
Learning Task-Distribution Reward Shaping with Meta-Learning

Haosheng Zou1, Tongzheng Ren2, Dong Yan1, Hang Su1, Jun Zhu1*
1Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Lab, Bosch-Tsinghua Joint ML Center, Tsinghua University

2Department of Computer Science, UT Austin
zouhaosheng@163.com, {rtz19970824, sproblvem}@gmail.com, {suhangss, dcszj}@tsinghua.edu.cn

Abstract

Reward shaping is one of the most effective methods to tackle
the crucial yet challenging problem of credit assignment and
accelerate Reinforcement Learning. However, designing shap-
ing functions usually requires rich expert knowledge and hand-
engineering, and the difficulties are further exacerbated given
multiple tasks to solve. In this paper, we consider reward shap-
ing on a distribution of tasks that share state spaces but not
necessarily action spaces. We provide insights into optimal
reward shaping, and propose a novel meta-learning frame-
work to automatically learn such reward shaping to apply
on newly sampled tasks. Theoretical analysis and extensive
experiments establish us as the state-of-the-art in learning
task-distribution reward shaping, outperforming previous such
works (Konidaris and Barto 2006; Snel and Whiteson 2014).
We further show that our method outperforms learning intrin-
sic rewards (Yang et al. 2019; Zheng et al. 2020), outperforms
Rainbow (Hessel et al. 2018) in complex pixel-based CoinRun
games, and is also better than hand-designed reward shaping
on grid mazes. While the goal of this paper is to learn reward
shaping rather than to propose new general meta-learning al-
gorithms as PEARL (Rakelly et al. 2019) or MQL (Fakoor
et al. 2020), our framework based on MAML (Finn, Abbeel,
and Levine 2017) also outperforms PEARL / MQL, and could
combine with them for further improvement.

1 Introduction
Credit assignment (Minsky 1961) remains a key challenge on
the learning efficiency (sample complexity) of Reinforcement
Learning (RL) (Mnih et al. 2015; Silver et al. 2018), which
usually requires many samples from the environment to learn
well. Reward shaping is one of the most intuitive, popular and
effective remedies to accelerate RL (Dorigo and Colombetti
1994; Mataric 1994; Randløv and Alstrøm 1998). It also
played an important role in recent successes like Doom (Wu
and Tian 2017) and Dota (OpenAI et al. 2019).

However, most shaping functions are hand-designed by
human experts and are potentially tedious and inconvenient
to code in especially complex environments (Wu and Tian
2017; OpenAI et al. 2019). Direct shaping functions may
also change the optimal policies (Ng, Harada, and Russell
1999). Furthermore, in practice we are usually interested in

*J.Z is the corresponding author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solving multiple similar tasks as a whole (e.g., training one
general agent for all possible 2D mazes instead of one per
map). Such shared but not identical task-structures naturally
induce a distribution over tasks, such as distributions over
maze configurations (Wilson et al. 2007), system parameters
for different robot-hand sizes (Lazaric and Ghavamzadeh
2010) and game maps for RTS games (Jaderberg et al. 2019).
The ability to quickly solve new similar tasks drawn from
such distributions is mastered by human infants quite young
(Smith and Slone 2017). However, the human effort in reward
shaping for RL would be further exacerbated as we have to
either design a different shaping per task or come up with a
general shaping function presumably harder to design.

Motivated by such inconvenience under task multiplicity,
we study the generally hard problem of learning automatic
reward shaping on a distribution of tasks (termed learning
task-distribution reward shaping). Our goal is not to propose
new general meta-learning algorithms, but instead use them
to learn good shaping. To the best of our knowledge, the only
previous such works are (Konidaris and Barto 2006; Snel and
Whiteson 2014), both using naive objectives and simple mod-
els. They first learn optimal Q-/V-values for each task and
then fit one potential function to all the learned values. They
have to learn as many value functions as tasks in the first
step. More importantly, some tasks’ value functions might
be in disagreement with others’ and would be inappropri-
ately averaged out in the second step. Besides, its training
doesn’t prepare for adaptation to individual tasks at all. To
mitigate those problems, our main novelties are an overall
framework that formulates task-distribution reward shaping
as meta-learning, and an original algorithm for reward shap-
ing in meta-testing. Our contributions include: 1) we present
a state-of-the-art method using meta-learning and deep nets to
learn a general and flexible task-distribution reward shaping,
requiring only shared state space and applicable to new tasks
either directly or adaptively; 2) we provide insightful theory,
and extensive empirical improvements over strong competi-
tors including Rainbow (Hessel et al. 2018), MQL (Fakoor
et al. 2020), hand-designed shaping and learning intrinsic
rewards (Zheng et al. 2020).

2 Preliminaries
We consider the setting of multi-task model-free RL, where
the tasks follow a distribution p(T ). Each sampled task

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11210



Ti ∼ p(T ) is a standard Markov Decision Process (MDP)
Mi = (S,Ai, Ti, γ, Ri), where S is state space, assumed
to be shared by all tasks, Ai is the action space, Ti :
S ×Ai×S → [0, 1] is the unknown state transition probabil-
ity (hence model-free), γ ∈ [0, 1] is the discount factor and
Ri : S × Ai × S → R is the reward function. Note we use
the subscript i to denote potentially different action spaces
Ai, transition probabilities Ti and reward functions Ri. We
assume basic knowledge of (optimal) value functions and
(deep) Q-learning, and briefly introduce the techniques on
which our method is based as follows.

