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Abstract

The Q-learning algorithm is known to be affected by the max-
imization bias, i.e. the systematic overestimation of action
values, an important issue that has recently received renewed
attention. Double Q-learning has been proposed as an effi-
cient algorithm to mitigate this bias. However, this comes at
the price of an underestimation of action values, in addition to
increased memory requirements and a slower convergence. In
this paper, we introduce a new way to address the maximiza-
tion bias in the form of a “self-correcting algorithm” for ap-
proximating the maximum of an expected value. Our method
balances the overestimation of the single estimator used in
conventional Q-learning and the underestimation of the dou-
ble estimator used in Double Q-learning. Applying this strat-
egy to Q-learning results in Self-correcting Q-learning. We
show theoretically that this new algorithm enjoys the same
convergence guarantees as Q-learning while being more ac-
curate. Empirically, it performs better than Double Q-learning
in domains with rewards of high variance, and it even attains
faster convergence than Q-learning in domains with rewards
of zero or low variance. These advantages transfer to a Deep
Q Network implementation that we call Self-correcting DQN
and which outperforms regular DQN and Double DQN on
several tasks in the Atari 2600 domain.

1 Introduction
The goal of Reinforcement Learning (RL) is to learn to map
situations to actions so as to maximize a cumulative future
reward signal (Sutton and Barto 2018). Q-learning proposed
by Watkins (1989) is one of the most popular algorithms
for solving this problem, and does so by estimating the op-
timal action value function. The convergence of Q-learning
has been proven theoretically for discounted Markov Deci-
sion Processes (MDPs), and for undiscounted MDPs with
the condition that all policies lead to a zero-cost absorbing
state (Watkins and Dayan 1992; Tsitsiklis 1994; Jaakkola,
Jordan, and Singh 1994). Q-learning has been widely suc-
cessfully deployed on numerous practical RL problems in
fields including control, robotics (Kober, Bagnell, and Pe-
ters 2013) and human-level game play (Mnih et al. 2015).

∗Part of the work was done while at Columbia University

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, Q-learning is known to incur a maximization
bias, i.e., the overestimation of the maximum expected ac-
tion value, which can result in poor performance in MDPs
with stochastic rewards. This issue was first pointed out by
Thrun and Schwartz (1993), and further investigated by van
Hasselt (2010) that proposed Double Q-learning as a way of
mitigating the problem by using the so-called double estima-
tor, consisting in two separately updated action value func-
tions. By decoupling action selection and reward estimation
with these two estimators, Double Q-learning addresses the
overestimation problem, but at the cost of introducing a sys-
tematic underestimation of action values. In addition, when
rewards have zero or low variances, Double Q-learning dis-
plays slower convergence than Q-learning due to its alterna-
tion between updating two action value functions.

The main contribution of this paper is the introduction of a
new self-correcting estimator to estimate the maximum ex-
pected value. Our method is based on the observation that
in Q-learning successive updates of the Q-function at time
steps n and n−1 are correlated estimators of the optimal ac-
tion value that can be combined into a new “self-correcting”
estimator, once the resulting combination is maximized over
actions. Crucially, using one value function (at different time
steps) allows us to avoid having to update two action value
functions. First, we will show how to combine correlated
estimators to obtain a self-correcting estimator that is guar-
anteed to balance the overestimation of the single estimator
and the underestimation of the double estimator. We then
show that, if appropriately tuned, this strategy can com-
pletely remove the maximization bias, which is particularly
pernicious in domains with high reward variances. More-
over, it can also attain faster convergence speed than Q-
learning in domains where rewards are deterministic or with
low variability. Importantly, Self-correcting Q-learning does
not add any additional computational or memory costs com-
pared to Q-learning. Finally, we propose a Deep Q Network
version of Self-correcting Q-learning that we successfully
test on the Atari 2600 domain.

