
v∈K

‖v − x̃‖2

K = {v ∈ Rn | Av = b;v ≥ 0},
(P+)

where x̃ is the privacy-preserving input to the projection op-
erators, obtained by applying the Laplace mechanism to x,
A is an m× n matrix, and b is an m-dimensional vector. A
and b are assumed to be public, non-sensitive information in
this paper. By the post-processing immunity of differential
privacy (Theorem 2) the projection operators (P ) and (P+)
satisfy differential privacy. Both optimizations find a feasi-
ble solution that minimizes the l2-distance to the noisy data
x̃. The existence and uniqueness of their solutions are guar-
anteed by convexity. These programs have been adopted by
a vast array of applications. In particular, the census hierar-
chical data-release problem, analyzed in this paper as a case
study, restores consistency of the hierarchical constraints us-
ing an instance of problem (P+).

The theoretical results in this paper are illustrated using
an empirical analysis from this census case study. For each
instance associated with the true counts x, the noise η is
i.i.d. drawn from the double-sided geometric distribution
η ∼ Geom(∆f/ε)n, i.e., the discrete analog to the Laplace
distribution. The results in this paper are generally presented
for continuous distributions but they carry over naturally to
this geometric distribution. The privacy budget ε is set to be
0.5 and the experiments perform 100 independent runs.

Analysis of Bias in Post-Processing
Bias of Program (P )
This section studies the bias induced by program (P ), when
the noisy data x̃ is obtained by applying noise drawn from
a symmetric probability distribution. Recall that a distribu-
tion with probability density function f is symmetric if there
exists a value x0 such that f(x0 − δ) = f(x0 + δ) for all
δ. This is the case of the Laplace and the double-sided geo-
metric distributions. This section relies on the concept of a
reflection operator.
Definition 4 (Reflection operator). The operator Refv(·) is
said to be a reflection operator across the vector v ∈ Rn if,
for any u ∈ Rn, the following identity holds:

Refv(u) = 2v − u.
Lemma 5. The reflection operator Refx and x̂ (as an oper-
ator) are commutative, i.e.,

Refx (x̂(x̃)) = x̂ (Refx(x̃)) . (2)

Proof. The right hand side of (2) is given by

x′ := arg min
v∈Rn

‖v − Refx(x̃)‖2

s.t. Av = b,

where x′ is a shorthand for the solution x̂(Refx(x̃)). By re-
flection, Refx(x′) is a solution to the optimization problem:

Refx(x′) = arg min
v∈Rn

‖Refx(v)− Refx(x̃)‖2

s.t. ARefx(v) = b.

By the definition of the reflection operator and the feasibility
of the true data, we have that

‖Refx(v)− Refx(x̃)‖2 = ‖v − x̃‖2 ,
Av = A(2x− Refx(v)) = 2b− b = b (3)

and the previous optimization problem is equivalent to (P ):

Refx(x′) = arg min
v∈Rn

‖v − x̃‖2

s.t. Av = b,

because since (P ) is convex, Refx(x′) = x̂(x̃). By applying
the reflection operator on both sides, x′ = x̂(Refx(x̃)) =
Refx(x̂(x̃)).

Figure 3 illustrates Lemma 5: It shows that the true data x
is the midpoint between the post-processed solutions associ-
ated with the noisy data x̃ and its reflection.

Let Err (y) = y−x be the entrywise difference between
y and the true data.
Corollary 6. The errors associated with the noisy data x̃
and its reflection Refx(x̃) sums to 0, i.e.,

Err (x̂(x̃)) + Err (x̂(Refx(x̃))) = 0.

Proof. By Lemma 5, Err (x̂(x̃)) + Err (x̂(Refx(x̃)))

= Err (x̂(x̃)) + Err (Refx (x̂(x̃)))

= (x̂(x̃)− x) + (Refx (x̂(x̃))− x) = 0.
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Figure 3: Illustration of Lemma 5 and Corollary 6.

The following theorem is a positive result: It shows that pro-
gram (P ) does not introduce bias.
Theorem 7. Program (P ) does not introduce bias, i.e.,

Bias [x̂(x̃)] := Ex̃ [Err (x̂(x̃))] = 0,

where the expectation is taken over the distribution of the
noisy data x̃. In other words, the post-processed solution x̂
(as a random vector) is unbiased.

