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Abstract

Multi-agent coordination tends to benefit from efficient com-
munication, where cooperation often happens based on ex-
changing information about what the agents intend to do, i.e.
intention sharing. It becomes a key problem to model the
intention by some proper abstraction. Currently, it is either
too coarse such as final goals or too fined as primitive steps,
which is inefficient due to the lack of modularity and seman-
tics. In this paper, we design a novel multi-agent coordination
protocol based on subgoal intentions, defined as the probabil-
ity distribution over feasible subgoal sequences. The subgoal
intentions encode macro-action behaviors with modularity so
as to facilitate joint decision making at higher abstraction.
Built over the proposed protocol, we present Dec-SGTS (De-
centralized Sub-Goal Tree Search) to solve decentralized on-
line multi-agent planning hierarchically and efficiently. Each
agent runs Dec-SGTS asynchronously by iteratively perform-
ing three phases including local sub-goal tree search, local
subgoal intention update and global subgoal intention shar-
ing. We conduct the experiments on courier dispatching prob-
lem, and the results show that Dec-SGTS achieves much bet-
ter reward while enjoying a significant reduction of planning
time and communication cost compared with Dec-MCTS
(Decentralized Monte Carlo Tree Search).

Introduction
The capability to coordinate multiple agents across a wide
variety of complex tasks is a critical concern in AI commu-
nity. It becomes increasingly important to ensure that agents
are able to operate not just as individuals but as members
of a cohesive team (Smith et al. 2019). Most coordination
approaches are centralized. It means that they often follow
a principle: centralized offline planning or learning, decen-
tralized online execution of planning result. They usually
perform better than the decentralized methods. However,
the performance of the centralized ones are strongly limited
by the scalability, robustness, fault tolerance etc. Moreover,
centralized methods stand in stark contrast with human col-
laboration: in most context we plan individually, and in par-
allel with other humans (Czechowski and Oliehoek 2020).
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To deal with the cases of multi-agent teamwork, the decen-
tralized planning is highly expected.

Under a decentralized framework, each agent should plan
cooperatively considering teammates for a global objective.
To solve coordination in that context, the agents should
know their teammates’ current behavior intentions (plan-
nings/decisions). One feasible way is by prediction via team-
mates’ behavior models, e.g. behavior cloning (Czechowski
and Oliehoek 2020). However, it relies on tedious offline
learning using a lot of training examples. Moreover, once
the task changes, the prediction on previous learned models
may fail. Another promising way for agents to understand
teammates is by communication. It means agents communi-
cate frankly to exchange information about what they intend
to do, i.e. intention sharing. Decentralized Monte Carlo Tree
Search (Dec-MCTS) is developed upon that methodology,
where intentions are modeled based on feasible primitive
action sequences with low-level granularity, i.e. step-by-step
actions (Best et al. 2019, 2018; Best, Huang, and Fitch 2018;
Sukkar et al. 2019; Li et al. 2019). However, the negotiating
inefficiency with heavy communication and less semantics
severely limit the performance of Dec-MCTS.

In general, human communication always uses protocols
which model the intentions with enriched semantics (aka.
ontology) when cooperating. This high-level intention ab-
straction can not only exchange possible future behavior in-
tentions in a highly-compressed style, but also be extremely
helpful for local search and optimization. Therefore, in anal-
ogy with human coordination, it is valuable to design an ab-
stract high-level communication protocol with enriched se-
mantics for decentralized problem solving.

To model the intentions at proper abstraction, it needs
to satisfy two requirements: modularity and semantics. For
modularity, it means that the abstraction can model the in-
tention of individual agents at a proper granularity. It is nei-
ther too fined such as primitive steps nor too coarse such as
final goal. It is preferred with modular composition in a hi-
erarchical way. For semantics, it means that the abstraction
should model the feasible behaviors of individual agents and
can facilitate the multi-agent coordination. With the above
requirements, we model intentions on subgoals or subtasks
(Sutton, Precup, and Singh 1999; Dietterich 2000). For in-
stance, in Courier Dispatching Problem (CDP) simplified as
grid world (Fig. 1), a courier may view a gate, a bridge, a

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11282



(a) (b)

Figure 1: Simplified CDP environments: (a) A courier picks
up a package. (b) Three couriers pick up eleven packages.