2.1 Potential-based Shaping Function
A shaping function F transforms the original MDP M =
(S,A, T, γ,R) into a shaped MDP M ′ = (S,A, T, γ,R′ =
R + F ). An arbitrary F could change the original optimal
policies. One particular form of F , potential-based shaping
function (Ng, Harada, and Russell 1999), keeps the optimal
policies invariant (Policy invariance theorem (Ng, Harada,
and Russell 1999) ):

Definition 1 (Potential-based shaping function (Ng, Harada,
and Russell 1999)). F : S × A × S → R is a potential-
based shaping function if there exists a real-valued function
Φ : S → R, such that ∀(s, a, s′) ∈ S ×A× S ,

F (s, a, s′) = γΦ(s′)− Φ(s).

Φ(s) is thus called the potential function.

Ng, Harada, and Russell (1999) noted Φ(s) = V ∗M (s) (the
optimal state value) gives V ∗M ′(s) ≡ 0 and leaves only the
non-zero Q-values to learn. We provide further insightful
analysis and motivate it in our method in §3.1.

2.2 Meta-Learning
Meta-learning has proved effective for task distributions in
RL (Duan et al. 2016; Wang et al. 2016a; Yu et al. 2019).
It operates on two task sets: meta-training set {Ti}Ni=1 and
meta-testing set {Tj}N+M

j=N+1, both drawn from the same task
distribution p(T ). One popular algorithm is Model-Agnostic
Meta-Learning (MAML) (Finn, Abbeel, and Levine 2017):

In meta-training, MAML learns a parameter initialization
θ of a neural net f , iterating in “meta-iterations” within which
it samples a minibatch of tasks {Ti} and updates:

φi(θ)←θ − α∇θLTi(fθ), (1)
θ ←θ − β∇θETiLTi(fφi(θ)). (2)

Here θ are the parameters to be learned, φi are the task-
specific parameters updated from θ as initialization (Eqn. (1)),
α, β are step sizes and LTi is the loss function on each Ti.
Note that φi depend on θ (hence the explicit φi(θ) notation)
and the gradients back-propagate through φi to θ in Eqn. (2).
In other words, this learning procedure is learning θ such that
a single fine-tune step φi(θ) could effectively reduce the loss
on a specific task Ti.

In meta-testing, given data from a new task Tj , MAML
adapts (with several updates) model parameters starting from
θ, learning much faster than from random initialization.

Figure 1: Overview of the proposed framework. The dueling-
DQN architecture is shown in black. The forward/backward
computation flow is shown in red, where meta-training
(Alg. 1) has a simpler flow than meta-testing (Alg. 2).

3 Methods
We propose a novel framework (depicted in Fig. 1) to learn
task-distribution reward shaping. It casts task-distribution
reward shaping onto meta-learning and learns a potential
function Φ(s) for reward shaping on newly sampled tasks.
In essence, we would parameterize Φ(s) as a dueling-DQN1

(Wang et al. 2016b) and meta-learn its parameter initialization
during meta-training. We then propose a novel algorithm
to adapt from the learned initialization for reward shaping
during meta-testing.

We generally follow the notations in §2 and summarize
the main notations to appear for reference in a table in our
arXiv appendix. Since we seek to extract prior knowledge
from meta-training tasks {Mi} into Φ(s), we call Φ(s) the
prior (also following recent works (Yoon et al. 2018; Finn,
Xu, and Levine 2018)). Correspondingly, in meta-testing
we adapt it towards the task-posterior Φ(s|Ti) for better
shaping. We parameterize the prior with θ: Φ(s; θ), and the
task-posterior with φi: Φ(s|Ti;φi). 2 We use the same letter
Φ for both prior and posterior because they would have the
same neural network architecture though different parameter
values. We use the same parameters θ, φi and φj in equations
like Qφi(s, a) = Vφi(s) + Aφi(s, a) for simplicity due to
the dueling architecture and shared parameters. These would
become clear later.

We first motivate our choice of the task-posterior Φ(s|Ti).

3.1 Efficient Credit Assignment with Optimal
Potential Functions

A key insight on the potential function Φ(s) = V ∗M (s) is:

Theorem 1 (Dependency Removal, proof in arXiv appendix).
For all states, Φ(s) = V ∗M (s) shaping gives R′(s, a) =
Es′R′(s, a, s′) ≤ 0 (non-positive immediate rewards) with
optimal actions’ immediate rewards being exclusively 0.

It essentially removes long-term dependencies along tra-
jectories, since immediate rewards (zero or negative) are

1To be more specific, its V-value head would serve as the poten-
tial function.

2We implement them as ordinary neural networks rather than
distributions for optimization simplicity. We leave a fuller Bayesian
treatment than such point estimates for future work.

11211



Algorithm 1 Meta-learning potential function prior

Input: p(T ): a distribution over tasks; α, β: step sizes
Output: Learned prior MD3QN Qθ
Randomly initialize parameters θ for prior Qθ
for meta iteration = 0, 1, 2... do

Sample a mini-batch of tasks {Ti} ∼ p(T )
for all Ti do

Initialize replay buffer Di
Collect data with Qθ(s, a) (ε-greedy) into Di
φi(θ)← θ − α∇θLQTi(Qθ) (Eqn. (8) with Di)

end for
θ ← θ − β∇θETiLTi(Qφi(θ)) (Eqn.(9), all {Di})

end for

sufficient to determine optimal policies. There’s then no need
of credit assignment, hence the arguably optimal credit as-
signment for learning efficiency.