Proof. Let fx̃ denote the probability density function of the
noisy data x̃, which is symmetric with respect to the true
data x. Then, the expectation of the resulting error is com-
puted as follows.

Ex̃ [Err (x̂(x̃))]=

∫
y∈Rn

Err (x̂(y)) · fx̃(y)dy

=
1

2

∫
y∈Rn

Err (x̂(y)) · fx̃(y)dy +

1

2

∫
y∈Rn

Err (x̂(Refx(y))) · fx̃(Refx(y))dy

=
1

2

∫
y∈Rn

[Err (x̂(y)) + Err (x̂(Refx(y)))] · fx̃(y)dy (4)

=
1

2

∫
y∈Rn
0 · fx̃(y)dy (5)

= 0,

where Equation (4) comes from the symmetric distribution
of the noisy data x̃, i.e., for any y ∈ Rn,

fx̃(y) = fx̃(x+(y−x)) = fx̃(x−(y−x)) = fx̃(Refx(y)),

and Equation (5) is due to Corollary 6.

Bias of Program (P+)
Theorem 7 indicates that the bias in program (P+) comes
from the non-negativity constraints. The section bounds this
bias by leveraging the insights of Theorem 7. It assumes that
the feasible regionK is bounded (which holds, in many prac-
tical settings, including the census data release case) and that
the noisy data x̃ is the output of the Laplace mechanism
applied to the true data x, i.e., x̃ = x + Lap(λ)n. It will
leverage the prior positive results by isolating a subset of the
feasible space close under refection. The first lemma com-
putes the probability that the Laplace mechanism produces
an output in a ball of radius r. The proof is by induction on
the dimension n.

Lemma 8. Given a random vector η = [η1, . . . , ηn], where
{ηi}i∈[n] are i.i.d. random variables drawn from a Laplace
distribution Lap(λ) (λ > 0), the following identity holds for
any r ≥ 0:

Pr (η ∈ Br (0)) = 1− exp

(
−r
λ

)
·
n−1∑
i=0

ri

i! · λi
, (6)

where Br (0) is the l1-ball of radius r centered at 0, i.e.,

Br (0) = {v ∈ Rn | ‖v‖1 ≤ r} .
A similar result can be obtained for the double-sided geo-
metric distribution. If the noisy data follows a Geom(a)n

distribution, then

Pr (η ∈ Br (0)) = 1− 2ar+1

1 + a

n−1∑
i=0

hi(r) ·
(

1− a
1 + a

)i
,

where {hi}i∈N is a family of polynomials with h0(r) = 1
and hi+1(r) =

∑r
v=−r hi(r − |v|) for any i ∈ N. The rest

of this section is presented in terms of the Laplace distri-
bution but the results can be generalized to any distribution
satisfying a version of Lemma 8.
Corollary 9. Suppose that the noisy data x̃ is the output of
the Laplace mechanism, i.e., x̃ = x+ Lap(λ)n with λ > 0.
Then, for any r ≥ 0,

Pr (x̃ ∈ Br (x)) = 1− exp

(
−r
λ

)
·
n−1∑
i=0

ri

i! · λi
.

Proof. Let η denote the n-dimensional random vector of the
Laplacian noise added to the true data x, i.e., η = x̃−x. By
the definition of the Laplace mechanism, η = [η1, . . . , ηn]
consists of n i.i.d. components, each of which is drawn from
the Laplace distribution Lap(λ). Then, by Lemma 8,

Pr(η ∈ Br (0)) = Pr (x̃− x ∈ Br (0))

= 1− exp

(
−r
λ

)
·
n−1∑
i=0

ri

i! · λi
, ∀ r ≥ 0.

Since x̃− x ∈ Br (0) iff x̃ ∈ Br (x), for any r ≥ 0,

Pr (x̃ ∈ Br (x)) = 1− exp

(
−r
λ

)
·
n−1∑
i=0

ri

i! · λi
.

Let rm be mini∈[n] xi. The next lemma states that Brm (x)
is a feasible subspace where there is no bias.
Lemma 10. For any noisy data x̃ ∈ Brm (x), the post-
processed solution x̂ of program (P ) is non-negative and
equal to solution x̂+ of program (P+).

Proof. Since x̃ belongs to the l1-ball Brm (x), ‖x̃− x‖2 is
also bounded from the above by rm since

‖x̃− x‖2 ≤ ‖x̃− x‖1 ≤ rm.
By convexity of K, ‖x̂− x‖∞ ≤ ‖x̂− x‖2 ≤ rm. More-
over, x̂ is non-negative since its l∞-distance to x is bounded
by rm and the result follows by optimality of x̂+.

