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Abstract

We propose a general variational framework of fair clustering,
which integrates an original Kullback-Leibler (KL) fairness
term with a large class of clustering objectives, including proto-
type or graph based. Fundamentally different from the existing
combinatorial and spectral solutions, our variational multi-
term approach enables to control the trade-off levels between
the fairness and clustering objectives. We derive a general
tight upper bound based on a concave-convex decomposition
of our fairness term, its Lipschitz-gradient property and the
Pinsker’s inequality. Our tight upper bound can be jointly op-
timized with various clustering objectives, while yielding a
scalable solution, with convergence guarantee. Interestingly,
at each iteration, it performs an independent update for each
assignment variable. Therefore, it can be easily distributed for
large-scale datasets. This scalability is important as it enables
to explore different trade-off levels between the fairness and
clustering objectives. Unlike spectral relaxation, our formula-
tion does not require computing its eigenvalue decomposition.
We report comprehensive evaluations and comparisons with
state-of-the-art methods over various fair clustering bench-
marks, which show that our variational formulation can yield
highly competitive solutions in terms of fairness and clustering
objectives.

Introduction
Machine learning models are impacting our daily life, for in-
stance, in marketing, finance, education, and even in sentenc-
ing recommendations (Kleinberg et al. 2017). However, these
models may exhibit biases towards specific demographic
groups due to, for instance, the biases that exist within the
data. For example, a higher level of face recognition accu-
racy may be found with white males (Buolamwini and Gebru
2018). These biases have recently triggered substantial inter-
est in designing fair algorithms for the supervised learning
setting (Hardt, Price, and Srebro 2016; Zafar et al. 2017;
Donini et al. 2018). Also, very recently, the community has
started to investigate fairness constraints in unsupervised
learning (Chierichetti et al. 2017; Kleindessner et al. 2019;
Backurs et al. 2019; Samadi et al. 2018; Celis et al. 2018).
Specifically, Chierichetti et al. (Chierichetti et al. 2017) pio-
neered the concept of fair clustering. The problem consists
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of embedding fairness constraints that encourage clusters to
have balanced demographic groups pertaining to some sensi-
tive attributes (e.g., sex, gender, race, etc.), so as to counteract
any form of data-inherent bias.

Assume that we are given N data points to be assigned to
a set of K clusters, and let Sk ∈ {0, 1}N denotes a binary
indicator vector whose components take value 1 when the
point is within cluster k, and 0 otherwise. Also suppose that
the data contains J different demographic groups, with Vj ∈
{0, 1}N denoting a binary indicator vector of demographic
group j. The authors of (Chierichetti et al. 2017; Kleindessner
et al. 2019) suggested to evaluate fairness in terms of cluster-
balance measures, which take the following form:

balance(Sk) = min
j 6=j′

V tj Sk

V t
j′
Sk
∈ [0, 1] (1)

The higher this measure, the fairer the cluster. The overall
clustering balance is defined by the minimum of Eq. (1) over
k. This notion of fairness in clusters has recently given rise
to a new line of research that was introduced, mostly, for
prototype-based clustering, e.g., K-center, K- medians and K-
means (Chierichetti et al. 2017; Backurs et al. 2019; Schmidt,
Schwiegelshohn, and Sohler 2018; Bera et al. 2019). Also,
very recently, fairness has been investigated in the context
of spectral graph clustering (Kleindessner et al. 2019). The
general problem raises several interesting questions. How
to embed fairness in popular clustering objectives? Can we
control the trade-off between some “acceptable” fairness
level (or tolerance) and the quality of the clustering objective?
What is the cost of fairness with respect to the clustering
objective and computational complexity?

Chierichetti et al. (Chierichetti et al. 2017) investigated
combinatorial approximation algorithms for maximizing the
the fairness measures in Eq. (1), for K-center and K- medians
clustering, and for binary demographic groups (J = 2). They
compute fairlets, which are groups of points that are fair, and
can not be split further into more subsets that are also fair.
Then, they consider each fairlet as a data point, and cluster
them with approximate K-center or K- medians algorithms.
Unfortunately, as reported in the experiments in (Chierichetti
et al. 2017), obtaining fair solutions with these fairlets-based
algorithms comes at the price of a substantial increase in the
clustering objectives. Also, the cost for finding fairlets with
perfect matching is quadratic w.r.t the number of data points,