Related work. Beside Double Q-learning, other methods
have been proposed to reduce the maximization bias, e.g.,
removing the asymptotic bias of the max-operator under a
Gaussian assumption (Lee, Defourny, and Powell 2013), es-
timating the maximum expected value by Gaussian approx-
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imation (D’Eramo, Nuara, and Restelli 2016), averaging Q-
values estimates (Anschel, Baram, and Shimkin 2017), and
softmax Bellman operator (Song, Parr, and Carin 2019),
clipping values in an actor-critic setting (Dorka, Boedecker,
and Burgard 2019). Fitted Q-iteration (Ernst, Geurts, and
Wehenkel 2005), Speedy Q-learning (Azar et al. 2011), and
Delayed Q-learning (Strehl et al. 2006) are related varia-
tions of Q-learning with faster convergence rate. In its basic
form, our approach is a generalization of regular Q-learning.
But importantly it can be applied to any other variant of Q-
learning to reduce its maximization bias. Finally, DeepMel-
low (Kim et al. 2019) establishes that using a target network
in DQN (Mnih et al. 2015) also reduces maximization bias,
and proposes a soft maximization operator as an alternative.

Paper organization. In Section 2, we review MDPs and
Q-learning. In Section 3, we consider the problem of es-
timating the maximum expected value of a set of random
variables, and review the maximization bias, the single esti-
mator and the double estimator. Then we propose the self-
correcting estimator, and show that this estimator can avoid
both the overestimation of the single estimator and the un-
derestimation of the double estimator. In Section 4 we apply
the self-correcting estimator to Q-learning and propose Self-
correcting Q-learning which converges to the optimal solu-
tion in the limit. In Section 5 we implement a Deep Neural
Network version of Self-correcting Q-learning. In Section
6 we show the results of several experiments empirically
examining these algorithms. Section 7 concludes the paper
with consideration on future directions.

2 Markov Decision Problems and Q-learning
We will start recalling the application of Q-learning to solve
MDPs. Let Qn(s, a) denote the estimated value of action a
in state s at time step n. An MDP is defined such that the
next state s′ is determined by a fixed state transition distri-
bution P : S × A × S → [0, 1], where Pss′(a) gives the
probability of ending up in state s′ after performing action
a in s, and satisfies

∑
s′
Pss′(a) = 1. The reward r is drawn

from a reward distribution with E(r|s, a, s′) = Rss′(a) for a
given reward function Rss′(a). The optimal value function
Q∗(s, a) is the solution to the so-called Bellman equations:
Q∗(s, a) =

∑
s′
Pss′(a) [Rss′(a) + γmaxaQ

∗(s′, a)] ∀s, a,

where γ ∈ [0, 1) is the discount factor. As a solution of an
MDPs, (Watkins 1989) proposed Q-learning, which consists
in the following recursive update:

Qn+1(s, a) =Qn(s, a) (1)

+ α(s, a)
[
r + γmax

a
Qn(s′, a)−Qn(s, a)

]
.

Notice that in this expression the max operator is used to
estimate the value of the next state. Recently, (van Has-
selt 2010) showed that this use of the maximum value as
an approximation for the maximum expected value intro-
duces a maximization bias, which results in Q-learning over-
estimating action values.

3 Maximum Expected Value Estimation
The single estimator. We begin by looking at estimating
the maximum expected value. Consider a set of M random
variables {Q(ai)}Mi=1. We are interested in estimating their
maximum expected value, maxi E[Q(ai)]. Clearly however,
it is infeasible to know maxi E[Q(ai)] exactly in absence
of any assumption on their underlying distributions. One
natural way to approximate the maximum expected value
is through the maximum maxi{Q(ai)}, which is called the
single estimator. As noticed, Q-learning uses this method to
approximate the value of the next state by maximizing over
the estimated action values. Although Q(ai) is an unbiased
estimator of E[Q(ai)], from Jensen’s inequality we get that
E[maxi{Q(ai)}] ≥ maxi E[Q(ai)], meaning that the sin-
gle estimator is positively biased. This is the so-called maxi-
mization bias, which interestingly has also been investigated
in fields outside of RL, such as economics (Van den Steen
2004), decision making (Smith and Winkler 2006), and auc-
tions (Thaler 1988).