11180



Figure 4: Bias of Post-Processing on the Census Problem as rm Increases.

The next theorem is the main result of this section and it
bounds the bias of program (P+).
Theorem 11. Suppose that the noisy data x̃ is the output of
the Laplace mechanism with scale λ. The bias of the post-
processed solution x̂+ of program (P+) is bounded, in l∞
norm, by

‖Bias [x̂+(x̃)]‖∞ = ‖Ex̃ [Err (x̂+(x̃))]‖∞

≤ C ′ · exp

(
−rm
λ

)
·
n−1∑
i=0

(rm)i

i! · λi
,

where C ′ represents the value supv∈K ‖v − x‖∞, which is
finite due to the boundedness of the feasible region K.

Proof.

Bias [x̂+(x̃)] = Ex̃ [Err (x̂+(x̃))]

=Ex̃ [Err (x̂+(x̃)) | x̃ ∈ Brm (x)] · Pr (x̃ ∈ Brm (x)) +

Ex̃ [Err (x̂+(x̃)) | x̃ /∈ Brm (x)] · Pr (x̃ /∈ Brm (x)) .

By Lemma 10 and Theorem 7, the left-hand side of the sum
is zero. As a result,

‖Bias [x̂+(x̃)]‖∞
= ‖Ex̃ [Err (x̂+(x̃)) | x̃ /∈ Brm (x)]‖∞ · Pr (x̃ /∈ Brm (x))

≤ Ex̃ [‖Err (x̂+(x̃))‖∞ | x̃ /∈ Brm (x)] · Pr (x̃ /∈ Brm (x))

≤ C ′ · Pr (x̃ /∈ Brm (x)) (7)

= C ′ · exp

(
−rm
λ

)
·
n−1∑
i=0

(rm)i

i! · λi
, (8)

where (7) follows from the feasibility of x̂+(x̃) and

‖Err (x̂+(x̃))‖∞ = ‖x̂+(x̃)− x‖∞
≤ sup
v∈K
‖v − x‖∞ = C ′,

since the feasible region is bounded by hypothesis. Equation
(8) follows from Corollary 9.

Figure 4 illustrates Theorem 11. It reports the same residuals
as in Figure 1 but with the true county counts increased by a
positive shift factor. This increases the value of rm and the
bias progressively disappears as rm grows. This observation
can give insights to statistical agencies about what can be re-
ported without introducing significant bias, informing their
decisions on the granularity of the data releases.

To complement these results, the theoretical bound is also
compared on the post-processing of New Mexico and its
counties. The state has a population of 7,289,112, 33 coun-
ties, rm = 348, and the experiment uses λ = 5. The theo-
retical bound is 0.29, while the empirical bias is 0.06. The
results may not be as tight for larger states, since the bound
depends on C ′, the maximum distance between the real data
and a point in the feasible space.

Analysis of Fairness in Projections
This section provides a detailed analysis of the distribution
of the post-processed noise for a special case of program (P )
defined as follows:

x̂S := arg min
v∈K

‖v − x̃‖2

K =

{
v ∈ Rn

∣∣∣∣ n∑
i=1

vi = b

}
,

(PS)

where b ∈ R is a constant. This specific post-processing
step (PS) requires that the components of its output should
be summed up to the constant b, which makes it broadly ap-
plicable. For instance, in the census context, program (PS)
makes sure that the state populations are compatible with
the overall US population, which is viewed as public infor-
mation. Similar post-processing steps take place at the state
level. The section will reveal an interesting connection be-
tween the post-processing step and the census model itself.

The next theorem is a key result: it characterizes the
marginal distribution of the post-processed noise x̂S − x,
i.e., the distribution of Err (x̂S)i = x̂Si−xi for any i ∈ [n].
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It is expressed in terms of the Laplace distribution but again
generalizes to other distributions.
Theorem 12. Let {ηi}i∈[n] be n i.i.d. random variables
drawn from a Laplace distribution Lap(λ). The marginal
error of the post-processed solution x̂S of program (PS) fol-
lows the distribution:

Err (x̂S)i = x̂Si − xi ∼
(n− 1)ηi −

∑
j 6=i ηj

n
∀ i ∈ [n],

with variance

Var (Err (x̂S)i) =

(
1− 1

n

)
·Var (Lap(λ))

= 2λ2

(
1− 1

n

)
∀ i ∈ [n].