Figure 2: Overview of Dec-SGTS. Multiple agents coordi-
nate by intention sharing with the Subgoal-based Protocol.

crossroad as subgoals (red flags) to help planning a path to
the customer (yellow star) (Fig. 1 (a)). These subgoals can
be seen as key waypoints in feasible future tracks, i.e., sub-
goal predicate (Kurzer, Zhou, and Zöllner 2018; Chen et al.
2019a). The subgoals have modularity of state-space divi-
sion, and thus accelerating planning. Extending to a three-
agent case (Fig. 1 (b)), the final goal is to pick up all pack-
ages from all customers as soon as possible. The customers
(yellow stars) and the door-like positions (red flags) can both
be seen as subgoals. For cooperation, each agent should con-
sider teammates and may have several alternative subgoal
sequences with different preference. The sequences and the
preferences can be combined into subgoal intentions with
enriched semantics. Agents can thus plan and coordinate by
exchanging their subgoal intentions more efficiently.

In this paper, we design a novel Subgoal-based Protocol
(SP) for multi-agent coordination on subgoal intention, de-
fined as the probability distribution over feasible subgoal se-
quences. The subgoal intentions encode macro-action be-
haviors with modularity and semantics so as to facilitate
joint decision making at higher abstraction. SP includes
subgoal predicate, connecting subgoals, evaluating subgoal
pairs, encoding and sharing subgoals. Built on SP, we pro-
pose Dec-SGTS (Decentralized Sub-Goal Tree Search) by
fully reconstructing Dec-MCTS (Best et al. 2019) in a pre-
viously unexplored hierarchical manner. Each agent runs
Dec-SGTS asynchronously by iteratively performing three
phases including local sub-goal tree search, local subgoal
intention update and global subgoal intention sharing. As in
Fig. 2, inside the agents, they grow sub-goal trees and update

their subgoal intentions considering teammates. Outside the
agents, they share subgoal intentions by communication.

To perform our idea, the major challenge is how to re-
fine the Subgoal-based Protocol to grow Sub-Goal Trees of
the agents for joint decision? To solve that challenge, we
carefully design the algorithm which: (1) integrates subgoal
predicate, subgoal connection, subgoal-pair evaluation with
tree expansion in a dynamic and demand-driven style; (2)
implements subgoal encoding sharing by employing asyn-
chronous subgoal-based multi-agent interactive model; (3)
leverages World Utility and D-UCT in local subgoal tree
search to deal with the uncertainty from the received team-
mates’ subgoal intentions; (4) adapts the distributed la-
grangian steepest descent framework into local subgoal in-
tention update for distributed optimization of joint decision.

Our main contributions are summarized as follows:

• We design a Subgoal-based Protocol as a general method-
ology for multi-agent coordination on the subgoal level.

• We propose Dec-SGTS with newly-designed algorithms
for sub-goal tree search, subgoal intention update and sub-
goal intention sharing in the decentralized online setting.

• We compare Dec-SGTS with MCTS (Kocsis and
Szepesvári 2006), S-MCTS (Gabor et al. 2019) and Dec-
MCTS (Best et al. 2019) on CDP benchmark from real
environment. The experimental results show Dec-SGTS
achieves an almost 110% higher coordination perfor-
mance with nearly 45% lower communication cost.

Background
Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a promising approach
to online planning (Kocsis and Szepesvári 2006). By using
Monte Carlo simulations to sample thousands of possible
trajectories quickly, it can achieve good approximations of
the values of possible action sequences. MCTS iteratively
executes the four steps as follows until a budget runs out.

Selection Starting from root node as current state, the
search tree is traversed by selecting nodes until a leaf node
with an exploration-exploitation method, i.e. Upper Confi-
dence Trees (UCT) (Kocsis and Szepesvári 2006). Each par-
ent node i selects its child j with the largest UCT (j).

UCT (j) = wj +

√
2 lnni
nj

(1)

where wj denotes the average value estimation of the state
represented by the child j. ni is the total number that the
parent node i has been visited so far. nj is the total number
that the child node j has been visited so far.

Expansion The selected leaf node is expanded by one or
more child nodes representing the possible next states. Then,
the children will be evaluated by rollout.