The double estimator. The paper (van Hasselt 2010) pro-
posed to address the maximization bias by introducing the
double estimator. Assume that there are two independent,
unbiased sets of estimators of {E[Q(ai)]}Mi=1: {QA(ai)}Mi=1

and {QB(ai)}Mi=1. Let a∗D be the action that maxi-
mizes {QA(ai)}Mi=1, that is, QA(a∗D) = maxi{QA(ai)}.
The double estimator uses QB(a∗D) as an estimator for
maxi E[Q(ai)]. This estimator is unbiased in the sense
that E[QB(a∗D)] = E[Q(a∗D)] due to the independence of
{QA(ai)}Mi=1 and {QB(ai)}Mi=1. However, this estimator
has a tendency towards underestimation, i.e., E[QB(a∗D)] ≤
maxi E[QB(ai)] (see details in van Hasselt 2010).

The self-correcting estimator. Let us now consider
two independent and unbiased sets of estimators of
{E[Q(ai)]}Mi=1, given by {QB1(ai)}Mi=1 and {QBτ (ai)}Mi=1.
From them, we construct another unbiased set of estimators
{QB0(ai)}Mi=1 by defining

QB0(ai) = τQB1(ai) + (1− τ)QBτ (ai), (2)

where τ ∈ [0, 1) denotes the degree of dependence be-
tween QB0(ai) and QB1(ai). Eqn. (2) clearly establishes
that QB0(ai) and QB1(ai) are non-negatively correlated,
unbiased estimators of E[Q(ai)]. Let σ2

1 and σ2
τ be the

variances of QB1(ai) and QBτ (ai), respectively. The Pear-
son correlation coefficient between QB0(ai) and QB1(ai) is
ρ = τσ1/

√
τ2σ2

1 + (1− τ)2σ2
τ . When τ → 1, QB0(ai) is

completely correlated with QB1(ai). While as τ becomes
smaller, the correlation is weaker.

Denoting β = 1/(1− τ),we rewrite Eqn. (2) as

QBτ (ai) = QB1(ai)− β[QB1(ai)−QB0(ai)]. (3)

Let a∗τ indicate the action maximizing {QBτ (ai)}Mi=1, i.e.
a∗τ = arg maxai Q

Bτ (ai). We call QB0(a∗τ ) self-correcting
estimator of E[Q(ai)] because in a Q-learning setting the
roles of QB0(ai) and QB1(ai) are going to be taken up by
sequential terms of Q-learning updates (see next section).
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Lemma 1 Consider a set of M random variables
{Q(ai)}Mi=1 with the expected values {E[Q(ai)]}Mi=1.
Let {QB0(ai)}Mi=1, {QB1(ai)}Mi=1, and {QBτ (ai)}Mi=1 be
unbiased sets of estimators satisfying the relation Eqn. (2),
and a∗τ the action that maximizes {QBτ (ai)}Mi=1. Assume
that {QBτ (ai)}Mi=1 are independent from {QB1(ai)}Mi=1.
Then

E[QB1(a∗τ )] ≤ E[QB0(a∗τ )] ≤ E[max
i
QBτ (ai)].

Furthermore, there exists a β such that E[QB0(a∗τ )] =
maxi E[Q(ai)].
Proof The proof is provided in the Appendix.

Notice that, under the assumption that {QBτ (ai)}i are in-
dependent from {QB1(ai)}i, by construction QB1(a∗τ ) is a
double estimator of maxi E[Q(ai)]. Lemma 1 then estab-
lishes that the bias of QB0(a∗τ ) is always between the posi-
tive bias of the single estimator maxiQ

Bτ (ai) and the neg-
ative bias of the double estimator QB1(a∗τ ). In other words,
QB0(a∗τ ) is guaranteed to balance the overestimation of the
single estimator and the underestimation of the double es-
timator. Therefore, the self-correcting estimator can reduce
the maximization bias, and even completely remove it if the
parameter β is set appropriately.

Let us denote with β∗ such an ideal (and in general un-
known) parameter for which the self-correcting estimator is
unbiased. A value β∗ → 1 indicates that no bias needs to be
removed from QB0(a∗τ ). While as β∗ becomes larger, pro-
gressively more bias has to be removed. Thus, β∗ can be
seen as a measure of the severity of the maximization bias,
weighting how much bias should be removed. As remarked,
it is in practice impossible to know the ideal β∗. But these
observations tell us that larger biases will have to be cor-
rected by choosing correspondingly larger values of β.