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11202



a complexity that increases for more than two demographic
groups. Several combinatorial solutions followed-up on the
work in (Chierichetti et al. 2017) to reduce this complexity.
For instance, Backurs et al. (Backurs et al. 2019) proposed
a solution to make the fairlet decomposition in (Chierichetti
et al. 2017) scalable for J = 2, by embedding the input points
in a tree metric. Rösner and Schmidt (Rösner and Schmidt
2018) designed a 14-approximate algorithm for fair K-center.
(Schmidt, Schwiegelshohn, and Sohler 2018; Huang, Jiang,
and Vishnoi 2019) proposed fair K-means/K- medians based
on coreset – a reduced proxy set for the full dataset. Bera
et al. (Bera et al. 2019) provided a bi-criteria approxima-
tion algorithm for fair prototype-based clustering, enabling
multiple groups (J > 2). It is worth noting that, for large-
scale data sets, (Chierichetti et al. 2017; Rösner and Schmidt
2018; Bera et al. 2019) sub-sample the inputs to mitigate the
quadratic complexity w.r.t N . More importantly, the combi-
natorial algorithms discussed above are tailored for specific
prototype-based objectives. For instance, they are not appli-
cable to the very popular graph-clustering objectives, e.g.,
Ratio Cut or Normalized Cut (Von Luxburg 2007), which
limits applicability in a breadth of graph problems, in which
data takes the form of pairwise affinities.

Kleindessner et al. (Kleindessner et al. 2019) integrated
fairness into graph-clustering objectives. They embedded
linear constraints on the assignment matrix in spectral re-
laxation. Then, they solved a constrained trace optimization
via finding the K smallest eigenvalues of some transformed
Laplacian matrix. However, it is well-known that spectral
relaxation has heavy time and memory loads since it requires
storing an N × N affinity matrix and computing its eigen-
value decomposition – the complexity is cubic w.r.t N for a
straightforward implementation, and super-quadratic for fast
implementations (Tian et al. 2014). In the general context
of spectral relaxation and graph partitioning, issues related
to computational scalability for large-scale problems is driv-
ing an active line of recent work (Shaham et al. 2018; Ziko,
Granger, and Ayed 2018; Vladymyrov and Carreira-Perpiñán
2016).

The existing fair clustering algorithms, such as the com-
binatorial or spectral solutions discussed above, do not have
mechanisms that control the trade-off levels between the
fairness and clustering objectives. Also, they are tailored
either to prototype-based (Backurs et al. 2019; Bera et al.
2019; Chierichetti et al. 2017; Schmidt, Schwiegelshohn, and
Sohler 2018) or graph-based objectives (Kleindessner et al.
2019). Finally, for a breadth of problems of wide interest,
such as pairwise graph data, the computation and memory
loads may become an issue for large-scale data sets.

Contributions: We propose a general, variational and
bound-optimization framework of fair clustering, which inte-
grates an original Kullback-Leibler (KL) fairness term with a
large class of clustering objectives, including both prototype-
based (e.g., K-means/K- medians) and graph-based (e.g.,
Normalized Cut or Ratio Cut). Fundamentally different from
the existing combinatorial and spectral solutions, our varia-
tional multi-term approach enables to control the trade-off
levels between the fairness and clustering objectives. We de-
rive a general tight upper bound based on a concave-convex

decomposition of our fairness term, its Lipschitz-gradient
property and the Pinsker’s inequality. Our tight upper bound
can be jointly optimized with various clustering objectives,
while yielding a scalable solution, with convergence guaran-
tee. Interestingly, at each iteration, our general variational
fair-clustering algorithm performs an independent update
for each assignment variable. Therefore, it can easily be dis-
tributed for large-scale datasets. This scalibility is important
as it enables to explore different trade-off levels between
fairness and the clustering objective. Unlike the constrained
spectral relaxation in (Kleindessner et al. 2019), our formula-
tion does not require computing its eigenvalue decomposition.
We report comprehensive evaluations and comparisons with
state-of-the-art methods over various fair-clustering bench-
marks, which show that our variational method can yield
highly competitive solutions in terms of fairness and cluster-
ing objectives, while being scalable and flexible.