Therefore, we choose V ∗Mi
(s) as the adaptation target of

the task-posterior Φ(s|Ti) to be used in Eqn. (1).
Remarks: 1) This simple result has been noted similarly,

though not identical, in e.g. (Baird III 1993; Schulman et al.
2016). Here it mainly introduces our adaptation target. 2)
Thm. 1 only holds in expectation of environmental random-
ness, and has to be approximated by mini-batches of samples.
Still, V ∗Mi

(s) is a much appealing choice. 3) Knowing V ∗
seems equivalent to having solved the task partly (V ∗ still
cannot give policies in the model-free setting), but we are not
using it for the same task in a circle: V ∗Mi

(s) serves as the
learning target on meta-training tasks {Mi} in order to better
generalize and approximate it for shaping on meta-testing
tasks {Mj}.

3.2 Meta-Learning Potential Function Prior
Having set the adaptation update (Eqn. (1)), we now consider
how to learn the prior (Eqn. (2)) taking into account the
adaptation and reward shaping. We would arrive at Alg. 1.

We design Φ(s; θ) and Φ(s|Ti;φi) to be of the same net-
work architecture (hence both Φ). For each Ti, φi is initialized
to θ and adapts to V ∗Mi

(s) under some loss function LTi :

φi(θ)←θ − α∇θLTi
(
Φ(s|Ti; θ)

)
. (3)

Then from Eqn. (2), our objective for the prior is:

min
θ

ETiLTi
(
Φ(s|Ti;φi(θ))

)
. (4)

In contrast, previous works of learning task-distribution re-
ward shaping (Konidaris and Barto 2006; Snel and Whiteson
2014) use minθ ETiL

Q
Ti(Qθ), which is essentially different

and we refer to as NAIVE AVERAGING. Regarding meta-
learning, this is actually the “pretraining one network on all
training tasks” baseline in (Finn, Abbeel, and Levine 2017),
where it’s already shown to be inferior to MAML.

Choice of LTi and Φ: The closest off-the-shelf RL way to
learn V ∗Mi

(s) is arguably (deep) Q-learning (Watkins and
Dayan 1992; Mnih et al. 2015), which learns Q∗Mi

(s, a)
and gives V ∗Mi

(s) simply with V ∗Mi
(s) = maxaQ

∗
Mi

(s, a).

Algorithm 2 Meta-testing (adaptation with advantage head)

Input: Tj : new task to solve; meta-learned MD3QN Qθ
Output: adapted task-posterior φj
Initialize φj ← θ and replay buffer D
for gradient step = 0, 1, 2... do

Collect data with Aφj (s, a) into D
Update Aφj (s, a) with Eqn. (10), using samples from
D and the current potential function Vφj (s) for shaping
Update Vφj (s) with Eqn. (11), using samples from D

end for

Therefore, we use a deep Q-network (DQN) (Mnih et al.
2015) parameterized as Qθ and Qφi for the potential:

Φ(s|Ti;φi) = max
a

Qφi(s, a) (5)

Correspondingly, LTi is the (deep) Q-learning objective
on Q instead of Φ:

LQTi(Qφi) = EDi‖Ri(s, a, s
′)+γmax

a′
Qφi(s

′, a′)−Qφi(s, a)‖
2,

computed on some sampled (off-policy) trajectory data Di.
Remark: We could also use modern policy-gradient algo-
rithms (Mnih et al. 2016; Schulman et al. 2017) that learn
V π(s) in the meantime of optimizing the policy π(s), al-
though they don’t directly learn V ∗(s) and V π(s)→ V ∗(s)
only when π(s) → π∗(s), which may require more data to
learn. Therefore, we only consider DQN variants in this pa-
per, and leave policy-gradients (e.g., off-policy actor-critic
(Lillicrap et al. 2016)) for future work.

DQN Design: Taking max (Eqn. (5)) in vanilla DQNs isn’t
very robust to approximation error and noise, and the learned
Q-values are sometimes not necessarily good estimates of
true values (Wang et al. 2016b; Tallec, Blier, and Ollivier
2019). So we further introduce a key design of decomposed
multi-head architecture (also justified in §5):

Qφi(s, a) = Vφi(s) +Aφi(s, a), (6)

where we’d like the advantage head Aφi(s, a) to learn the
advantage-value function. This explicit decomposition gives
the arguably directest way to learn V ∗:
Firstly, note an issue of identifiability in Eqn. (6) that an
arbitrary bias could be added to Vφi and subtracted from Aφi
while keeping Qφi unchanged. Therefore, the final design is
to subtract the maximum of the advantage value from Qφi :

Qφi(s, a) = Vφi(s) +Aφi(s, a)−max
a′

Aφi(s, a
′). (7)

Then as Qφi attains Q∗Mi
, by taking maxa on both sides of

Eqn. (7), we get Vφi(s) = maxaQ
∗
Mi

(s, a) = V ∗(s). So we
can directly learn V ∗ in the meantime of learning Q∗.

This decomposition directly mimics and is justified by the
value functions’ relation QπMi

(s, a) = V πMi
(s) +AπMi

(s, a),
by definition for any policy π and MDP Mi. It was first intro-
duced as dueling DQN (Wang et al. 2016b) but for a different
purpose of speeding up training (“generalize learning across
actions” (Wang et al. 2016b)). Here we exploit the architec-
ture in learning the optimal V-values V ∗ as we meta-train at
the combined Q(s, a) (Fig. 1).

11212



Now the potential function becomes Φ(s|Ti;φi) = Vφi(s),
i.e., the V (s) head as shown in Fig. 1.

The final algorithm is as Alg. 1. Eqn. (3) and (4) become:

φi(θ)← θ − α∇θLQTi(Qθ), (8)

min
θ

ETiL
Q
Ti(Qφi(θ)). (9)

Roughly, Alg. 1 extends MAML and dueling-DQN for our
purposes. However, since DQN is off-policy RL, we could
reuse experience and require much less experience every
meta-iteration than the original (on-policy) policy-based
MAML (Finn, Abbeel, and Levine 2017), which re-samples
data in each environment with the task-posterior φi for the
update in Eqn. (9).