4 Self-correcting Q-learning
In this section we apply the self-correcting estimator to Q-
learning, and propose a novel method to address its max-
imization bias. We consider sequential updates of the ac-
tion value function, Qn(s′, a) and Qn+1(s′, a), as candi-
dates for the correlated estimators QB0(ai) and QB1(ai) in
Lemma 1, despite the relationship between Qn(s′, a) and
Qn+1(s′, a) in Q-learning being seemingly more compli-
cated than that defined in Eq. (2). Replacing QB0(ai) and
QB1(ai) in Eq. (3) with Qn(s′, a) and Qn+1(s′, a) gives

Qβn+1(s′, a) = Qn+1(s′, a)− β[Qn+1(s′, a)−Qn(s′, a)].

Let a∗τ be the action that maximizesQβn+1(s′, a) over a. Fol-
lowing Lemma 1, Qn(s′, a∗τ ) balances the overestimation
of the single estimator and the underestimation of the dou-
ble estimator, and moreover there exists an optimal value
of β for which it is unbiased. However, Qn+1(s′, a) is not
available at time step n. To address this issue, we con-
struct an alternative Q-function by replacing the sequential
updates Qn(s′, a) and Qn+1(s′, a) with the sequential up-
dates Qn−1(s′, a) and Qn(s′, a) at the previous update step.
Specifically, we define the following Q-function:

Qβn(s′, a) = Qn(s′, a)− β[Qn(s′, a)−Qn−1(s′, a)], (4)

where β ≥ 1 is a constant parameter tuning the bias cor-
rection. Therefore, we propose to use Qβn(s′, a) for ac-
tion selection according to âβ = arg maxaQ

β
n(s′, a), and

to use Qn(s′, âβ) to estimate the value of the next step.
This results in the following self-correcting estimator ap-
proximating the maximum expected value: Qn(s′, âβ) ≈
maxa E[Qn(s′, a)]. Thus, we propose to replace Eqn. (1)
from Q-learning with the following novel updating scheme:

Qn+1(s, a) =Qn(s, a) (5)

+ αn(s, a) [r + γQn (s′, âβ)−Qn(s, a)] .

We call this Self-correcting Q-learning, and summarize the
method in Algorithm 1.

Algorithm 1: Self-correcting Q-learning.
Parameters: step size α ∈ (0, 1], discount factor
γ ∈ (0, 1], small ε > 0, and β ≥ 1.

Initialize Q0(s, a) = 0 for all a ∈ A, and s terminal
Loop for each episode:
(1) Initialize s
(2) Loop for each step of episode:
(2.a) Choose a from s using the policy ε-greedy in Q
(2.b) Take action a, observe r, s′, update Qn(s, a):

Qβn(s′, a) = Qn(s′, a)− β[Qn(s′, a)−Qn−1(s′, a)]

α̂β = arg max
a

Qβn(s′, a)

Qn+1(s, a) = Qn(s, a)

+ αn(s, a) [r + γQn (s′, α̂β)−Qn(s, a)]

s← s′

(3) until s is terminal.

Remarks. Qβn(s′, a) = Qn−1(s′, a) if β = 1. In this case,
the algorithm usesQn−1 from the previous time step instead
of Qn to select the action. This is different from Double Q-
learning which trains two Q-functions, but is reminiscent of
using a “delayed” target network (Mnih et al. 2015).

We now prove that asymptotically Self-correcting Q-
learning converges to the optimal policy. Comparing Eqns.
(1) and (5), we see that the difference between Self-
correcting Q-learning and regular Q-learning is due to
Qβn(s′, a) being different from Qn(s′, a). As the gap be-
tween Qn(s′, a) and Qn−1(s′, a) becomes smaller, less bias
is self-corrected. This suggests that the convergence of Self-
correcting Q-learning for n→∞ can be proven with similar
techniques as Q-learning.