Rollout Given an environment model, rollout using a sim-
ulation policy, e.g. random sampling, is performed from the
leaf to a maximum search depth or a terminal state.
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Backpropagation The simulated reward by rollout is used
to update the value estimates and visit counts of each node
in the path from the leaf node backward to the root node.

Decentralized Monte Carlo Tree Search
Decentralized Monte Carlo Tree Search (Dec-MCTS) (Best
et al. 2019) is constructed based on intention sharing, i.e.
the probability distribution over feasible primitive action
sequences. Formally, we denote X i as the set of feasible
primitive action sequences xi for agent i, where xi :=<
ai0, a

i
1, a

i
2, ..., a

i
t >, xi ∈ X i. ait is a primitive action of agent

i at time step t, which lasts for only one time step.

Definition 1. The intention of agent i is defined as a prob-
ability distribution qi over feasible action sequences X i
denoted by (X i, qi). The teammates’ intentions except for
agent i are denoted by (X (i), q(i)).

In Dec-MCTS, each agent runs three phases iteratively:
(1) Local Tree Search: it leverages the power of MCTS to
select an effective and compact sample space of feasible ac-
tion sequences X i; (2) Local Intention Update: a distributed
gradient descent method is leveraged to further optimize the
probability distribution qi overX i considering current team-
mates’ intentions (X (i), q(i)); (3) Global Intention Sharing:
the updated local intention (X i, qi) is published, and the cur-
rent teammates’ intentions (X (i), q(i)) are received.

Problem Formulation
Environment
The environment can be generally modeled by an undirected
graph (V,E), and nv = |V |, ne = |E|. In grid world, each
grid is a vertex, and every two adjacent grids form an edge.

Multi-Agent Markov Decision Process
We formulate the multi-agent coordination problem as de-
terministic Multi-Agent Markov Decision Process (MMDP)
represented by a tuple < I,S,A, T , R, h >, where

• I is the set of agents and the team size |I| = ni. Agents
can communicate with teammates to share information.

• S is the set of joint states. It includes positions of the
agents and other domain-specific states of environment.

• A is the set of joint actions. All agents select adjacent
vertexes to visit as a joint action in a single time step.

• T is the probabilities of transition between states for par-
ticular choices of actions: T : S × A × S → [0, 1]. We
assume that the transition is deterministic and only deter-
mined by the destinations of the agent joint movements.

• R is the immediate joint reward function S ×A → R. An
agent gets a negative reward when moving for one step,
and gets a positive reward when finishing some subtask.

• h is the horizon of the problem. Each agent can move for
at most h time steps during the whole task.

Planning Objective
Recall xi :=< ai0, a

i
1, a

i
2, ...a

i
h > is an action sequence of

agent i during horizon h. We denote x as the set of action se-
quences selected by all agents x := {x1, ..., xni}. The team
goal is to choose the best joint action sequences x to max-
imize an global objective function o(x) by summing up the
joint reward R accumulated over ni agents and h time steps.

Subgoal-based Protocol for Coordination
Subgoal Predicate
For subgoal-based coordination, agents should first have
consensus on how to choose subgoal state, i.e. subgoal pred-
icate. We use lowercase s to denote the state of a single
agent, i.e. the factored state of S in MMDP. We denote g(s)
as subgoal predicate. When the agent is at a subgoal state,
g(s) = 1, otherwise, g(s) = 0. In general, subgoals have
two types. One is separated directly from final goal with
some splited reward, as the packages in Fig. 1 (yellow stars).
The other is auxiliary subgoals/subtasks only for accelerat-
ing planning without any reward, which follows the termi-
nology in Reinforcement Learning (Sutton and Barto 2018;
Jaderberg et al. 2016), as the doors in Fig. 1 (red flags). The
domain-specific g can be designed by learning-based offline
training (Jaderberg et al. 2016; Eysenbach, Salakhutdinov,
and Levine 2019) or rule-based online reasoning (Kurzer,
Zhou, and Zöllner 2018; Chen et al. 2019a; Gabor et al.
2019). We design rule-based g for fully-online planning.

Subgoal Connection
Given subgoal predicate g, agent can determine whether its
successive state is a neighbor subgoal state. As the coordi-
nation goes on, agents can gradually build a subgoal-state
graph cooperatively (grey dotted lines in Fig. 1 (b)). It is
highly-compressed compared with primary graph (V,E).