In practice, we also incorporate value-estimation correc-
tions Double DQN (Van Hasselt, Guez, and Silver 2016) and
multi-step returns (Hessel et al. 2018), resulting in multi-
step Dueling Double DQN (MD3QN). A baseline without
dueling is thus MDDQN. It’s non-trivial to combine other
parts of Rainbow (Hessel et al. 2018) with meta-learning,
and meta-learning the simpler MD3QN already outperforms
RAINBOW + NAIVE AVERAGING (§5.3).

3.3 Meta-Testing with Potential Function Prior
Naturally we would like to adapt the θ-initialized shap-
ing Vφj (s)|φj=θ towards V ∗Mj

(s) when learning on a meta-
testing task Tj . To facilitate this, we made an additional
assumption first that the action space is shared across the
task distribution (we’ll drop it and handle the unshared case
later), so the MD3QN is still applicable on Tj . We call this
meta-testing setting adaptation with advantage head, as
later in the unshared case we would discard the advantage
head.

We’d like an algorithm that 1) utilizes the meta-trained
MD3QN and 2) still does RL on the shapedM ′j and 3) adapts
the shaping function Vφj (s) in a simultaneous but also clear,
disentangled manner. We propose Alg. 2, which updates
Aφj , Vφj alternately with stepsize α:
◦ Update Aφj (s, a) with sampled data from replay buffer:

φj ← φj − α∇φjED
∥∥R′

j(s, a, s
′
) + γmax

a′
Aφj (s

′
, a

′
)− Aφj (s, a)

∥∥2
.

(10)

◦ Update Vφj (s) towards target y with sampled data from
replay buffer (where y = maxaAφj (s, a) + Vφj (s)):

φj ← φj − α∇φjED‖Vφj (s)− y‖2. (11)

They update intermediate A(s, a) and V (s) heads (Fig. 1).
Theorem 2 (Meta-Testing Objective, proof in arXiv ap-
pendix). Eqn.(10) optimizes for the optimal policy. Eqn.(11)
optimizes for the task-posterior V ∗Mj

(s).

We now return to unshared action spaces, which could
arise in practice simply because the task requires a different
action space (e.g., from discrete to fine-grained continuous
spaces in §5.5), or because of other constraints forbidding
the advantage head. In this case (which we call shaping
only), we simply discard the advantage head and fix the
meta-learned Vθ for reward shaping to train a new RL agent

from scratch on Tj . Due to the close (though nonequivalent)
relation between Alg. 1 and Q-learning, Vθ could still be
expected to be much better than random potential functions
or no shaping at all, which we empirically verify in our arXiv
appendix.

Meta-testing without reward shaping: In case of shared
action space, one may wonder: why not simply do MAML’s
meta-testing (Finn, Abbeel, and Levine 2017), just Q-learning
starting from θ? We refer to this baseline as VANILLA
MAML. Though viable, VANILLA MAML merely exploits
the meta-learned parameter initialization, while our Alg. 2
also explicitly exploits reward shaping from the potential
function prior. The shaped rewards are easier for policy learn-
ing, and the adapting shaping (Eqn. (11)) further boosts pol-
icy learning (Eqn. (10)) immediately in the next loop. It also
jointly does RL and adapts Vφj in a much more clear, disen-
tangled manner. These are empirically supported by the faster
and more stable curves of our method in §5.3. Also, note
that we are more general on action spaces, while VANILLA
MAML requires a shared one.

4 Related Work3

Learning task-distribution reward shaping: The only di-
rect previous works are (Konidaris and Barto 2006; Snel and
Whiteson 2014). They do consider multi-task transfer, but
are based on naive (weighted) averaging in principle (whose
downsides are discussed in §1) and only learn simple linear
models on simple tasks. We include them in §5 as all NAIVE
AVERAGING baselines with our deep models.

(Automatic) reward shaping: Potential-based reward
shaping with policy invariance guarantee (Ng, Harada, and
Russell 1999) have been extended to various settings (As-
muth, Littman, and Zinkov 2008; Lu, Schwartz, and Givigi
2011; Gao and Toni 2015; Eck et al. 2016; Mannion, Dug-
gan, and Howley 2017; Grześ 2017) and applications (Devlin,
Grześ, and Kudenko 2011; Efthymiadis and Kudenko 2013).
The exact form of the potential function could also be general-
ized to depend on action and/or timestep (Wiewiora, Cottrell,
and Elkan 2003; Devlin and Kudenko 2012; Harutyunyan
et al. 2015) in addition to state. Here we simply stick with its
original form in (Ng, Harada, and Russell 1999). Potential-
based shaping functions are usually pre-defined manually.
Earlier attempts of automatic reward shaping rely on pre-
defined representations (Konidaris and Barto 2006; Marthi
2007), pre-defined higher-level shaping function (Laud and
DeJong 2002) or evolutionary search of shaping functions
(Niekum, Barto, and Spector 2010). Above all, those works
are almost entirely based on tabular RL, lacking the ability to
generalize/adapt. One recent related work on a task distribu-
tion is (Jaderberg et al. 2019), but they still learn in a tabular
way on a limited set of predefined novel states of their task.

In contrast to all those works, our method is quite gen-
eral, assuming no task knowledge or heuristics, with a more
general, principled meta-learning objective, flexible applica-
tion settings, insightful theoretical analysis, and both neural
agents and shaping functions with gradient optimization.

3We include some additional related work on reward shaping,
meta-learning and inverse RL in our arXiv appendix.