We formalize this intuition in a theoretical result that fol-
lows the proof ideas used by (Tsitsiklis 1994) and (Jaakkola,
Jordan, and Singh 1994) to prove the convergence of Q-
learning, which are in turn built on the convergence property
of stochastic dynamic approximations. Specifically, Theo-
rem 1 below claims that the convergence of Self-correcting
Q-learning holds under the same conditions as the conver-
gence of Q-learning. The proof is in the Appendix.
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Theorem 1 If the following conditions are satisfied: (C1)
The MDP is finite, that is, the state and action spaces are
finite; (C2) αn(s, a) ∈ (0, 1] is such that

∑∞
n=1 αn(s, a) =

∞ and
∑∞
n=1[αn(s, a)]2 < ∞, ∀s, a; (C3) Var(r) < ∞;

(C4) 1 ≤ β < ∞; then Qn(s, a) as updated by Self-
correcting Q-learning (Algorithm 1), will converge to the
optimal value Q∗ defined by the Bellman optimality given
by the Bellman equations with probability one.

We conclude this section by discussing the parameter β
in Self-correcting Q-learning. In estimating the maximum
expected value, Lemma 1 shows that β relies on the cor-
relation between QB0(ai) and QB1(ai). However, the re-
lation between Qn(s′, a) and Qn−1(s′, a) in Q-learning is
more complicated than the setting of the Lemma. There-
fore, the significance of Lemma 1 lies in the fact that
Qn(s′, a) − Qn−1(s′, a) can be used as “direction” for re-
moving the maximization bias in the objective to search pol-
icy, and that β can be tuned to approximate the premise of
the Lemma and match the correlation between the estima-
tors Qn(s′, a) and Qn−1(s′, a), corresponding to QB0(ai)
and QB1(ai) of the self-correcting estimator.

As we will show empirically in Section 6, the correction
of the maximization bias is robust to changes in values of
β. As rule of thumb, we recommend setting β ≈ 2, 3, or 4,
keeping in mind that as reward variability increases (which
exacerbates the maximization bias), improved performance
may be obtained by setting β to larger values.

5 Self-correcting Deep Q-learning
Conveniently, Self-correcting Q-learning is amenable to a
Deep Neural Network implementation, similarly to how
Double Q-learning can be turned into Double DQN (van
Hasselt, Guez, and Silver 2016). This will allow us to apply
the idea of the self-correcting estimator in high-dimensional
domains, like those that have been recently solved by Deep
Q Networks (DQN), the combination of Q-learning with
Deep Learning techniques (Mnih et al. 2015). A testbed that
has become standard for DQN is the Atari 2600 domain pop-
ularized by the ALE Environment (Bellemare et al. 2013),
that we’ll examine in the Experiments section.

We first quickly review Deep Q Networks (DQN). A DQN
is a multi-layer neural network parameterizing an action
value function Q(s, a; θ), where θ are the parameters of the
network that are tuned by gradient descent on the Bellman
error. An important ingredient for this learning procedure to
be stable is the use proposed in (Mnih et al. 2015) of a tar-
get network, i.e. a network with parameters θ− (using the
notation of (van Hasselt, Guez, and Silver 2016)) which are
a delayed version of the parameters of the online network.
Our DQN implementation of Self-correcting Q-learning also
makes use of such a target network.

Specifically, our proposed Self-correcting Deep Q Net-
work algorithm (ScDQN) equates the current and previ-
ous estimates of the action value function Qn(s′, a) and
Qn−1(s′, a) in Eqn. (4) to the target network Q(s, a; θ−)
and the online network Q(s, a; θ), respectively. In other
words, we compute

Qβ(s′, a) = Q(s′, a; θ−)− β[Q(s′, a; θ−)−Q(s′, a; θ)],

which, analogously to Algorithm 1, is used for action se-
lection: âβ = arg maxaQ

β(s′, a), while the target network
Q(s′, a; θ−) is used for action evaluation as in regular DQN.
Everything else also proceeds as in DQN and Double-DQN.