Proof. (Sketch) Without the loss of generality, the proof
considers Err (x̂S)1. Let {ei}i∈[n] be the standard basis of
the n-dimensional space Rn such that the noise η added to
the true data x can be represented as η =

∑n
i=1 ηi · ei

where {ηi}i∈[n] are n i.i.d. random variables drawn from
a Laplace distribution Lap(λ). Consider the probability den-
sity of the marginal error Err (x̂S)1 at v, i.e., the integration
of the original Laplacian noise over a set Sv as follows.

fErr(x̂S)1
(v) =

∫
y∈Sv

1

(2λ)n
exp

(
−
‖y − x‖1

λ

)
dy,

where Sv = {u | x̂S(u)1 − x1 = v}. To compute this inte-
gration, it is easier to exploit the definition of the projection
operator and express Sv differently through a basis trans-
formation. Given the new basis {e′i}i∈[n], the set Sv can be
expressed in the following form

Sv =

{
u = x+

n∑
i=1

c′i · e′i
∣∣∣∣ c′n = v ·

√
n

n− 1

}
where {e′i}i∈[n] is an orthonormal basis of Rn with e′1 =

1√
n

[1, . . . , 1]T and e′n has
√

(n− 1)/n as its first com-

ponent and −
√

1/(n(n− 1)) as the remaining ones. The
marginal probability density distribution Err (x̂S)1 is then
given by ∫

y′−n∈Rn−1

f ′η

(
y′−n, v ·

√
n

n− 1

)
dy′−n

where y = [y1, . . . , yn]>, y′−n = [y′1, . . . , y
′
n−1]>, and f ′η

represents the Laplace probability density function distribu-
tion under the new basis {e′i}i∈[n]. It comes that the random
variable η′n, i.e., the noise ηn in the new basis, shares the
same distribution with

〈e′n,η〉 =
n∑
i=1

ηi · 〈e′n, ei〉 =
(n− 1)η1 −

∑n
i=2 ηi√

n(n− 1)
.

Since, for any v ∈ R, fErr(x̂S)1
(v) = fη′n

(
v ·
√

n
n−1

)
,

Err (x̂S)1 ∼
(n− 1)η1 −

∑n
i=2 ηi

n
.

Figure 5: Wasserstein Distance between the Laplacian Dis-
tribution and the Marginal Error Distribution.

By independence of {ηi}i∈[n], it follows that

Var (Err (x̂S)1) = 2λ2

(
1− 1

n

)
.

Figure 5 highlights Theorem 12. It shows how the Wasser-
stein distance between the distributions of the Laplace resid-
uals and the post-processed residuals. As the figure indi-
cates, the Wasserstein distance decreases quickly as the
problem dimension increases.

Theorem 12 also reveals some fundamental insights about
post-processing. First, it shows that post-processing reduces
the variance of the noise, while preserving differential pri-
vacy. In other words, post-processing in this setting does not
introduce bias and leverages the public information (i.e., b)
to reduce the variance. This is again a positive result as re-
ducing the variance may reduce fairness issues when using
the data in decision-making processes. Second, it shows that
different aggregation sizes (i.e., different values of n) may
lead to disparate impacts and fairness issues. Indeed, con-
sider two counties a and bwith approximately the same sizes
which are aggregated differently: a is aggregated with na
other counties, b is aggregated with nb, with na � nb, and
the aggregated data is public. Then the variance of the post-
processed value for awill be substantially larger than the the
variance of the post-processed value of b, potentially creat-
ing situations where counties a and b will be treated funda-
mentally differently in decision-making processes. Hence,
although post-processing reduces variance, its application
should take into account fairness issues. Once again, the key
to ensure fairness is to make sure that quantities being re-
leased are of the same order of magnitude.

On the census data-release problem, when comparing
the solutions returned by program (PS) for the states of
Arizona—which has 15 counties—and Texas—which has
254 counties—it is found that both the theoretical and em-
pirical difference in their variance to be roughly 6%. This
result highlights the importance of the finding.

The following results show that the marginal error con-
verges in distribution to the Laplace distribution.
Theorem 13. The variance of the resulting marginal error
of program (PS) is increasing in the dimension n and con-
verges to that of the marginal Laplacian noise added to the
true data x, as the dimension n tends to infinity, i.e.,

lim
n→∞

Var (Err (x̂S)) = Var (Lap(λ)) = 2λ2.
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Figure 6: Illustrating the Convergence Results of Theorem 14.