11213



Another line of work is learning intrinsic rewards (Barto
2013), which learns the reward itself for policy optimization.
It replaces the original reward and is fundamentally different
from reward shaping. Policy invariance are usually only guar-
anteed asymptotically. Some learn on the program/code level
(Alet* et al. 2020). Some are for single tasks (Zheng, Oh,
and Singh 2018; Stadie, Zhang, and Ba 2020; Du et al. 2019).
Works comparable with ours on task distributions (Yang et al.
2019; Zheng et al. 2020) build on on-policy RL (§5.3).

5 Experiments
This sections seeks to answer two key questions: 1) what ex-
actly is being learned and 2) how our framework compares to
relevant baselines. We experimented on (of increasing com-
plexity) CartPoles, grid mazes and CoinRun games through
comparison with the only previous baselines (Konidaris and
Barto 2006; Snel and Whiteson 2014) and other strong
competitors (incl. RAINBOW (Hessel et al. 2018), hand-
designed shaping, MQL (Fakoor et al. 2020) and intrinsic
rewards (Zheng et al. 2020)). As a reminder, our method
(“OURS”) meta-trains a MD3QN with Alg. 1, and meta-tests
with Alg. 2 in the adaptation with advantage head (in short,
adaptation) case or with the meta-learned Vθ in the shaping
only case. We’ve included further experimental details and
results in our arXiv appendix.

5.1 General Settings
We obtain each result over 5 different runs (random seeds
0-4). We sample, separate and fix the meta-training and meta-
testing tasks at the beginning of each run, keeping all hyper-
parameters the same. For fair comparison, meta-training of
all methods uses same number of environment interactions
and updates. For each meta-testing curve (# gradient steps
as the x-axis in e.g., Fig. 3, 4), we keep all data collection
hyperparameters the same across all methods (e.g., # environ-
ment interactions per update) so that the number of gradient
steps accurately mirrors sample complexity. For CartPoles
and grid mazes, we aggregate raw performance statistics on
all meta-testing tasks combined (so e.g., 5× 40 = 200 tasks
on CartPoles as follows), and then take median and interquar-
tile curves. For CoinRun we take mean and standard deviation
of all runs’ solve ratios following (Cobbe et al. 2019).4

The task distribution on CartPoles is defined varying the
pole length in the range of [0.25, 5.00]. Such change in dy-
namics is already harder than random noise. The mD3QN
uses an MLP with two hidden layers of size 32 before the
value heads. We meta-train on 500 sampled tasks for 200
meta iterations with 10 tasks per iteration and meta-test on
40 unseen tasks.

The task distribution on grid mazes is defined on all pos-
sible maps of size 8 × 8, which is of exponentially many
configurations varying start, goal and obstacles. The mD3QN
uses a CNN similar as (Mnih et al. 2015) before the value
heads. We meta-train on 1000 sampled maps for 1000 meta it-

4Mean + std curves for CartPoles and grid mazes are also in-
cluded in our arXiv appendix, giving the same conclusions. It also
shows we’re robust across different evaluation metrics.

Figure 2: Visualization of meta-learned prior Vθ (right) on
the left map at all possible agent positions.

erations and meta-test on 40 unseen maps. Pixel grid mazes is
already non-trivial for non-tabular agents (Tamar et al. 2016).

The task distribution on CoinRun games (Cobbe et al.
2019) is defined on all possible level configurations. It’s a
very difficult pixel game (Cobbe et al. 2019). The mD3QN
uses pixel input and is also a CNN. We meta-train on 2000
generated levels for 1500 meta iterations. Meta-testing is
done on a held-out set of 1000 levels.

Computationally, meta-learning is ˜20% slower than non-
meta-learning baselines due to the two-level MAML update,
but on par with the more complex Rainbow (Hessel et al.
2018). Meta-testing is similar for all methods, only a bit
slower than no shaping.

5.2 Qualitative Investigation of Learned Shaping
A natural question is what exactly is being learned in meta-
training. We therefore plot the meta-learned prior, Vθ, on
one randomly sampled unseen grid maze (from start (S) to
goal (G)) in Fig. 2 by iterating the agent location over all
viable grid positions to get the value prediction for each
state. We can see that the prior learns to generalize over
state representations: plotted values overall match true values
under the setting of +1 reward at goal, 0 reward elsewhere and
discount factor 0.99. Although the map configuration varies
across the task distribution, the representations of the start,
goal, obstacles and agent positions are the same and meta-
training could generalize over the detailed representations.

The prior (Fig. 2) is good for shaping only, but are not
perfect (so could benefit from adaptation): they discount
more rapidly than 0.99, and not all positions with same dis-
tance to goal have same values, especially farther away from
goal. These match our analysis in §3.3. We also observe that
some baselines we consider could get similar visualizations
but with poorer quality.

On CoinRun we observe that the learned shaping is more
complex since the game requires more maneuver, but it gen-
erally tends to encourage agent movement towards goal.

Another natural question is: is our learned shaping better
than pure random shaping, since optimal policies are pre-
served under arbitrary potential-based reward shaping? we
ablate with two random baselines to prove the effectiveness
of our learned shaping:
◦ RANDOM NOISE SHAPING: generate random noise and

substitute the reward shaping whenever needed.
◦ RANDOM NETWORK SHAPING: reward shaping with a

randomly initialized MD3QN directly used.
We experiment on grid mazes. Expectedly, the random

baselines learn very poorly in both the adaptation and shap-
ing only cases. The median returns remain zero until the

11214



Figure 3: Meta-testing learning curves on distributions of (by column) CartPoles, grid mazes and CoinRun games. Top row:
adaptation case (POLICY-BASED MAML performs too badly to appear in range due to its on-policy nature); Bottom row: shaping
only case. OURS (red) achieves state-of-the-art reward shaping and outperforms all baselines.

same update number as of Fig. 3 (grid maze column). This
proves that our learned shaping which generalizes over state
representations does provide meaningful rewards.