Remarks. It’s worth drawing a parallel between the re-
lation of ScDQN with Self-correcting Q-learning, and that
of regular DQN with Double-DQN. First, unlike Self-
correcting Q-learning which usesQn(s′, a)−Qn−1(s′, a) to
correct the maximization bias, ScDQN uses Q(s′, a; θ−) −
Q(s′, a; θ), and therefore takes advantage of the target net-
work introduced in DQN. This is analogous to Double-
DQN performing action selection through the target net-
work, instead of using a second independent Q function
like vanilla Double Q-learning. If memory requirements
weren’t an issue, a closer implementation to Self-correcting
Q-learning would be to define Qβ(s′, a) = Q(s′, a; θ−) −
β[Q(s′, a; θ−)−Q(s′, a; θ=)], where θ= denotes a set of pa-
rameters delayed by a fixed number of steps. This would be
an alternative strategy worth investigating. Second, ScDQN
is implemented such that with β = 0 it equals regular DQN,
and with β = 1 it goes to Double-DQN. The intuition that
this provides is that ScDQN with β ≥ 1 removes a bias
that is estimated in the direction between DQN and Double-
DQN, rather then interpolating between the two.

In the Experiments section we benchmark Self-correcting
Q-learning on several classical RL tasks, and ScDQN on a
representative set of tasks of the Atari 2600 domain.
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Figure 1: Maximization bias example. Left: percent of left
actions taken as a function of episode. Parameter settings are
ε = 0.1, α = 0.1, and γ = 1. Initial action value estimates
are zero. Right: percent of left actions from A, averaged over
the last five episodes (arrows) for Q-learning, Double Q-
learning and Self-correcting Q-learning with increasing β,
which decreases bias. Results averaged over 10,000 runs.

6 Experiments
We compare in simulations the performance of several al-
gorithms: Q-learning, Double Q-learning, and our Self-
correcting Q-learning (denoted as SCQ in the figures), with
β = 1, 2, 4. Note that Self-correcting Q-learning can be
applied to debias any variant of Q-learning, but for sim-
plicity in the empirical studies we only apply our method
to Q-learning and focus on the comparison of the result-
ing self-correcting algorithm with Q-learning and Double
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Figure 2: Grid-world task. Rewards of a non-terminating step are uniformly sampled between (−12, 10) (high variance), (−6, 4)
(medium variance), and (−2, 0) (low variance). Upper row: average reward per time step. Lower row: bias of the maximal action
values of the final episode in the starting state, where SCQ(c), c=1,2,4, denotes SCQ(β = c). Average rewards are accumulated
over 500 rounds and averaged over 500 runs.

Q-learning. We consider three simple but representative
tasks. First, the maximization bias example shows that Self-
correcting Q-learning can remove more bias than Double
Q-learning. Second, the grid-world task serves to establish
the advantage of Self-correcting Q-learning over Double Q-
learning in terms of overall performance, and shows its ro-
bustness towards high reward variability. Lastly, the cliff-
walking task shows that Self-correcting Q-learning displays
faster convergence than Q-learning when rewards are fixed.

Maximization Bias Example. This simple episodic MDP
task has two non-terminal states A and B (see details in
Figure 6.5 of (Sutton and Barto 2018)). The agent always
starts in A with a choice between two actions: left and right.
The right action transitions immediately to the terminal state
with a reward of zero. The left action transitions to B with
a reward of zero. From B, the agent has several possible ac-
tions, all of which immediately transition to the termination
with a reward drawn from a Gaussian N (−0.1, 1). As a re-
sult, the expected reward for any trajectory starting with left
is −0.1 and that for going right is 0. In this settings, the op-
timal policy is to choose action left 5% from A.

Fig. 1 shows that Q-learning initially learns to take the left
action much more often than the right action, and asymp-
totes to taking it about 5% more often than optimal, a symp-
tom of the maximization bias. Double Q-learning has a
smaller bias, but still takes the left action about 1% more
often than optimal. Self-correcting Q-learning performs be-
tween Double Q-learning and Q-learning when β = 1, per-
forms similarly to Double Q-learning when β = 2, and al-
most completely removes the bias when β = 4, demonstrat-
ing almost complete mitigation of the maximization bias.