Subgoal-to-Subgoal Evaluation and Policy
For an agent i, there is a set of feasible subgoal sequences
gi ∈ Gi, where gi :=< si0, s

i
1, ... > and ∀τ, g(siτ ) = 1,

where the subscript τ of siτ is a macro time step lasting
for more than or equal to one primitive step. We denote g
as the set of subgoal state sequences selected by all agents
g := {g1, g2, ..., gni}. An agent i should know the subgoal-
pair action policy for moving denoted by x(siτ , siτ+1) :=<

ait, a
i
t+1, ... > and the subgoal-pair distance evaluation for

planning denoted by |x(siτ , siτ+1)|. To get them online, in-
stead of accurate but time-consuming methods, an approxi-
mate but elaborately-designed fast method should be better.

Encoding and Sharing Subgoals
Subgoals to share can be abstracted as subgoal intentions.
Definition 2. We define the subgoal intention of agent i as
a probability distribution qi over feasible subgoal state se-
quences Gi denoted by (Gi, qi). The subgoal intentions of
teammates except for agent i are denoted as (G(i), q(i)).

Besides, when an agent shares its current subgoal inten-
tion, it should also share the subgoal-pair evaluations in that
intention, so that teammates can evaluate when receiving it.
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Figure 3: Dec-SGTS runs three phases including local
SGTS, intention update and intention sharing iteratively.

Refine Subgoal-based Protocol in Dec-SGTS
Overview of Dec-SGTS
Built on SP, we propose Dec-SGTS by fully reconstructing
Dec-MCTS (Best et al. 2019). Dec-SGTS runs on each agent
by iteratively executing three phases including local sub-
goal tree search, local subgoal intention update and global
subgoal intention sharing. As shown in Fig. 3 and Alg. 1,
agent i initialises a sub-goal tree denoted by SGT , where
each tree node represents a subgoal state of agent i (Line 1).
The feasible subgoal sequences Ĝin of agent i are selected
from SGT using sparse representation (Line 4). In phase 1
(Line 7), agent i grows SGT for b2 iterations considering
teammates’ subgoal intentions (Ĝ(i)n , q

(i)
n ), called Sub-Goal

Tree Search (SGTS). In phase 2 (Line 9), the probability dis-
tribution qin over Ĝin is updated using a distributed optimiza-
tion method considering (Ĝ(i)n , q

(i)
n ). In phase 3 (Line 11),

agent i publishes its current intention (Ĝin, qin) and receives
teammates’ intentions (Ĝ(i)n , q

(i)
n ). Finally, best subgoal se-

quences gi can be found with max qin(gi) and decoded to
primitive actions xi by inquiring SGT (Lines 14&15).

Phase 1: Local Sub-Goal Tree Search
Sparse Representation: Periodically Selecting a Set of
Subgoal Sequences from Current Tree Gin has an expo-
nential cardinality. We leverage a sparse representation by
periodically selecting the sample space Ĝin ∈ Gin as the most
promising subgoal sequences found by SGTS so far (Line 4,
Alg. 1). We select the sequences in Ĝin that have higher re-
ward than the others in Gin. The size of Ĝin is set empirically
as a tunable parameter. (In initial iterations, the selected se-
quences can not reach the terminal state of horizon h, so we
extend them using a default policy, e.g. random. As Dec-
SGTS goes on, the selected subgoal sequences can reach h.)

Algorithm 1 Dec-SGTS for agent i
Input: o, g, (V,E) . Functions and the environment
Parameter: b0, b1, b2 . Iteration budgets for the loops
Output: xi . Planned action sequences for agent i

1: SGT←InitialiseSubGoalTree();
2: for n← 1 to b0 do
3: . Sparse Representation of Current Tree
4: Ĝin←SelectSetOfSubgoalSequences(SGT );
5: for m← 1 to b1 do
6: . Phase 1: Local sub-goal tree search
7: SGT ← SGTS(SGT, (Ĝ(i)n , q

(i)
n ), o, g, b2);

8: . Phase 2: Local subgoal intention update
9: (Ĝin, qin)←IntentionUpdate(Ĝin, qin), Ĝ

(i)
n , q

(i)
n );

10: . Phase 3: Global subgoal intention sharing
11: (Ĝ(i)n , q

(i)
n )←IntentionSharing((Ĝin, qin));