5.3 Meta-Testing Performance
The key evaluation is learning curve comparison in both cases
of meta-testing. We consider mostly the baselines emerging
from §3 with their difference from OURS as follows:
◦ NAIVE AVERAGING (Konidaris and Barto 2006;

Snel and Whiteson 2014): its prior-learning objective is
minθ ETiL

Q
Ti(Qθ) instead of Eqn. (9) as discussed in §3.2.

Its original version needs to first learn the same number of
value functions as the number of tasks, which does not scale
well to large number of tasks. We instead merge its two
steps and directly train an RL agent in all meta-training tasks,
which is theoretically equivalent. This is realized by simply
using only one replay buffer for all tasks and do conventional
deep Q-learning with it. (Cobbe et al. 2019) studies the same
approach on CoinRun but with different setting details.
◦ RAINBOW + NAIVE AVERAGING: same as NAIVE AV-

ERAGING but with better agent design (Hessel et al. 2018).
◦ MDDQN: taking away only the dueling part; to be

compatible with Alg. 2 we further introduce Vφj (s) =
maxaQφj (s, a) and Aφj (s, a) = Qφj (s, a)− Vφj (s).
◦ VANILLA MAML: (only in adaptation case) adapts

without shaping as (Finn, Abbeel, and Levine 2017).
◦ POLICY-BASED MAML: (only in adaptation case) the

original MAML-RL (Finn, Abbeel, and Levine 2017), which
is policy-based instead of value-based.

◦ NORML: (only in adaptation case) as (Yang et al. 2019),
does the inner update of POLICY-BASED MAML with a
learnable advantage function without external rewards.
◦ LIRPG-META: (only in shaping only case) as (Zheng

et al. 2020), meta-learns an intrinsic reward function that re-
places external rewards (more details in our arXiv appendix).

Remark: The last three baselines (from POLICY-BASED
MAML) are all essentially on-policy. They uses REIN-
FORCE (Williams 1992) / TRPO (Schulman et al. 2015)
/ PPO (Schulman et al. 2017) for Eqn. (1) and Eqn. (2). In
our experiments, they require more times the amount of train-
ing to achieve comparable performance. For clarity we ex-
clude them from the main plots and leave them to our arXiv
appendix.

We meta-train all methods following §5.1 and plot meta-
testing performances in Fig. 3. In shaping only case, training
identically randomly-initialized RL agents, we also plot train-
ing without any reward shaping (“NO SHAPING”). Note that
oscillation could not be completely avoided since it’s to some
extent inherent to off-policy RL algorithms (Q-learning here).

Across all task distributions and both cases, OURS achieves
state-of-the-art in learning task-distribution reward shaping,
outperforming previous such works (Konidaris and Barto
2006; Snel and Whiteson 2014). Comparison with MD-
DQN and VANILLA MAML justifies our dueling design
and Alg. 2 reward shaping respectively. We reiterate that
pixel-based grid mazes is already non-trivial for non-tabular
agents (Tamar et al. 2016), let alone CoinRun.

Note that in our setting the amount of meta-training expe-

11215



(a) §5.4 Hand-designed Shaping (b) §5.5 DQN to DDPG (c) §5.6 PEARL & MQL

Figure 4: Additional meta-testing learning curve comparisons.

rience and update steps per task on average are quite limited
compared to conventional deep RL. This may be another rea-
son why NAIVE AVERAGING performs poorly, and RAINBOW
+ NAIVE AVERAGING improves it only to some extent. The
last three on-policy competitors also requires more training.
They do catch up when we train them for much longer with
more data and updates.

5.4 Comparison with Hand-designed Shaping
We further experimented on the well-studied domain for
reward shaping, grid mazes. Manhattan or Euclidean dis-
tance to goal is commonly used as the potential function
(Ng, Harada, and Russell 1999; Grzes and Kudenko 2009;
Asmuth, Littman, and Zinkov 2008; Devlin and Kudenko
2012; Marom and Rosman 2018). Since the distance func-
tions cannot adapt, we only compare in shaping only case.
From Fig. 4a, both distances are better than NO SHAPING,
but OURS performs even better, which is quite significant.

Bit surprisingly, the two distances perform almost iden-
tically, possibly because they are somewhat similar (L1/L2
distance) for reward shaping in 2D mazes. In this paper we
always train generalizable neural agents. Here tabular agents
would of course learn very fast, but they cannot generalize,
use specific tabular structure and are not a fair comparison.

5.5 Different Action Spaces in Meta-Testing
We also test under unshared action space. We model this
by meta-testing in a continuous action space on CartPoles.
We let it take as input actions of continuous values. This is
also the shaping only case. After meta-training, we train
DDPG agents from scratch on meta-testing tasks. Clearly
from Fig. 4b, our reward shaping lets the agent achieve max
return the fastest. The initial policy appears better than in the
discrete case because we apply tanh to bound the action
output. However, due to the harder rewards to learn, other
methods struggle in early stages.

5.6 PEARL and MQL on CoinRun
In the adaptation case, we further consider PEARL (Rakelly
et al. 2019) and MQL (Fakoor et al. 2020) that are shown to
outperform MAML on some but not all tasks (Yu et al. 2019).