Proposed Formulation
Let X = {xp ∈ RM , p = 1, . . . , N} denote a set of N
data points to be assigned to K clusters, and S is a soft
cluster-assignment vector: S = [s1, . . . , sN ] ∈ [0, 1]NK .
For each point p, sp = [sp,k] ∈ [0, 1]K is the probability
simplex vector verifying

∑
k sp,k = 1. Suppose that the data

set contains J different demographic groups, with vector
Vj = [vj,p] ∈ {0, 1}N indicating point assignment to group
j: vp,j = 1 if data point p is in group j and 0 otherwise.
We propose the following general variational formulation
for optimizing any clustering objective F(S) with a fairness
penalty, while constraining each sp within theK-dimensional
probability simplex∇K = {y ∈ [0, 1]K | 1ty = 1}:

min
S
F(S) + λ

∑
k

DKL(U ||Pk) s.t. sp ∈ ∇K ∀p (2)

DKL(U ||Pk) denotes the Kullback-Leibler (KL) divergence
between the given (required) demographic proportions U =
[µj ] and the marginal probabilities of the demographics
within cluster k:

Pk = [P (j|k)]; P (j|k) =
V tj Sk

1tSk
∀j, (3)

where Sk = [sp,k] ∈ [0, 1]N is the N -dimensional vector 1

containing point assignments to cluster k, and t denotes the
transpose operator. Notice that, at the vertices of the simplex
(i.e., for hard binary assignments), V tj Sk counts the number
of points within the intersection of demographic j and cluster
k, whereas 1tSk is the total number of points within cluster
k.

Parameter λ controls the trade-off between the clustering
objective and fairness penalty. The problem in (2) is challeng-
ing due to the ratios of summations in the fairness penalty and
the simplex constraints. Expanding KL termDKL(U ||Pk) and

1The set of N -dimensional vectors Sk and the set of simplex
vectors sp are two equivalent ways for representing assignment
variables. However, we use Sk here for a clearer presentation of the
problem, whereas, as will be clearer later, simplex vectors sp will
be more convenient in the subsequent optimization part.
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discarding constant µj log µj , our objective in (2) becomes
equivalent to minimizing the following functional with re-
spect to the relaxed assignment variables, and subject to the
simplex constraints:

E(S) = F(S)︸ ︷︷ ︸
clustering

+λ
∑
k

∑
j

−µj logP (j|k)︸ ︷︷ ︸
fairness

(4)

Observe that, in Eq. (4), the fairness penalty becomes a cross-
entropy between the given (target) proportion U and the
marginal probabilities Pk of the demographics within cluster
k. Notice that our fairness penalty decomposes into convex
and concave parts:

−µj logP (j|k) = µj log 1
tSk︸ ︷︷ ︸

concave

−µj log V tj Sk︸ ︷︷ ︸
convex

(5)

This enables us to derive the following tight bounds (auxiliary
functions) for minimizing our general fair-clustering model in
(4) using a quadratic bound and Lipschitz-gradient property
of the convex part, along with Pinsker’s inequality, and a
first-order bound on the concave part.

Definition 1 Ai(S) is an auxiliary function of objective
E(S) if it is a tight upper bound at current solution Si, i.e., it
satisfies the following conditions:

E(S) ≤ Ai(S), ∀S (6a)

E(Si) = Ai(Si) (6b)

where i is the iteration index.

Bound optimizers, also commonly referred to as Majorize-
Minimize (MM) algorithms (Zhang, Kwok, and Yeung 2007),
update the current solution Si to the next by optimizing the
auxiliary function:

Si+1 = argmin
S
Ai(S) (7)

When these updates correspond to the global optima of the
auxiliary functions, MM procedures enjoy a strong guarantee:
The original objective function E(S) does not increase at each
iteration:

E(Si+1) ≤ Ai(Si+1) ≤ Ai(Si) = E(Si) (8)

This general principle is widely used in machine learning as
it transforms a difficult problem into a sequence of easier sub-
problems (Zhang, Kwok, and Yeung 2007). Examples of well-
known bound optimizers include concave-convex procedures
(CCCP) (Yuille and Rangarajan 2001), expectation maximiza-
tion (EM) algorithms and submodular-supermodular proce-
dures (SSP) (Narasimhan and Bilmes 2005), among others.
The main technical difficulty in bound optimization is how
to derive an auxiliary function. In the following, we derive
auxiliary functions for our general fair-clustering objectives
in (4).