Grid-world task. We follow the 3 × 3 grid-world MDP
in (van Hasselt 2010), but study different degrees of reward
randomness. The starting state is in the southwest position

of the grid-world and the goal state is in the northeast. Each
time the agent selects an action that puts it off the grid, the
agent stays in the same state. In this task each state has 4
actions, i.e. the 4 directions the agent can go. In each non-
terminating step, the agent receives a random reward uni-
formly sampled from an interval (L,U), which we choose to
modulate the degree of randomness. We consider three inter-
vals: (−12, 10) (high variability), (−6, 4) (medium variabil-
ity), and (−2, 0) (low variability). Note that all 3 settings
have the same optimal values. In the goal state any action
yields +5 and the episode ends. The optimal policy ends one
episode after five actions, so that the optimal average reward
per step is +0.2. Exploration is encouraged with ε-greedy
action selection with ε(s) = 1/

√
n(s), where n(s) is the

number of times state s has been visited. The learning rate
is set to α(s, a) = 1/n(s, a), where n(s, a) is the number
of updates of each state-action. For Double Q-learning, both
value functions are updated for each state-action.

The upper panels of Fig. 2 show the average reward per
time step, while the lower panels show the deviation of the
maximal action value from optimal (the bias) after 10,000
episodes. First, Self-correcting Q-learning with β = 2 gets
very close to the optimal value of the best action in the
starting state (the value is about 0.36). Self-correcting Q-
learning with β = 1 still displays overestimation which,
however, is much smaller than Q-learning. Self-correcting
Q-learning with β = 4 shows a small underestimation
which, however, is much smaller than that of Double Q-
learning. These observations are consistent for different de-
grees of reward randomness. This supports the idea that Self-
correcting Q-learning can balance the overestimation of Q-
learning and the underestimation of Double Q-learning. Sec-
ond, Self-correcting Q-learning performs as well as Double
Q-learning in terms of average rewards per step. Compar-
ing performance under high, medium, and low reward vari-
ability, we observe the following. When variability is high,
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Figure 3: Cliff-walking task. Two environments are considered: a 5 × 10 arena (a), and a 5 × 20 arena (b). Left in each panel:
cumulative rewards. Right in each panel: relative total reward (i.e. the difference in total reward from random action) at the
final episode. SCQ(c), c=1,2,4, denotes SCQ(β = c). Each panel shows two ε-greedy exploration strategies: ε = 1/

√
n(s)

(upper panel), and ε = 0.1 (lower panel), where n(s) is the number of times state s has been visited. The step sizes are chosen:
αn(s, a) = 0.1(100+1)/(100+n(s, a)), where n(s, a) is the number of updates of each state-action. Data points are averaged
over 500 runs, then are smoothed for clarity.

Self-correcting Q-learning performs as well as Double Q-
learning, and Q-learning the worst. When variability is mod-
erate, Self-correcting Q-learning can performs a little better
than Double Q-learning, and Q-learning still performs the
worst. When variability is low, that is, the effect of the max-
imization bias is low, the difference between all methods
becomes small. Third, the performance of Self-correcting
Q-learning is robust to changes in β. For moderate reward
variance, β = 2 − 4 is a reasonable choice. As reward vari-
ability increases, larger β may be better.

Cliff-walking Task. Fig. 3 shows the results on the cliff-
walking task Example 6.6 in (Sutton and Barto 2018), a stan-
dard undiscounted episodic task with start and goal states,
and four movement actions: up, down, right, and left. Re-
ward is −1 on all transitions except those into the “Cliff”
region (bottom row except for the start and goal states). If
the agent steps into this region, she gets a reward of −100
and is instantly sent back to the start. We vary the environ-
ment size by considering a 5× 10 and a 5× 20 grid.