Generally, they both use the NAIVE AVERAGING (multi-task)
objective and condition the RL agent on episode history so the
problems of the naive objective are mitigated. The following
comparison and combination with OURS are considered:
◦ PEARL, MQL: their meta-training/testing algorithms

but substituting their RL part with MD3QN.
◦ OURS + PEARL, OURS + MQL: our Alg. 1 & 2 but sub-

stituting our meta-learning part with PEARL / MQL. Meta-
training is the same as the above PEARL / MQL respectively
(but not meta-testing, more details in our arXiv appendix).

We again meta-train all methods fairly following §5.1 and
show meta-testing results in Fig. 4c. We outperform almost
all the methods. On one hand, we surpass PEARL and MQL,
though MQL is indeed competitive. Since generally our meta-
learning part, MAML, is at lesat not much better than PEARL
and MQL, our better result could only be attributed mainly to
the reward shaping part. On the other hand, both PEARL and
MQL are boosted when combined with OURS, with OURS
+ MQL finally better than OURS. This again justifies our
reward shaping. Again we note that our goal is not to propose
a new general meta-learning algorithm as PEARL / MQL, but
to learn task-distribution reward shaping with meta-learning.

6 Discussions
Our method builds on meta-learning, and a common ques-
tion about meta-learning is on what task distributions meta-
learning could work (Yu et al. 2019). Although we build on
MAML, our experiments already show we could generalize
on task distributions more difficult than most simple distribu-
tions varying only reward functions in e.g. (Finn, Abbeel, and
Levine 2017; Rakelly et al. 2019): in our case the underlying
transition/dynamics vary with different CartPole lengths and
the grid and CoinRun configurations, which is essentially
more diverse than simply varying target velocities/goal lo-
cations in one same environment (Finn, Abbeel, and Levine
2017; Rakelly et al. 2019). However, as empirically tested (Yu
et al. 2019), being built on MAML still suggests we couldn’t
generalize well to ultimately essentially different tasks (“non-
parametric variation” (Yu et al. 2019)), e.g. all robot-hand
pushing, sliding and pressing tasks combined.

11216



Acknowledgements
This work was supported by NSFC Projects (Nos.
62061136001, 61620106010, U19B2034, U1811461), Na-
tional Key Research and Development Program of China
under grant 2020AAA0106000, Beijing NSF Project (No.
L172037), Beijing Academy of Artificial Intelligence
(BAAI), and the Xplorer Prize.

Haosheng Zou would personally like to thank his wife,
Jiamin Deng, for her incredible support during the whole
process of this paper.

References
Alet*, F.; Schneider*, M. F.; Lozano-Perez, T.; and Kaelbling,
L. P. 2020. Meta-learning curiosity algorithms. In ICLR.

Asmuth, J.; Littman, M. L.; and Zinkov, R. 2008. Potential-
based Shaping in Model-based Reinforcement Learning. In
AAAI.

Baird III, L. C. 1993. Advantage updating. Technical report,
WRIGHT LAB WRIGHT-PATTERSON AFB OH.

Barto, A. G. 2013. Intrinsic motivation and reinforcement
learning. In Intrinsically motivated learning in natural and
artificial systems, 17–47. Springer.

Cobbe, K.; Klimov, O.; Hesse, C.; Kim, T.; and Schulman, J.
2019. Quantifying Generalization in Reinforcement Learning.
In ICML.

Devlin, S.; Grześ, M.; and Kudenko, D. 2011. Multi-agent
reward shaping for robocup keepaway. In AAMAS.

Devlin, S.; and Kudenko, D. 2012. Dynamic potential-based
reward shaping. In AAMAS.

Dorigo, M.; and Colombetti, M. 1994. Robot shaping: De-
veloping autonomous agents through learning. Artificial
intelligence 71(2): 321–370.

Du, Y.; Han, L.; Fang, M.; Liu, J.; Dai, T.; and Tao, D. 2019.
LIIR: Learning Individual Intrinsic Reward in Multi-Agent
Reinforcement Learning. In NeurIPS.

Duan, Y.; Schulman, J.; Chen, X.; Bartlett, P. L.; Sutskever,
I.; and Abbeel, P. 2016. RL2: Fast Reinforcement Learn-
ing via Slow Reinforcement Learning. arXiv preprint
arXiv:1611.02779 .

Eck, A.; Soh, L.-K.; Devlin, S.; and Kudenko, D. 2016.
Potential-based reward shaping for finite horizon online
pomdp planning. In AAMAS.

Efthymiadis, K.; and Kudenko, D. 2013. Using plan-based
reward shaping to learn strategies in starcraft: Broodwar. In
2013 IEEE Conference on Computational Intelligence in
Games (CIG).

Fakoor, R.; Chaudhari, P.; Soatto, S.; and Smola, A. J. 2020.
Meta-Q-Learning. In ICLR.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. In
ICML.

Finn, C.; Xu, K.; and Levine, S. 2018. Probabilistic Model-
Agnostic Meta-Learning. In NeurIPS.