Proposition 1 (Bound on the fairness penalty) Given cur-
rent clustering solution Si at iteration i, we have the fol-
lowing auxiliary function on the fairness term in (4), up to

additive and multiplicative constants, and for current solu-
tions in which each demographic is represented by at least
one point in each cluster (i.e., V tj S

i
k ≥ 1 ∀ j, k):

Gi(S) ∝
∑N
p=1 s

t
p(b

i
p + log sp − log sip)

with bip = [bip,1, . . . , b
i
p,K ]

bip,k = 1
L

∑
j

(
µj

1tSi
k

− µjvj,p
V t
j S

i
k

)
(9)

where L is some positive Lipschitz-gradient constant verify-
ing L ≤ N .

Proof: We provide a detailed proof in the supplemental ma-
terial. Here, we give the main technical ingredients for ob-
taining our bound. We use a quadratic bound and a Lipschitz-
gradient property for the convex part, and a first-order bound
on the concave part. We further bound the quadratic dis-
tances between simplex variables with the Pinsker’s inequal-
ity (Csiszar and Körner 2011). This step avoids completely
point-wise Lagrangian-dual projections and inner iterations
for handling the simplex constraints, yielding scalable (paral-
lel) updates, with convergence guarantee.

Proposition 2 (Bound on the clustering objective) Given
current clustering solution Si at iteration i, the auxiliary
functions for several popular clustering objectives F(S)
take the following general form:

Hi(S) =
∑N
p=1 s

t
pa
i
p (10)

where point-wise (unary) potentials aip are given in Table 1.

Proofs: We give detailed proofs in the supplemental material.
Here, we provide the main technical aspects: For the Ncut
objective, the derivation of the auxiliary function is based on
the fact that, for positive semi-definite affinity matrix W, the
Ncut objective is concave (Tang et al. 2019). Therefore, the
first-order approximation at the current solution is an auxil-
iary function. For the prototype-based objectives, deriving
an auxiliary function follows from the observation that the
optimal parameters ck, i.e., those that minimize the objec-
tive in closed-form, correspond to the sample means/medians
within the clusters. These auxiliary functions correspond to
the standard K-means and K- medians procedures, which can
be viewed as bound optimizers (Tang et al. 2019).

Proposition 3 (Bound on the fair-clustering functional)
Given current clustering solution Si, at iteration i, and
bringing back the trade-off parameter λ, we have the
following auxiliary function for the general fair-clustering
objective E(S) in Eq. (4):

Ai(S) =
∑N
p=1 s

t
p(a

i
p + λbip + log sp − log sip) (11)

Proof: It is straightforward to check that sum of auxiliary
functions, each corresponding to a term in the objective, is
also an auxiliary function of the overall objective.

Notice that, at each iteration, our auxiliary function in (11)
is the sum of independent functions, each corresponding to a
single data point p. Therefore, our minimization problem in
(4) can be tackled by optimizing each term over sp, subject to
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Clustering F(S) aip = [aip,k], ∀k Where

K-means
∑
N

∑
k sp,k(xp − ck)

2 aip,k = (xp − cik)
2 cik =

XtSi
k

1tSi
k

K-
medians

∑
N

∑
k sp,kd(xp, ck) aip,k = d(xp, c

i
k) cik = argmin

p 6=q
d(xp,xq),

d is a distance metric

Ncut K −
∑
k
St
kWSk

dtSk
aip,k = dpz

i
k−

2
∑

q w(xp,xq)s
i
p,k

dtSi
k

zik =
(Si

k)
tWSi

k

(dtSi
k)

2

d = [dp], with dp =
∑
q w(xp,xq); ∀p

W = [w(xp,xq)] is an affinity matrix

Table 1: Auxiliary functions of several well-known clustering objectives.

the simplex constraint, and independently of the other terms,
while guaranteeing convergence:

min
sp∈∇K

stp(a
i
p + λbip + log sp − log sip), ∀p (12)

Also, notice that, in our derived auxiliary function, we ob-
tained a convex negative entropy barrier function sp log sp,
which comes from the convex part in our fairness penalty.
This entropy term is very interesting as it avoids completely
expensive projection steps and Lagrangian-dual inner itera-
tions for the simplex constraint of each point. It yields closed-
form updates for the dual variables of constraints 1tsp = 1
and restricts the domain of each sp to non-negative values,
avoiding extra dual variables for constraints sp ≥ 0. In-
terestingly, entropy-based barriers are commonly used in
Bregman-proximal optimization (Yuan et al. 2017), and have
well-known computational benefits when handling difficult
simplex constraints (Yuan et al. 2017). However, they are not
very common in the general context of clustering.