We measure performance as cumulative reward during
episodes, and report average values for 500 runs in Fig.
3. We investigate two ε-greedy exploration strategies: ε =

1/
√
n(s) (annealed) and ε = 0.1 (fixed). With rewards of

zero variance, Double Q-learning shows no advantage over
Q-learning, while Self-correcting Q-learning learns the val-
ues of the optimal policy and performs better, with an even
larger advantage as the state space increases. This is consis-
tent for both exploration strategies. Conversely, Double Q-
learning is much worse than Q-learning when exploration is
annealed. This experiments indicate that Double Q-learning
may work badly when rewards have zero or low variances.
This might be due to the fact that Double Q-learning suc-
cessively updates two Q-functions in a stochastic way. We

also compare the performance of Self-correcting Q-learning
under various β values. Self-correcting Q-learning performs
stably over different β values, and works well for β between
2 and 4. Finally, larger β results in better performance for
environments with larger number of states.

DQN Experiments in the Atari 2600 domain. We study
the Self-correcting Deep Q Network algorithm (ScDQN),
i.e. the Neural Network version of Self-correcting Q-
learning, in five representative tasks of the Atari 2600 do-
main: VideoPinball, Atlantis, DemonAttack, Breakout and
Assault. These games were chosen because they are the five
Atari 2600 games for which Double DQN performes the
best compared to human players (van Hasselt, Guez, and Sil-
ver 2016). We compare the performance of ScDQN against
Double DQN (van Hasselt, Guez, and Silver 2016). We
trained the same architecture presented in (Mnih et al. 2015)
as implemented in Vel (0.4 candidate version, (Tworek
2018)). Each experiment is run 6 times with different ran-
dom seeds (as in e.g. (van Hasselt, Guez, and Silver 2016)),
and we report average performance and variability across 6
independently trained networks. In all experiments the net-
work explores through ε-greedy action selection. The pa-
rameter ε starts off a 1.0 and is linearly decreased to 0.1 over
1M simulation steps, while β is kept constant throughout.

We observed that our algorithm ScDQN has a faster and
more stable convergence to a high reward solution than DQN
and double DQN in the tested tasks, as we show in Fig. 4
the representative example of the VideoPinball task. Inter-
estingly, ScDQN also tends to display lower value estimates
than Double DQN. We hypothesize that this might mainly
be due to Double DQN being able to mitigate the underesti-
mation problem of vanilla Double Q-learning thanks to the
target network. Fig. 5 shows the final evaluation of DQN net-
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Figure 5: ScDQN rivals Double DQN on Atari 2600 games of DQN networks. Each bar indicates average score over 100
episodes and 6 random seeds (normalized to human performance as in Mnih et al. 2015), error bars are SEM over 6 random
seeds. For ScDQN β is set to β=3.0 for all games. Training is done for 20M steps (see Appendix C), unless performance does
not seem to stabilize (which was the case for VideoPinball and Breakout), in which case training is extended to 100M steps.

works trained with Double DQN and ScDQN, and in all of
the shown tasks ScDQN is at least as good as Double DQN.

7 Conclusion and Discussion
We have presented a novel algorithm, Self-correcting Q-
learning, to solve the maximization bias of Q-learning. This
method balances the the overestimation of Q-learning and
the underestimation of Double Q-learning. We demonstrated
theoretical convergence guarantees for Self-correcting Q-
learning, and showed that it can scales to large problems and
continuous spaces just as Q-learning.

We studied and validated our method on several tasks, in-
cluding a neural network implementation, ScDQN, which
confirm that Self-correcting (deep) Q-learning reaches better
performance than Double Q-learning, and converges faster
than Q-learning when rewards variability is low.

One question left open is how to optimally set the new
parameter β. Luckily, Self-correcting Q-learning does not
seem sensitive to the choice of β. In our experiments, β =
2 − 4 is a good range. Empirically, for larger state spaces
and reward variability, larger β tend to work better. Future
investigations on the effect of β would still be welcome.

Further interesting future research directions are: (1) for-
mal understanding of the advantage of Self-correcting Q-
learning over Q-learning, as for instance in the cliff-walking
task with fixed rewards. (2) Besides Q-learning, the max-
imization bias exists in other reinforcement learning algo-
rithms, such as the actor-critic algorithm. (Fujimoto, van
Hoof, and Meger 2018) applied the idea of Double Q-
learning to the actor-critic algorithm. Our self-correcting es-
timator could potentially be applied in a similar way.
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