12: end for
13: end for
14: gi ← argmaxgi∈Ĝi

n
[qin(gi)]; . Best subgoal sequence

15: return xi ← GetPrimitiveActionSequence(gi,SGT ));

Local Utility Function: Simulating Reward for Guiding
the Growth of Local Sub-Goal Tree Follow Dec-MCTS
(Best et al. 2019), rather than optimising directly for a global
object function o, each agent i instead optimises with respect
to a local utility function f i to grow tree:

f i(g) := o(gi ∪ g(i))− o(gi∅ ∪ g(i)) (2)

where gi∅ is a default ‘no reward’ subgoal sequence for agent
i and would typically be an empty sequence. Although the
agents counld use the global utility o directly, optimising
with respect to f i instead results in faster convergence since
f i is less affected by the unknown plans of teammates, aka.
World Utility (Rahmattalabi et al. 2016).

Selection: Discounted UCT in Sub-Goal Tree We lever-
age an exploration-exploitation method to traverse Sub-Goal
Tree called Discounted UCT (D-UCT) (Best et al. 2019).
Agent i alternately plans locally (local SGTS and intention
update) and communicates cooperatively (intention shar-
ing). We use qn to denote the joint distribution of the cur-
rent plannings of all agents, that is, the combination of qin
(updated locally) and q(i)n (received globally). Between two
communication round, qn may change abruptly. It may os-
cillate the convergence of tree growth. D-UCT leverages a
discounted factor γ to discount the past, and 0 < γ < 1. It is
based on the principle that the most recent rollouts are more
relevant since they are obtained by sampling the most re-
cent distributions. Formally, the selection rule is the same as
UCT (j) (Eqn. 1), but the update of wj , ni, nj in this func-
tion is different. In detail, when SGTS finishes a new roll-
out to get a simulated reward r calculated by World Utility
(Eqn. 2), it backpropagates to update the value estimate wj
and the visit count nj of each node j in the path as follows,
wj = (wjnj + r/γ

nc)/(nj +1/γnc) and nj = nj +1/γnc ,
where nc is the total communication rounds currently, i.e.
nc = nm (n and m are presented in Lines 2&5 in Alg. 1).
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Algorithm 2 Expansion with Subgoal States
Input: LeafNode, g
Parameter: σ, h
Output: NewChild

1: c← 0 . count for action coverage
2: repeat
3: st ← LeafNode.GetState();
4: xt ←<>
5: . Sample until another subgoal state or horizon
6: repeat
7: at ∼ Ai . sample an action
8: xt ← xt++ < at > . add this sampled action
9: st ← StateTransition(st, at)

10: until (g(st) = 1)
11: Flag ←False . whether st existing in children
12: for Child in LeafNode.GetChildrenList() do
13: . Successive subgoal state is rediscovered
14: if st=Child.GetState() then
15: Flag ←True
16: c← c+ 1
17: . Distance from leaf to current child
18: d← Child.GetSubgoalPairDistance()
19: . Update leaf-child subgoal-pair evaluation
20: if |xt| ≤ d then
21: . Store the updated in current child
22: Child.UpdateSubgoalPairDistance(|xt|)
23: Child.UpdateSubgoalPairPolicy(xt)
24: end if
25: end if
26: end for
27: . Successive subgoal state is newly discovered
28: if Flag=False then
29: NewChild← LeafNode.AddChild(st)
30: NewChild.UpdateSubgoalPairDistance(|xt|)
31: NewChild.UpdateSubgoalPairPolicy(xt)
32: end if
33: until c > σ
34: LeafNode.IsFullyExpanded←True;
35: return NewChild;

Proposition 1. Although the joint probability distribution,
i.e. qn, is changing (and converging), D-UCT maintains
an exploration–exploitation trade-off for child selection and
achieves a polynomial convergence rate1.

Expansion: Expansion with Subgoal States Algorithm
2 shows the pseudocode of expansion in an online and
demand-driven style. This is a key of Dec-SGTS, we merge
three parts of SP in tree expansion inlcuding: (1) choosing
and connecting subgoals; (2) subgoal-to-subgoal distance;
(3) subgoal-to-subgoal policy as primitive action sequence.