The objective in (12) is the sum of convex functions with
affine simplex constraints 1tsp = 1. As strong duality holds
for the convex objective and the affine simplex constraints,
the solutions of the Karush-Kuhn-Tucker (KKT) conditions
minimize globally the auxiliary function. The KKT condi-
tions yield a closed-form solution for both primal variables sp
and the dual variables (Lagrange multipliers) corresponding
to simplex constraints 1tsp = 1.

si+1
p =

sip exp(−(aip + λbip))

1t[sip exp(−(aip + λbip))]
∀ p (13)

Notice that each closed-form update in (13) is within
the simplex. We give the pseudo-code of the proposed fair-
clustering in Algorithm 1. The algorithm can be used for any
specific clustering objective, e.g., K-means or Ncut, among
others, by providing the corresponding aip. The algorithm
consists of an inner and an outer loop. The inner iterations
updates si+1

p using (13) until Ai(S) does not change, with
the clustering term aip fixed from the outer loop. The outer
iteration re-computes aip from the updated si+1

p . The time
complexity of each inner iteration is O(NKJ). Also, the
updates are independent for each data p and, thus, can be
efficiently computed in parallel. In the outer iteration, the
time complexity of updating aip depends on the chosen clus-
tering objective. For instance, for K-means, it is O(NKM),

and, for Ncut, it is O(N2K) for full affinity matrix W or
much lesser for a sparse affinity matrix. Note that aip can be
computed efficiently in parallel for all the clusters.

Convergence and monotonicity guarantees: Our varia-
tional model belongs to the family of MM procedures, whose
theoretical guarantees are well-studied in the literature, e.g.,
(Vaida 2005). In fact, the MM principle can be viewed as
a generalization of well-known expectation-maximization
(EM). Therefore, in general, MM algorithms inherit the mono-
tonicity and convergence guarantees of EM algorithms, as
detailed in the theoretical discussion in (Vaida 2005). Theo-
rem 3 in (Vaida 2005) states a condition for convergence of
the general MM procedure to a local minimum: The auxil-
iary function has a unique global minimum, which should be
obtained at each iteration when solving (7). This condition
is important to guarantee, for instance, the monotonicity in
(8). Our formulation satisfies this condition. In our case, the
auxiliary function in (11) is strictly convex, as it is the sum of
linear terms and a strictly convex term (the negative entropy),
and is optimized under affine simplex constraints. Therefore,
at each iteration, the closed-form solutions we obtained in
(13) correspond to the unique global minimum of auxiliary
function Ai(S) in (11). Our plots in Fig. 1 confirm the con-
vergence and monotonicity of our general MM procedure for
several fair-clustering objectives.

Exploring different trade-off levels via multiplier λ:
Our variational multi-term formulation enables to explore
several levels of trade-off between the clustering and fair-
ness objectives via multiplier parameter λ, unlike the existing
fair-clustering methods. In practice, we run in parallel our
algorithm for several values of λ and choose the smallest
value of λ that satisfies a pre-defined level of fairness er-
ror, i.e., DKL(U ||Pk) ≤ ε. This is conceptually similar to
standard penalty and augmented-Lagrangian approaches in
constrained optimization, where the weights of the penalties2

are gradually increased, until reaching a certain pre-defined
precision (or duality gap) for the constraints; see Chapter
Chapter 17.1 in (Nocedal and Wright 2006). The difference
here is that we run independently for each λ, which can be
implemented in parallel. As illustrated by the plots in Fig. 2,

2In standard constrained optimization, penalties typically take a
quadratic form, unlike our method, which is based on a KL diver-
gence penalty.

11205



Figure 1: The convergence of the proposed bound optimizers for minimizing several fair-clustering objectives in (4): Fair
K-means, Fair Ncut and Fair K- medians. The plots are based on the Synthetic dataset.

Figure 2: Clustering/Fairness objectives vs. λ.

Algorithm 1 Proposed Fair-clustering

Input: X, Initial seeds, λ, U , {Vj}Jj=1

Output: Clustering labels ∈ {1, ..,K}N
Initialize labels from initial seeds.
Initialize S from labels.
Initialize i = 1.
repeat

Compute aip from S (see Table 1).