Gao, Y.; and Toni, F. 2015. Potential based reward shaping
for hierarchical reinforcement learning. In IJCAI.
Grześ, M. 2017. Reward shaping in episodic reinforcement
learning. In AAMAS.
Grzes, M.; and Kudenko, D. 2009. Theoretical and empirical
analysis of reward shaping in reinforcement learning. In
International Conference on Machine Learning and Applica-
tions.
Harutyunyan, A.; Devlin, S.; Vrancx, P.; and Nowé, A. 2015.
Expressing arbitrary reward functions as potential-based ad-
vice. In AAAI.
Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; and
Silver, D. 2018. Rainbow: Combining improvements in deep
reinforcement learning. In AAAI.
Jaderberg, M.; Czarnecki, W.; Dunning, I.; Marris, L.; Lever,
G.; Castañeda, A. G.; Beattie, C.; Rabinowitz, N. C.; Morcos,
A. S.; Ruderman, A.; Sonnerat, N.; Green, T.; Deason, L.;
Leibo, J. Z.; Silver, D.; Hassabis, D.; Kavukcuoglu, K.; and
Graepel, T. 2019. Human-level performance in 3D multi-
player games with population-based reinforcement learning.
Science 364: 859–865.
Konidaris, G.; and Barto, A. 2006. Autonomous shaping:
Knowledge transfer in reinforcement learning. In ICML.
Laud, A.; and DeJong, G. 2002. Reinforcement learning and
shaping: Encouraging intended behaviors. In ICML.
Lazaric, A.; and Ghavamzadeh, M. 2010. Bayesian multi-task
reinforcement learning. In ICML.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous
control with deep reinforcement learning. In ICLR.
Lu, X.; Schwartz, H. M.; and Givigi, S. N. 2011. Policy invari-
ance under reward transformations for general-sum stochastic
games. Journal of Artificial Intelligence Research 41: 397–
406.
Mannion, P.; Duggan, J.; and Howley, E. 2017. A theoretical
and empirical analysis of reward transformations in multi-
objective stochastic games. In AAMAS.
Marom, O.; and Rosman, B. 2018. Belief reward shaping in
reinforcement learning. In AAAI.
Marthi, B. 2007. Automatic shaping and decomposition of
reward functions. In ICML.
Mataric, M. J. 1994. Reward functions for accelerated learn-
ing. In Machine Learning Proceedings 1994, 181–189. Else-
vier.
Minsky, M. 1961. Steps toward artificial intelligence. Pro-
ceedings of the IRE 49(1): 8–30.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In ICML.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540): 529.

11217



Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invariance
under reward transformations: Theory and application to
reward shaping. In ICML.

Niekum, S.; Barto, A. G.; and Spector, L. 2010. Genetic
programming for reward function search. IEEE Transactions
on Autonomous Mental Development 2(2): 83–90.

OpenAI; Berner, C.; Brockman, G.; Chan, B.; Cheung, V.;
Debiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.;
Hesse, C.; Józefowicz, R.; Gray, S.; Olsson, C.; Pachocki,
J.; Petrov, M.; de Oliveira Pinto, H. P.; Raiman, J.; Sali-
mans, T.; Schlatter, J.; Schneider, J.; Sidor, S.; Sutskever, I.;
Tang, J.; Wolski, F.; and Zhang, S. 2019. Dota 2 with Large
Scale Deep Reinforcement Learning URL https://arxiv.org/
abs/1912.06680.

Rakelly, K.; Zhou, A.; Finn, C.; Levine, S.; and Quillen, D.
2019. Efficient Off-Policy Meta-Reinforcement Learning via
Probabilistic Context Variables. In ICML.

Randløv, J.; and Alstrøm, P. 1998. Learning to Drive a Bicy-
cle Using Reinforcement Learning and Shaping. In ICML.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In ICML.

Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel,
P. 2016. High-Dimensional Continuous Control Using Gen-
eralized Advantage Estimation. In ICLR.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347 .

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science
362(6419): 1140–1144.

Smith, L. B.; and Slone, L. K. 2017. A developmental ap-
proach to machine learning? Frontiers in psychology 8(2124).

Snel, M.; and Whiteson, S. 2014. Learning potential func-
tions and their representations for multi-task reinforcement
learning. In AAMAS.

Stadie, B.; Zhang, L.; and Ba, J. 2020. Learning Intrinsic
Rewards as a Bi-Level Optimization Problem. In UAI.

Tallec, C.; Blier, L.; and Ollivier, Y. 2019. Making Deep
Q-learning methods robust to time discretization. In ICML.

Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2016. Value iteration networks. In NeurIPS.

Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In AAAI.

Wang, J. X.; Kurth-Nelson, Z.; Tirumala, D.; Soyer, H.;
Leibo, J. Z.; Munos, R.; Blundell, C.; Kumaran, D.; and
Botvinick, M. 2016a. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763 .

Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016b. Dueling Network Architectures for
Deep Reinforcement Learning. In ICML.

Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4): 279–292.
Wiewiora, E.; Cottrell, G. W.; and Elkan, C. 2003. Princi-
pled methods for advising reinforcement learning agents. In
ICML.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine
learning 8(3-4): 229–256.
Wilson, A.; Fern, A.; Ray, S.; and Tadepalli, P. 2007. Multi-
task reinforcement learning: a hierarchical Bayesian ap-
proach. In ICML.
Wu, Y.; and Tian, Y. 2017. Training agent for first-person
shooter game with actor-critic curriculum learning. In ICLR.
Yang, Y.; Caluwaerts, K.; Iscen, A.; Tan, J.; and Finn, C.
2019. NoRML: No-Reward Meta Learning. In AAMAS.
Yoon, J.; Kim, T.; Dia, O.; Kim, S.; Bengio, Y.; and Ahn, S.
2018. Bayesian Model-Agnostic Meta-Learning. In NeurIPS.
Yu, T.; Quillen, D.; He, Z.; Julian, R.; Hausman, K.; Finn,
C.; and Levine, S. 2019. Meta-world: A benchmark and
evaluation for multi-task and meta reinforcement learning. In
CoRL.
Zheng, Z.; Oh, J.; Hessel, M.; Xu, Z.; Kroiss, M.; van Has-
selt, H.; Silver, D.; and Singh, S. 2020. What Can Learned
Intrinsic Rewards Capture? In ICML.
Zheng, Z.; Oh, J.; and Singh, S. 2018. On learning intrinsic
rewards for policy gradient methods. In NeurIPS.

11218