Overall, the expansion is to find several neighbor succes-
sive subgoal states through approximate sampling until con-
fident, and add them as children to the leaf node. Along with
that, the subgoal-to-subgoal distance and policy are stored

1For formalization and proof, see supplementary material
https://github.com/HPCL-micros/dec-sgts.

and updated in added children. We use a parameter σ to de-
note the amount of sampling trials for discovering succes-
sive subgoal states (Lines 3-33). First, we get the current
subgoal state st from leaf node (Line 3). We simulate agent
randomly walking from current subgoal state to any succes-
sive subgoal state st decided by g in horizon h (Lines 6-10).
Then, we check if the successive subgoal state st is already
discovered and added in the tree as an existing child (Lines
11-14). If so, we update the existing child with the newly-
discovered subgoal-pair distance and policy if they are better
than the old. Each node stores the subgoal-pair distance and
action sequence from its parent to itself (Lines 15-24). At
the same time, action coverage count c increases (Line 16).
If not, which means the successive subgoal state is newly
found, we add it as a new child of leaf node, and store cur-
rent subgoal-pair distance and policy in the new child (Lines
28-32). Finally, if the action coverage count c reaches the
threshold σ, the loop ends and the leaf node is set as fully
expanded. The new child is returned (Lines 33-35).
Proposition 2. Given a proper σ, Algorithm 2 can find
the best subgoal-pair distances and policies asymptotically
when expanding the tree with successive subgoal states2.

Rollout: Subgoal-based Interactive Simulation Model
Considering Teammates’ Intentions We get g(i) by sam-
pling from shared teammates’ intentions (G(i)n , q

(i)
n ). We get

gi from current traversed tree path. A rollout heuristics can
extend gi to the terminal state, e.g. random. So we can simu-
late multi-agent interaction locally to get a reward calculated
by Eqn. 2 considering current teammates’ plannings.

Backpropagation: Backpropagate the new rollout reward
and visit count multiplied by 1/γnc as mentioned in D-UCT.

Phase 2: Local Subgoal Intention Update
The intention update rule is from the theory of PC (Probabil-
ity Collective) (Wolpert, Bieniawski, and Rajnarayan 2013).
We leverage a distributed optimization method based on La-
grangian Steepest Descent proposed in (Wolpert and Bieni-
awski 2004) to modify the intention (Ĝin, qin). When a new
Ĝin is selected by sparse representation (Line 4, Alg. 1), the
probability distribution qin over it is initialised as uniform
distribution. Each qin(gi) of qin is updated once in a subgoal
intention update phase (Line 9, Alg. 1) by the function:

qin(g
i) = qin(g

i)− ηqin(gi)[
Eqn [f

i]− Eqn [f i|gi]
β

+H(qin) + ln(qin(g
i))]

(3)

where qn is the joint distribution for all agents, Eqn is
the expectation of joint reward with respect to qn. Consider-
ing the overhead, we use sampling methods to approximate
those two expectations. H is the entropy. β gradually de-
creases. η is a designated step size. The above process can
be seen as a bridge between game theory and information
theory. Intuitively, it increases the probability that agent i se-
lects gi if that leads to an improved local utility, while also

2For formalization and proof, see supplementary material
https://github.com/HPCL-micros/dec-sgts.
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Figure 4: Instances of urban region of CDP. (a) a screenshot
of CDP real environment from the application Amap. (b) an
instance of CDP real environment simplified as grid world.

ensuring the entropy does not decrease too rapidly. (In fact,
the sequence set Ĝin as a sparse representation (Line 4, Alg.
1) is also gradually optimized as Dec-SGTS goes on).

Proposition 3. Given an appropriate subset Ĝin ∈ Gin, the
above algorithm by iteratively implementing the subgoal in-
tention update asymptotically converges to the joint distri-
bution qn that optimizes the joint subgoal sequences3.

Phase 3: Global Subgoal Intention Sharing
Agent i shares its current intention (Ĝin, qin) by communi-
cating it with teammates. It also shares the subgoal-pair dis-
tances in that intention (Ĝin, qin). We design a message type
composed of four fields including agent ID, time step, cur-
rent intention and subgoal-pair distances in that intention. If
no new messages are received from a teammate, then agent
i continues to plan based on the most recent distribution of
the teammate. If agent i is yet to receive any messages from
a teammate, it may assume a default policy such as a random
policy. Hence, Dec-SGTS is an asynchronous method.