Theorem 14. As the dimension n goes to infinity, the
marginal error of program (PS) converges in distribution to
the marginal Laplacian noise , i.e.,

Err (x̂S)
d−−→ Lap(λ), as n→∞,

Proof. By Lemma 12, the marginal error Err (x̂S) follows

(n− 1)η1 −
∑n
i=2 ηi

n
,

where {ηi}i∈[n] are the n i.i.d. random variables drawn from
a Laplace distribution Lap(λ). Let η be a Laplacian random
variable Lap(λ): Its cumulative distribution function is

Pr (η ≤ v) =

{
1
2 exp

(
v
λ

)
, v ≤ 0,

1− 1
2 exp

(−v
λ

)
, v > 0.

The cumulative distribution function of (n− 1)η1/n is

Pr

(
n− 1

n
η1 ≤ v

)
=


1
2 exp

(
nv

(n−1)λ

)
, v ≤ 0,

1− 1
2 exp

(
−nv

(n−1)λ

)
, v > 0.

Note that, for any v ∈ R,

lim
n→∞

Pr

(
n− 1

n
η1 ≤ v

)
= Pr (η ≤ v) ,

which implies that the random variable (n − 1)η1/n con-
verges to η in distribution. By the Weak Law of Large Num-
bers, the sample mean among {ηi}i∈{2,...,n} converges in
probability to their common expectation 0, i.e., for ξ > 0,

lim
n→∞

Pr

(∣∣∣∣∑n
i=2 ηi
n− 1

∣∣∣∣ ≥ ξ) = 0.

Additionally, for any ξ > 0 and n ≥ 2,∣∣∣∣∑n
i=2 ηi
n

∣∣∣∣ ≥ ξ =⇒
∣∣∣∣∑n

i=2 ηi
n− 1

∣∣∣∣ ≥ ξ.
which implies that

Pr

(∣∣∣∣∑n
i=2 ηi
n

∣∣∣∣ ≥ ξ) ≤ Pr

(∣∣∣∣∑n
i=2 ηi
n− 1

∣∣∣∣ ≥ ξ) .
By the squeeze theorem, the random variable

∑n
i=2 ηi/n

converges to 0 in probability, as the dimension n goes to
infinity. Since

n− 1

n
η1

d−−→ η,

∑n
i=2 ηi
n

p−−→ 0,

by Slutsky’s Theorem (Billingsley 2013), it follows that

(n− 1)η1 −
∑n
i=2 ηi

n

d−−→ η as n→∞.

Figure 6 illustrates Theorem 14. It depicts the convergence
to the Laplace distribution as the dimension increases. Fi-
nally, it is also interesting to report some experimental re-
sults on census data and, in particular, the states of Arizona
(population of 2,371,715 and 15 counties) and Texas (popu-
lation of 8,887,839 and 254 counties). For λ = 10, the dis-
tribution variances are 186.67 and 199.21 for Arizona and
Texas respectively. Over 80,000 experiments, the empirical
variances were 186.88 and 199.32 respectively. These re-
sults clearly highlight the influence of the problem dimen-
sion (i.e., the number of counties) on the variance.

Conclusion
This paper was motivated by the recognition that the effect
of post-processing on the noise distribution is poorly under-
stood: It took a first step towards understanding the theoret-
ical and empirical properties of post-processing. Motivated
by census applications, it studied the behavior of projections
for domains where the feasibility space is specified by linear
equations. The paper showed that, when non-negativity con-
straints are absent, the projection does not introduce bias.
With non-negativity constraints, the paper presented an up-
per bound on the bias, providing insights on the type of prob-
lems for which the bias will be significant. The paper also
provided a detailed analysis of the important sub-problem
with one linear equation arising in hierarchical data-release
problems. It fully characterized the residual distribution of
the post-processed noise, showing that it converges towards
the selected noise distribution when the dimension of the
feasible space increases. This last result shed an interest-
ing light on the effect of post-processing on the variance of
the post-processed data. Indeed, in this case, post-processing
reduces the variance by exploiting the public information
available. These results may have strong implications with
respect to group fairness and should inform statistical agen-
cies about the trade-off between the granularity of the re-
leased data, the bias, and the variance.
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