Initialize sip =
exp(−ai

p)

1t exp(−ai
p)

.
repeat

Compute si+1
p using (13).

sip ← si+1
p .

S = [sip]; ∀p.
until Ai(S) in (11) does not change
i = i+ 1.

until E(S) in (4) does not change
lp = argmax

k
sp,k; ∀p.

labels = {lp}Np=1.

when λ increases, the fairness error decreases and the clus-
tering objective increases, which is intuitive. As discussed
in more details below (Tables 2, 3 and 4), our variational
formulation can achieve small fairness errors (competitive
with the existing state-of-the-art fair-clustering methods), but
with much better clustering objectives, consistently across all
the data sets.

Experiments
In this section, we present comprehensive empirical evalu-
ations of the proposed fair-clustering algorithm, along with
comparisons with state-of-the-art fair-clustering techniques.

We choose three well-known clustering objectives: K-means,
K- medians and Normalized cut (Ncut), and integrate our
fairness-penalty bound with the corresponding clustering
bounds ap (see Table 1). We refer to our bound-optimization
versions as: Fair K-means, Fair K- medians and Fair Ncut3.
Note that our formulation can be used for other clustering
objectives (if a bound could be derived for the objective).

We investigate the effect of fairness on the original dis-
crete (i.e., w.r.t. binary assignment variables) clustering ob-
jectives, and compare with the existing methods. We eval-
uate the results in terms of the balance of each cluster
Sk in (1), and define the overall balance of the cluster-
ing as balance = minSk

balance(Sk). We further propose
to evaluate the fairness error, which is the KL divergence∑
k DKL(U ||Pk) in (2). This KL measure becomes equal

to zero when the proportions of the demographic groups
within all the output clusters match the target distribution.
For Ncut, we use 20-nearest neighbor affinity matrix, W:
w(xp,xq) = 1 if data point xq is within the 20-nearest neigh-
bors of xp, and equal to 0 otherwise. In all the experiments,
we fixed L = 2 and found that this does not increase the
objective (see the detailed explanation in the supplemental
material). We standardize each dataset by making each fea-
ture attribute to have zero mean and unit variance. We then
performed L2-normalization of the features, and used the
standard K-means++ (Arthur and Vassilvitskii 2007) to gen-
erate initial partitions for all the models.

Datasets
Synthetic datasets: We created two types of synthetic
datasets according to the proportions of the demographics,
each having two clusters and a total of 400 data points in 2D
features (figures in the supplemental material). The Synthetic

3Code is available at: https://github.com/imtiazziko/Variational-
Fair-Clustering
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Datasets Fair K- medians
Objective fairness error / balance

Backurs et al. 2019 Ours Backurs et al. 2019 Ours
Synthetic (N = 400, J = 2, λ = 10) 299.859 292.4 0.00/1.00 0.00/1.00
Synthetic-unequal (N = 400, J = 2, λ = 10) 185.47 174.81 0.77/0.21 0.00/0.33
Adult (N = 32, 561, J = 2, , λ = 9000) 19330.93 18467.75 0.27/0.31 0.01/0.43
Bank (N = 41, 108, J = 3, λ = 9000) N/A 19527.08 N/A 0.02/0.18
Census II (N = 2, 458, 285, J = 2, λ = 500000) 2385997.92 1754109.46 0.41/0.38 0.02/0.78

Table 2: Comparison of the proposed Fair K- medians to (Backurs et al. 2019).

Datasets
Fair K-means

Objective fairness error / balance
Bera et al. 2019 Ours Bera et al. 2019 Ours

Synthetic (N = 400, J = 2, λ = 10) 758.43 207.80 0.00 / 1.00 0.00 / 1.00
Synthetic-unequal (N = 400, J = 2, λ = 10) 180.00 159.75 0.00 / 0.33 0.00 / 0.33
Adult (N = 32, 561, J = 2, λ = 9000) 10913.84 9984.01 0.018 / 0.41 0.018 / 0.41
Bank (N = 41, 108, J = 3, λ = 6000) 11331.51 9392.20 0.03 / 0.16 0.05 / 0.17
Census II (N = 2, 458, 285, J = 2, λ = 500000) 1355457.02 1018996.53 0.07/0.77 0.02/0.78

Table 3: Comparison of the proposed Fair K-means to (Bera et al. 2019).

dataset contains two perfectly balanced demographic groups,
each having an equal number of 200 points. For this data
set, we imposed target target proportions U = [0.5, 0.5]. To
experiment with our fairness penalty with unequal propor-
tions, we also used Synthetic-unequal dataset with 300 and
100 points within each of the two demographic groups. In
this case, we imposed target proportions U = [0.75, 0.25].