Final Policy Generation
Agent i can select the best subgoal sequences gi with max
probability qin(gi) in current intention (Ĝin, qin). Since in tree
expansion, each newly-added child node stores and updates
the best primitive action sequence between its parent and it-
self, we can use current tree SGT to decode gi to best prim-
itive action sequence xi for moving (Lines 14&15, Alg. 1).

Experiments & Results
Experimental Setup
Environment We implement the instances of Dec-SGTS
in CDP (Figure 4). Figure 4 (a) is an example of a real
environment map, we see the crossings, bridges and gates as
auxiliary subgoals. Figure 4 (b) is an instance of CDP grid
world with three couriers. The couriers start from a depot
(blue grid) aiming to pick up all the packages (yellow grids)
as soon as possible in horizon h. Grid world is one of the
most studied domains in AI including courier dispatching
(Chen et al. 2019b), warehouse commissioning (Claes et al.
2017) and ride hailing (Jin et al. 2019) etc.

3For formalization and proof, see supplementary material
https://github.com/HPCL-micros/dec-sgts.

Figure 5: Average rewards
for different planning time.

Figure 6: Average communi-
cation cost in bytes/second.

Settings Dec-SGTS is implemented with a platform of 12
cores, 3.7 GHz and 16 GB Memory. We ran each experiment
for 50 times and present the average rewards with standard
deviations. Agent moves for one grid with reward -0.01 and
picks up a package with reward 1.0. For each experiment,
we use different settings and parameters4. We compare Dec-
SGTS with MCTS (Kocsis and Szepesvári 2006), S-MCTS
(Gabor et al. 2019) and Dec-MCTS (Best et al. 2019).

Subgoal Predicate Heuristics Subgoal predicate function
g is domain-specific. In an urban region of CDP, if an agent
moves to a customer, it often passes a bridge, a zebra cross-
ing, a community gate or a building door etc., which can be
seen as a subgoal state denoted by g(s) = 1. Those grids can
be see as ‘door’ positions with obstacles on opposing sides
adjacent to it, where the agent can only move with two op-
posite legal actions. The subgoal predicate function g can be
formulated as: if |A(s)| = 2 or there is a package at state s,
g(s) = 1, otherwise g(s) = 0, where |A(s)| are the number
of legal following actions for an agent at state s.

Results and Discussion
Performance-Computation Tradeoff Figure 5 presents
average rewards for different planning time in scenario of
Fig. 4 (b) with 3 agents. Dec-SGTS significantly outper-
forms the others by more than 110%, and approximates op-
timality (dotted line) in less than 10 seconds. There is an
upward trend of S-MCTS, however, the reward increases
very slowly. Dec-MCTS increases slowly either. It does not
converge in 20 seconds. Given only 20 seconds, MCTS can
hardly make the agents find any valuable planning result.

Performance-Communication Tradeoff In Fig. 6, we
record the communication cost represented as bandwith in
bytes/second in the scenario of Fig. 4 (b) with 3 agents. The
result show that Dec-MCTS suffers from heavier communi-
cation which is nearly twice as much as that of Dec-SGTS.

Rewards of Different Subgoal Predicate We test four
subgoal predicate including exact definition, |A(s)| = 2,
|A(s)| ≤ 2, and |A(s)| ≤ 3. Customer locations are sub-
goals in default. Given planning time of 15 seconds. Table
1 presents the average rewards with regard to different kinds

4For detail parameter settings, see supplementary material
https://github.com/HPCL-micros/dec-sgts.
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Subgoal Predicate Rewards

Exact Definition 10.65
|A(st)| = 2 10.65
|A(st)| ≤ 2 7.65
|A(st)| ≤ 3 1.81

Table 1: The average rewards with regard to different kinds
of subgoal predicate heuristics of Dec-SGTS.

σ Rewards

40 10.65
30 7.89
20 1.2
10 -

Table 2: The average rewards for different action coverage
thresholds σ of Dec-SGTS.

of subgoal predicate in the scenario of Fig. 4 (b). We ob-
serve that Dec-SGTS can find a near-optimal result using
exact definition and |A(st)| = 2. Coarser subgoal predicate
brings much worse results for |A(s)| ≤ 2 and |A(s)| ≤ 3.

Action Coverage Threshold to Decide Neighbor We use
the action coverage threshold σ to expand tree nodes with
subgoal states. Table 2 presents the average rewards with
regard to different σ in the scenario of Fig. 4 (b). Given a
planning time of 15 seconds, when σ = 40, Dec-SGTS eas-
ily find a near-optimal result. As the σ goes down, the aver-
age rewards decrease fast. When σ = 30 and σ = 20, the
rewards are 7.89 and 1.20 respectively. When σ = 10, the
connected graph among the subgoal states can not be built,
let alone the proper subgoal-pair evaluations, hence there is
no meaningful result.

Discussion In Dec-SGTS, the huge search space for a joint
policy is segmented with subgoals in a hierarchical way.
Hence, the state space is modularized. Shared messages are
also highly compressed by a macro protocol, and the mes-
sage semantics is richer. Therefore, with the aid of these
advatages, Dec-SGTS achieves much higher performance
with less communication cost. Dec-MCTS is hindered by
the drawback of primitive-level search and negotiation. S-
MCTS has the natural disadvantage of centralized planning
when the problem scales. MCTS is a centralized method on
primitive level and is hindered by the above two drawbacks.

Threats to validity compromising our confidence are con-
cerned with the design of the subgoal predicate, the size of
the team and environment, the density degree of subgoals.

Related Work
In addition to the papers we previously discussed, first, we
will mention other related decentralized MCTS methods for
mulit-agent coordination, but different to Dec-SGTS. At a
high level, our proposed Dec-SGTS is similar to Dec-MCTS
(Best et al. 2019), but we differ in how we expand local tree
dynamically with subgoal states using a subgoal predicate,

integrate subgoal-pair connection and evaluation with tree
expansion, share subgoal-level information with enriched
semantics, and we propose solving the multi-agent coordi-
nation with an anytime, hierarchical and principled manner.
Kurzer et al. propose a coordination method on macro ac-
tions in the domain of automated vehicles (Kurzer, Zhou,
and Zöllner 2018). In (Claes et al. 2017), a decentralized
MCTS method is implemented on warehouse commission-
ing task with a high efficiency. But the above two methods
base on the assumption that each agent has a behavior model
of each other in advance. It is unsuitable for most scenarios.

Second, we will mention some subgoal-based methods
that we draw inspiration from. Temporal Abstraction sum-
marizes temporal sequences of primitive actions into macro-
actions (Sutton, Precup, and Singh 1999; Amato, Konidaris,
and Kaelbling 2014; Amato et al. 2019), which are based on
the Options framework (Sutton, Precup, and Singh 1999).
Dietterich et al. propose MAXQ Value Function Decompo-
sition by defining subtasks or subgoals (Dietterich 2000).
Recently, Gabor et al. proposed Subgoal-based MCTS (S-
MCTS) (Gabor et al. 2019). However, the natural drawbacks
of centralized methods hinder their performance.

Third, it is worthy to mention Ad Hoc Teamwork (Stone
et al. 2010; Chen et al. 2019a), where an agent engages
in collaborative tasks without relying on communication or
pre-defined strategy. However, without communication, it
may rely on much offline training instead for understanding
teammates, e.g. Convolutional Neural Network for detecting
behavior switching (Ravula, Alkoby, and Stone 2019).

Conclusions and Future Work
In this paper, we design a novel Subgoal-based Protocol (SP)
for communication-enabled coordination on a lifted abstrac-
tion with modularity and enriched semantics. Built over SP,
we propose Dec-SGTS for multi-agent coordination on sub-
goal level in a much more efficient way. The experimental
results validate the efficiency and efficacy of Dec-SGTS.
We believe rational communication with a high-efficiency
protocol can improve the performance of multi-agent sys-
tems. Our work opens exciting directions for future research,
including: (1) can our approach be extended to stochastic
environments? (2) can the scalability be further improved
by coalition-based methods? (3) can Dec-SGTS be further
strengthened by merging it with learning?

Finally, except for courier dispatching problem we stud-
ied in this paper, we believe that our idea will be applica-
ble for robotics, warehouse commissioning, ride hailing and
other domains where subgoal-based multi-agent coordina-
tion is important.
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