Real datasets: We use three datasets from the UCI ma-
chine learning repository, one large-scale data set whose
demographics are balanced (Census), along with two other
data sets with various demographic proportions:

Bank 4 dataset contains 41188 number of records of direct
marketing campaigns of a Portuguese banking institution
corresponding to each client contacted (Moro, Cortez, and
Rita 2014). Note that, the previous fair clustering methods
(Bera et al. 2019; Backurs et al. 2019) used a much smaller
version of Bank dataset with only 4520 number of records
with J = 2 and 3 attributes. Instead, we utilize the marital
status as the sensitive attribute, which contains three groups
(J = 3) – single, married and divorced – and removed the
‘’Unknown” marital status. Thus, we have 41, 108 records in
total. We chose 6 numeric attributes (age, duration, euribor
of 3 month rate, no. of employees, consumer price index
and number of contacts performed during the campaign) as
features. We set the number of clusters K = 10, and impose
the target proportions of three groups U = [0.28, 0.61, 0.11]
within each cluster.

Adult5 is a US census record data set from 1994. The
dataset contains 32, 561 records. We used the gender status
as the sensitive attribute, which contains 10771 females and
21790 males. We chose the 5 numeric attributes as features,
set the number of clusters toK = 10, and impose proportions
U = [0.33, 0.67] within each cluster.

Census6 is a large-scale data set corresponding to a US cen-

4https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
5https://archive.is.uci/ml/datasets/adult
6https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)

sus record data from 1990. The dataset contains 2, 458, 285
records. We used the gender status as the sensitive attribute,
which contains 1, 191, 601 females and 1, 266, 684 males.
We chose the 25 numeric attributes as features, similarly
to (Backurs et al. 2019). We set the number of clusters to
K = 20, and imposed proportions U = [0.48, 0.52] within
each cluster.

Results
In this section, we discuss the results of the different experi-
ments to evaluate the proposed general variational framework
for Fair K-means, Fair K- medians and Fair Ncut. We further
report comparisons with (Bera et al. 2019), (Backurs et al.
2019) and (Kleindessner et al. 2019) in terms of discrete
fairness measures and clustering objectives.

Trade-off between clustering and fairness objectives:
We assess the effect of imposing fairness constraints on the
original clustering objectives. In each plot in Fig. 2, the blue
curve depicts the discrete-valued clustering objective F(S)
(K-means or Ncut) obtained at convergence as a function
of λ. The fairness error is depicted in red. Observe that,
when multiplier λ increases (starting from a certain value),
the discrete clustering objective increases while the fairness
error decreases, which is intuitive. Also, the fairness error
approaches 0 when λ → +∞, and both the clustering and
fairness objectives tend to reach a plateau starting from a cer-
tain value of λ. The scalability of our model is highly relevant
because it enables us to explore several solutions, each corre-
sponding to a different value of multiplier λ, and to choose
the smallest λ (i.e., the best clustering objective) that satisfies
a pre-defined fairness level

∑
k DKL(U ||Pk) ≤ ε. As detailed

below, this flexibility enabled us to obtain better solutions,
in terms of fairness and clustering objectives, than several
recent fair-clustering methods. Low fairness errors are typi-
cally achieved with large values of λ. This is due to the fact
that the scale of the fairness penalty could be much smaller
than the clustering objectives. Notice that, for relatively small
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Datasets
Fair NCUT

Objective fairness error / balance
Kleindessner et al. 2019 Ours Kleindessner et al. 2019 Ours

Synthetic (N = 400, J = 2, λ = 10) 0.0 0.0 0.00/1.00 0.0/1.00
Synthetic-unequal (N = 400, J = 2, λ = 10) 0.03 0.06 0.00/0.33 0.00/0.33
Adult (N = 32, 561, J = 2, λ = 10) 0.47 0.74 0.06/0.32 0.08/0.30
Bank (N = 41, 108, J = 3, λ = 40) N/A 0.58 N/A 0.39/0.14
Census II (N = 2, 458, 285, J = 2, λ = 100) N/A 0.52 N/A 0.41/0.43

Table 4: Comparison of the proposed Fair NCut to (Kleindessner et al. 2019).

Figure 3: Effect of K on the clustering objectives for vanilla clustering and our variational fair clustering methods, including
the K-means, K-medians and Ncut objectives. The results are shown for the Bank dataset. Note that, for each plot, the value of
multiplier λ is fixed.

values of λ, the K-means objective (blue curve) for the Adult
dataset has an oscillating behaviour. This might be due to
the fact that, for small λ, the K-means objective dominates
the KL fairness term. However, after a certain value of λ
(λ ≥ 4000), the curves become smooth, with a predictable
behaviour (i.e., the fairness term decreases and the clustering
term increases). When the clustering objective dominates, the
oscillating behaviour might be due to the local minima of
bound optimization for the K-means term. We hypothesize
that, with higher values of λ, the KL fairness term “convexi-
fies” the function, and facilitates optimization. With smaller
values of λ, the K-means term dominates, with possibilities
of being stuck in local minima (K-means is well-known to
be sensitive to the initial conditions).

Clustering cost with respect toK: Fig. 3 depicts how the
clustering objectives behave w.r.t the number of clusters K,
with and without the fairness constraints. We plot the discrete
clustering objective vs. K for K-means, K-medians and Ncut,
using the Bank dataset, with each plot corresponding to a
fixed multiplier λ. In both cases (i.e., with and without the
fairness constraints), the obtained clustering objectives de-
crease with K, with the gap between the clustering objective
obtained under fairness constraints and the vanilla cluster-
ing increasing with K. Those experimental observations are
consistent with the observations in (Bera et al. 2019).

Comparisons to state-of-the-art methods: Our algo-
rithm is flexible as it can be used in conjunction with different
well-known clustering objectives. This enabled us to compare
our Fair K- medians, Fair K-means and Fair Ncut versions to
(Backurs et al. 2019), (Bera et al. 2019) and (Kleindessner
et al. 2019), respectively. Tables 2, 3 and 4 report compar-
isons in terms of the original clustering objectives, achieved
minimum balances and fairness errors, for Fair K-medians,
Fair K-means and Fair NCut. For our model, we run the algo-

rithm for several values of λ in ascending order, and choose
the smallest λ that satisfies a pre-defined level of fairness
error. This flexibility and scalability enabled us to obtain sig-
nificantly better clustering objectives and fairness/minimum-
balance measures in comparisons to (Backurs et al. 2019);
See Table 2. It is worth noting that, for the Bank dataset, we
were unable to run (Backurs et al. 2019) as the number of
demographic group is 3 (i.e. J > 2). In comparison to (Bera
et al. 2019), our variational method achieves significantly
better K-means clustering objectives, with approximately the
same fairness levels. Note that, we can obtain better fairness
with larger λ values. These results highlight the benefits of
our proposed variational formulation, which provides control
over the trade-off between the fairness level and clustering
objective. In the case of fair NCut, (Kleindessner et al. 2019)
achieved slightly better Ncut objectives than our model, while
achieving similar fairness levels. However, we were unable
to run the spectral solution of (Kleindessner et al. 2019) for
large-scale Census II data set, and for Bank, due to its compu-
tational and memory load (as it requires computing the eigen
values of the square affinity matrix).

Our algorithm scales up to more than two demographic
groups, i.e. when J > 2 (e.g. Bank), unlike many of the
existing approaches. Furthermore, for NCut graph cluster-
ing, our bound optimizer can deal with large-scale data sets,
unlike (Kleindessner et al. 2019), which requires eigen de-
composition for large affinity matrices. Finally, the parallel
structure of our algorithm within each iteration (i.e., indepen-
dent updates for each assignment variable) enables to explore
different values of λ, thereby choosing the best trade-off
between the clustering objective and fairness error.
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Broader Impact
This paper deals with ensuring fairness criteria in clustering
decisions, so as to avoid unfair treatment of minority groups
pertaining to a sensitive attribute such as race, gender, etc.
The paper is an endeavor to present a flexible mechanism, so
as to relatively control the required fairness, while ensuring
clustering quality at the same time.
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